1
|
Marasini N, Er G, Fu C, Subasic CN, Ibrahim J, Skwarczynski M, Toth I, Whittaker AK, Kaminskas LM. Development of a hyperbranched polymer-based methotrexate nanomedicine for rheumatoid arthritis. Acta Biomater 2022; 142:298-307. [PMID: 35114374 DOI: 10.1016/j.actbio.2022.01.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/17/2022] [Accepted: 01/26/2022] [Indexed: 01/18/2023]
Abstract
Methotrexate (MTX) is an effective disease modifying anti-rheumatic drug, but can cause significant hepatotoxicity and liver failure in some individuals. The goal of this work was to develop a MTX-conjugated hyperbranched polymeric nanoparticle based on oligo(ethylene glycol) methyl ether methacrylate (OEGMA) and examine its ability to selectively deliver MTX to rheumatic joints while sparing the liver. MTX was conjugated to the hyperbranched polymer via a matrix metalloproteinase-13 cleavable peptide linker. Two populations of nanoparticles were produced, with sizes averaging 20 and 200nm. Tri-peptide (FFK)-modified MTX was liberated in the presence of matrix metalloproteinase 13 (MMP-13)and showed 100 to 1000-fold lower antiproliferative capacity in monocytic THP-1 cells compared to unmodified MTX, depending on whether the gamma-carboxylate of MTX was functionalized with O-tert-butyl. Nanoparticles showed prolonged plasma exposure after intravenous injection with a terminal half-life of approximately 1 day, but incomplete (50%) absorption after subcutaneous administration. Nanoparticles selectively accumulated in inflamed joints in a rat model of rheumatoid arthritis and showed less than 5% biodistribution in the liver after 5 days. MTX-OtBu nanoparticles also showed no hepatocellular toxicity at 500 μM MTX equivalents. This work provides support for the further development of OEGMA-based hyperbranched polymers as MTX drug delivery systems for rheumatoid arthritis. STATEMENT OF SIGNIFICANCE: Nanomedicines containing covalently conjugated methotrexate offer the potential for selective accumulation of the potent hepatotoxic drug in rheumatic joints and limited liver exposure. One limitation of the high surface presentation of methotrexate on a nanoparticle surface, however, is the potential for enhanced liver uptake. We developed several OEGMA-based hyperbranched polymers containing alpha-carboxyl modified and unmodified methotrexate conjugated via an MMP-13 cleavable hexapeptide linker. The modified methotrexate polymer showed promising in vitro and in vivo behavior warranting further development and optimization as an anti-rheumatic nanomedicine. This work presents a new avenue for further research into the development of hyperbranched polymers for rheumatoid arthritis and suggests interesting approaches that may overcome some limitations associated with the translation of anti-rheumatic nanomedicines into patients.
Collapse
|
2
|
Bao C, Wang Y, Xu X, Li D, Chen J, Guan Z, Wang B, Hong M, Zhang J, Wang T, Zhang Q. Reversible immobilization of laccase onto glycopolymer microspheres via protein-carbohydrate interaction for biodegradation of phenolic compounds. BIORESOURCE TECHNOLOGY 2021; 342:126026. [PMID: 34598072 DOI: 10.1016/j.biortech.2021.126026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
It is challenging to regenerate enzyme carriers when covalently immobilized enzymes suffered from inactivation during continuous operations. Hence, it is urgent to develop a facile strategy to immobilize enzymes reversibly. Herein, the non-covalent interaction between protein and carbohydrate was used to adsorb and desorb enzymes reversibly. Laccase was immobilized onto glycopolymer microspheres via protein-carbohydrate interaction using lectins as the intermediates. The enzyme loading and immobilization yield were up to 49 mg/g and 77.1% with highly expressed activity of 107.9 U/mg. The immobilized laccase exhibited enhanced pH stability and high activity in catalyzing the biodegradation of paracetamol. During ten successive recoveries, the immobilized laccases could be recycled while maintaining relatively high enzyme activity. The glycopolymer microspheres could be efficiently regenerated by elution with an aqueous solution of mannose or acid for further enzyme immobilization. This glycopolymer microspheres has excellent potential to act as reusable carriers for the non-covalent immobilization of different enzymes.
Collapse
Affiliation(s)
- Chunyang Bao
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China; Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Yan Wang
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China; Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Xiaoling Xu
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China; Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Die Li
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China; Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Jing Chen
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China; Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Zhangbin Guan
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China; Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Bingyu Wang
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China; Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Mei Hong
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China; Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Jingyu Zhang
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China; Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Tianheng Wang
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China; Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Qiang Zhang
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China; Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China.
| |
Collapse
|
3
|
Baffie F, Patias G, Shegiwal A, Brunel F, Monteil V, Verrieux L, Perrin L, Haddleton DM, D'Agosto F. Block Copolymers Based on Ethylene and Methacrylates Using a Combination of Catalytic Chain Transfer Polymerisation (CCTP) and Radical Polymerisation. Angew Chem Int Ed Engl 2021; 60:25356-25364. [PMID: 34546635 PMCID: PMC9298203 DOI: 10.1002/anie.202108996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/07/2021] [Indexed: 11/07/2022]
Abstract
Two scalable polymerisation methods are used in combination for the synthesis of ethylene and methacrylate block copolymers. ω-Unsaturated methacrylic oligomers (MMAn ) produced by catalytic chain transfer (co)polymerisation (CCTP) of methyl methacrylate (MMA) and methacrylic acid (MAA) are used as reagents in the radical polymerisation of ethylene (E) in dimethyl carbonate solvent under relatively mild conditions (80 bar, 70 °C). Kinetic measurements and analyses of the produced copolymers by size exclusion chromatography (SEC) and a combination of nuclear magnetic resonance (NMR) techniques indicate that MMAn is involved in a degradative chain transfer process resulting in the formation of (MMA)n -b-PE block copolymers. Molecular modelling performed by DFT supports the overall reactivity scheme and observed selectivities. The effect of MMAn molar mass and composition is also studied. The block copolymers were characterised by differential scanning calorimetry (DSC) and their bulk behaviour studied by SAXS/WAXS analysis.
Collapse
Affiliation(s)
- Florian Baffie
- Université de LyonUniversité Lyon 1CPE LyonCNRS UMR 5128Laboratoire CP2MÉquipe PCM69616Villeurbanne, CEDEXFrance
| | - Georgios Patias
- University of WarwickDepartment of ChemistryGibbet HillCV4 7ALCoventryUK
| | - Ataulla Shegiwal
- University of WarwickDepartment of ChemistryGibbet HillCV4 7ALCoventryUK
| | - Fabrice Brunel
- Université de LyonUniversité Lyon 1CPE LyonCNRS UMR 5128Laboratoire CP2MÉquipe PCM69616Villeurbanne, CEDEXFrance
| | - Vincent Monteil
- Université de LyonUniversité Lyon 1CPE LyonCNRS UMR 5128Laboratoire CP2MÉquipe PCM69616Villeurbanne, CEDEXFrance
| | - Ludmilla Verrieux
- Université de LyonUniversité Claude Bernard Lyon 1CPE LyonINSA-LyonCNRSUMR 5246ICBMS43 Bd du 11 Novembre 191869616VilleurbanneFrance
| | - Lionel Perrin
- Université de LyonUniversité Claude Bernard Lyon 1CPE LyonINSA-LyonCNRSUMR 5246ICBMS43 Bd du 11 Novembre 191869616VilleurbanneFrance
| | - David M. Haddleton
- University of WarwickDepartment of ChemistryGibbet HillCV4 7ALCoventryUK
| | - Franck D'Agosto
- Université de LyonUniversité Lyon 1CPE LyonCNRS UMR 5128Laboratoire CP2MÉquipe PCM69616Villeurbanne, CEDEXFrance
| |
Collapse
|
4
|
Baffie F, Patias G, Shegiwal A, Brunel F, Monteil V, Verrieux L, Perrin L, Haddleton DM, D'Agosto F. Block Copolymers Based on Ethylene and Methacrylates Using a Combination of Catalytic Chain Transfer Polymerisation (CCTP) and Radical Polymerisation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Florian Baffie
- Université de Lyon Université Lyon 1 CPE Lyon CNRS UMR 5128 Laboratoire CP2M Équipe PCM 69616 Villeurbanne, CEDEX France
| | - Georgios Patias
- University of Warwick Department of Chemistry Gibbet Hill CV4 7AL Coventry UK
| | - Ataulla Shegiwal
- University of Warwick Department of Chemistry Gibbet Hill CV4 7AL Coventry UK
| | - Fabrice Brunel
- Université de Lyon Université Lyon 1 CPE Lyon CNRS UMR 5128 Laboratoire CP2M Équipe PCM 69616 Villeurbanne, CEDEX France
| | - Vincent Monteil
- Université de Lyon Université Lyon 1 CPE Lyon CNRS UMR 5128 Laboratoire CP2M Équipe PCM 69616 Villeurbanne, CEDEX France
| | - Ludmilla Verrieux
- Université de Lyon Université Claude Bernard Lyon 1 CPE Lyon INSA-Lyon CNRS UMR 5246 ICBMS 43 Bd du 11 Novembre 1918 69616 Villeurbanne France
| | - Lionel Perrin
- Université de Lyon Université Claude Bernard Lyon 1 CPE Lyon INSA-Lyon CNRS UMR 5246 ICBMS 43 Bd du 11 Novembre 1918 69616 Villeurbanne France
| | - David M. Haddleton
- University of Warwick Department of Chemistry Gibbet Hill CV4 7AL Coventry UK
| | - Franck D'Agosto
- Université de Lyon Université Lyon 1 CPE Lyon CNRS UMR 5128 Laboratoire CP2M Équipe PCM 69616 Villeurbanne, CEDEX France
| |
Collapse
|
5
|
Wang B, Shang C, Miao Z, Guo S, Zhang Q. Lactose-containing glycopolymer grafted onto magnetic titanium dioxide nanomaterials for targeted capture and photocatalytic killing of pathogenic bacteria. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
6
|
Menon S, Krishnan A, Jose T, Roy S. UV-responsive glycosomes as frameworks for FRET: The quest for bio-inspired energy transfer systems. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2020.112927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
7
|
Assembly of silica nanoparticles based on stimuli-responsive covalent bonding between glycopolymers and poly(phenylboronic acid)s. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109888] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
8
|
Hong M, Miao Z, Xu X, Zhang Q. Magnetic Iron Oxide Nanoparticles Immobilized with Sugar-Containing Poly(ionic liquid) Brushes for Efficient Trapping and Killing of Bacteria. ACS APPLIED BIO MATERIALS 2020; 3:3664-3672. [DOI: 10.1021/acsabm.0c00298] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Mei Hong
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
- Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Ziyue Miao
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
- Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Xiaoling Xu
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
- Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Qiang Zhang
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
- Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| |
Collapse
|
9
|
Oz Y, Abdouni Y, Yilmaz G, Becer CR, Sanyal A. Magnetic glyconanoparticles for selective lectin separation and purification. Polym Chem 2019. [DOI: 10.1039/c8py01748d] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A modular platform for the separation and purification of lectins using polymer coated iron oxide nanoparticles is developed.
Collapse
Affiliation(s)
- Yavuz Oz
- Department of Chemistry
- Bogazici University
- Turkey
| | - Yamin Abdouni
- Polymer Chemistry Laboratory
- School of Engineering and Materials Science
- Queen Mary University of London
- E1 4NS London
- UK
| | - Gokhan Yilmaz
- Polymer Chemistry Laboratory
- School of Engineering and Materials Science
- Queen Mary University of London
- E1 4NS London
- UK
| | - C. Remzi Becer
- Polymer Chemistry Laboratory
- School of Engineering and Materials Science
- Queen Mary University of London
- E1 4NS London
- UK
| | - Amitav Sanyal
- Department of Chemistry
- Bogazici University
- Turkey
- Center for Life Sciences and Technologies
- Bogazici University
| |
Collapse
|
10
|
Atkins CJ, Patias G, Town JS, Wemyss AM, Eissa AM, Shegiwal A, Haddleton DM. A simple and versatile route to amphiphilic polymethacrylates: catalytic chain transfer polymerisation (CCTP) coupled with post-polymerisation modifications. Polym Chem 2019. [DOI: 10.1039/c8py01641k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Amphiphilic polymers have become key figures in the fields of pharmacology, medicine, agriculture and cosmetics.
Collapse
Affiliation(s)
| | | | - James S. Town
- Department of Chemistry
- University of Warwick
- Coventry
- UK
| | | | | | | | | |
Collapse
|
11
|
Liu Z, Zhu Y, Ye W, Wu T, Miao D, Deng W, Liu M. Synthesis of well-defined glycopolymers with highly ordered sugar units in the side chain via combining CuAAC reaction and ROMP: lectin interaction study in homo- and hetero-glycopolymers. Polym Chem 2019. [DOI: 10.1039/c9py00756c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The design of novel heterogeneous glycopolymers with different sugar motifs is of critical importance in the glycopolymer field.
Collapse
Affiliation(s)
- Zhifeng Liu
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- People's Republic of China
| | - Yu Zhu
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- People's Republic of China
| | - Wenling Ye
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- People's Republic of China
| | - Tong Wu
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- People's Republic of China
| | - Dengyun Miao
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- People's Republic of China
| | - Wei Deng
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- People's Republic of China
| | - Meina Liu
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- People's Republic of China
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Function Molecules
| |
Collapse
|
12
|
Patias G, Wemyss AM, Efstathiou S, Town JS, Atkins CJ, Shegiwal A, Whitfield R, Haddleton DM. Controlled synthesis of methacrylate and acrylate diblock copolymers via end-capping using CCTP and FRP. Polym Chem 2019. [DOI: 10.1039/c9py01133a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This work demonstrates a method for preparing acrylic-methacrylic diblock copolymers via end-capping.
Collapse
Affiliation(s)
| | | | | | - James S. Town
- University of Warwick
- Department of Chemistry
- Coventry
- UK
| | | | | | | | | |
Collapse
|
13
|
Wang D, Ding W, Zhou K, Guo S, Zhang Q, Haddleton DM. Coating Titania Nanoparticles with Epoxy-Containing Catechol Polymers via Cu(0)-Living Radical Polymerization as Intelligent Enzyme Carriers. Biomacromolecules 2018; 19:2979-2990. [DOI: 10.1021/acs.biomac.8b00544] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Donghao Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
- Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Wenyi Ding
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
- Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Kaiyue Zhou
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
- Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Shutong Guo
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
- Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Qiang Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
- Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - David M. Haddleton
- Department of Chemistry, University of Warwick, CV4 7AL, Coventry, United Kingdom
| |
Collapse
|
14
|
Bao C, Yin Y, Zhang Q. Synthesis and Assembly of Laccase-Polymer Giant Amphiphiles by Self-Catalyzed CuAAC Click Chemistry. Biomacromolecules 2018; 19:1539-1551. [PMID: 29562131 DOI: 10.1021/acs.biomac.8b00087] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Covalent coupling of hydrophobic polymers to the exterior of hydrophilic proteins would mediate unique macroscopic assembly of bioconjugates to generate amphiphilic superstructures as novel nanoreactors or biocompatible drug delivery systems. The main objective of this study was to develop a novel strategy for the synthesis of protein-polymer giant amphiphiles by the combination of copper-mediated living radical polymerization and azide-alkyne cycloaddition reaction (CuAAC). Azide-functionalized succinimidyl ester was first synthesized for the facile introduction of azide groups to proteins such as albumin from bovine serum (BSA) and laccase from Trametes versicolor. Alkyne-terminal polymers with varied hydrophobicity were synthesized by using commercial copper wire as the activators from a trimethylsilyl protected alkyne-functionalized initiator in DMSO under ambient temperature. The conjugation of alkyne-functionalized polymers to the azide-functionalized laccase could be conducted even without additional copper catalyst, which indicated a successful self-catalyzed CuAAC reaction. The synthesized amphiphiles were found to aggregate into spherical nanoparticles in water and showed strong relevance to the hydrophobicity of coupled polymers. The giant amphiphiles showed decreased enzyme activity yet better stability during storage after chemical modification and self-assembly. These findings will deepen our understanding on protein folding, macroscopic self-assembly, and support potential applications in bionanoreactor, enzyme immobilization, and water purification.
Collapse
|
15
|
Hu X, Gao J, Luo Y, Wei T, Dong Y, Chen G, Chen H. One-Pot Multicomponent Synthesis of Glycopolymers through a Combination of Host-Guest Interaction, Thiol-ene, and Copper-Catalyzed Click Reaction in Water. Macromol Rapid Commun 2017; 38. [PMID: 28863243 DOI: 10.1002/marc.201700434] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/02/2017] [Indexed: 12/14/2022]
Abstract
There is a common phenomenon that the heterogeneity of natural oligosaccharides contains various sugar units, which can be used to enhance affinity and selectivity toward a specific receptor, so the synthesis of heterogeneous glycopolymers is always an important issue in the glycopolymer field. Herein, this study conducts a one-pot method to prepare polyrotaxane-based heteroglycopolymers anchored with different sugar units and fluorescent moieties via the combination of host-guest interaction, thiol-ene, and copper-catalyzed click chemistry in water. Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, gel permeation chromatography, X-ray diffraction, and Ellman's assay test are used in the paper to characterize the compounds. Quartz crystal microbalance-dissipation (QCD-D) experiments and bacterial adhesion assay are utilized to study the interactions of polyrotaxane-based heteroglycopolymers with Con A and Escherichia coli. The results reveal that polyrotaxanes (PRs) with mannose and glucose present better specificity toward Con A and E. coli than PRs with glucose due to synergistic effects.
Collapse
Affiliation(s)
- Xiang Hu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China.,Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou, 215006, P. R. China
| | - Jinbo Gao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Yan Luo
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China.,Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou, 215006, P. R. China
| | - Ting Wei
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Yishi Dong
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Gaojian Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China.,Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou, 215006, P. R. China
| | - Hong Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
16
|
Gadwal I, Eom T, Hwang J, Choe Y, Bang J, Khan A. Addressing the mid-point of polymer chains for multiple functionalization purposes through sequential thiol–epoxy ‘click’ and esterification reactions. RSC Adv 2017. [DOI: 10.1039/c7ra02702h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A synthetic strategy is devised for the preparation of mid-chain multifunctional polymers.
Collapse
Affiliation(s)
- Ikhlas Gadwal
- Department of Chemical and Biological Engineering
- Korea University
- Seoul 02841
- Korea
| | - Taejun Eom
- Department of Chemical and Biological Engineering
- Korea University
- Seoul 02841
- Korea
| | - JiHyeon Hwang
- Department of Chemical and Biological Engineering
- Korea University
- Seoul 02841
- Korea
| | - Youngson Choe
- Department of Chemical Engineering
- Pusan National University
- Pusan
- Korea
| | - Joona Bang
- Department of Chemical and Biological Engineering
- Korea University
- Seoul 02841
- Korea
| | - Anzar Khan
- Department of Chemical and Biological Engineering
- Korea University
- Seoul 02841
- Korea
| |
Collapse
|
17
|
Sugar-Grafted Cyclodextrin Nanocarrier as a "Trojan Horse" for Potentiating Antibiotic Activity. Pharm Res 2016; 33:1161-74. [PMID: 26792570 DOI: 10.1007/s11095-016-1861-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 01/13/2016] [Indexed: 01/12/2023]
Abstract
PURPOSE The use of "Trojan Horse" nanocarriers for antibiotics to enhance the activity of antibiotics against susceptible and resistant bacteria is investigated. METHODS Antibiotic carriers (CD-MAN and CD-GLU) are prepared from β-cyclodextrin grafted with sugar molecules (D-mannose and D-glucose, respectively) via azide-alkyne click reaction. The sugar molecules serve as a chemoattractant enticing the bacteria to take in higher amounts of the antibiotic, resulting in rapid killing of the bacteria. RESULTS Three types of hydrophobic antibiotics, erythromycin, rifampicin and ciprofloxacin, are used as model drugs and loaded into the carriers. The minimum inhibitory concentration of the antibiotics in the CD-MAN-antibiotic and CD-GLU-antibiotic complexes for Gram-negative Escherichia coli, Pseudomonas aeruginosa and Acinetobacter baumannii strains, and a number of Gram-positive Staphylococcus aureus strains, including the methicillin-resistant strains (MRSA), are reduced by a factor ranging from 3 to >100. The CD-MAN-antibiotic complex is also able to prolong the stability of the loaded antibiotic and inhibit development of intrinsic antibiotic resistance in the bacteria. CONCLUSIONS These non-cytotoxic sugar-modfied nanocarriers can potentiate the activity of existing antibiotics, especially against multidrug-resistant bacteria, which is highly advantageous in view of the paucity of new antibiotics in the pipeline.
Collapse
|
18
|
Zhang Q, Li M, Zhu C, Nurumbetov G, Li Z, Wilson P, Kempe K, Haddleton DM. Well-Defined Protein/Peptide–Polymer Conjugates by Aqueous Cu-LRP: Synthesis and Controlled Self-Assembly. J Am Chem Soc 2015; 137:9344-53. [DOI: 10.1021/jacs.5b04139] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Qiang Zhang
- Department of Chemistry, University of Warwick, CV4 7AL, Coventry, United Kingdom
| | - Muxiu Li
- Department of Chemistry, University of Warwick, CV4 7AL, Coventry, United Kingdom
| | - Chongyu Zhu
- Department of Chemistry, University of Warwick, CV4 7AL, Coventry, United Kingdom
| | - Gabit Nurumbetov
- Department of Chemistry, University of Warwick, CV4 7AL, Coventry, United Kingdom
| | - Zaidong Li
- Department of Chemistry, University of Warwick, CV4 7AL, Coventry, United Kingdom
| | - Paul Wilson
- Department of Chemistry, University of Warwick, CV4 7AL, Coventry, United Kingdom
| | - Kristian Kempe
- Department of Chemistry, University of Warwick, CV4 7AL, Coventry, United Kingdom
| | - David M. Haddleton
- Department of Chemistry, University of Warwick, CV4 7AL, Coventry, United Kingdom
| |
Collapse
|
19
|
Gadwal I, Stuparu MC, Khan A. Homopolymer bifunctionalization through sequential thiol–epoxy and esterification reactions: an optimization, quantification, and structural elucidation study. Polym Chem 2015. [DOI: 10.1039/c4py01453g] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this study, we probe various aspects of a post-polymerization double-modification strategy involving sequential thiol–epoxy and esterification reactions for the preparation of dual-functional homopolymers.
Collapse
Affiliation(s)
- Ikhlas Gadwal
- Department of Materials
- ETH-Zürich
- CH-8093 Zürich
- Switzerland
| | - Mihaiela C. Stuparu
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- and School of Materials Science and Engineering
- Nanyang Technological University
- Singapore
| | - Anzar Khan
- Department of Materials
- ETH-Zürich
- CH-8093 Zürich
- Switzerland
| |
Collapse
|
20
|
Simpson EM, Ristovski ZD, Bottle SE, Fairfull-Smith KE, Blinco JP. Modular design of profluorescent polymer sensors. Polym Chem 2015. [DOI: 10.1039/c5py00120j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Through orthogonal coupling chemistries, the synthesis of profluorescent nitroxide containing polymers for applications as radical or redox sensors is achieved.
Collapse
Affiliation(s)
- Emily M. Simpson
- School of Chemistry
- Physics and Mechanical Engineering Queensland University of Technology (QUT)
- Brisbane
- Australia
| | - Zoran D. Ristovski
- School of Chemistry
- Physics and Mechanical Engineering Queensland University of Technology (QUT)
- Brisbane
- Australia
| | - Steven E. Bottle
- School of Chemistry
- Physics and Mechanical Engineering Queensland University of Technology (QUT)
- Brisbane
- Australia
| | - Kathryn E. Fairfull-Smith
- School of Chemistry
- Physics and Mechanical Engineering Queensland University of Technology (QUT)
- Brisbane
- Australia
| | - James P. Blinco
- School of Chemistry
- Physics and Mechanical Engineering Queensland University of Technology (QUT)
- Brisbane
- Australia
| |
Collapse
|
21
|
Wang L, Shen J, Men Y, Wu Y, Peng Q, Wang X, Yang R, Mahmood K, Liu Z. Corn starch-based graft copolymers prepared via ATRP at the molecular level. Polym Chem 2015. [DOI: 10.1039/c5py00184f] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Starch-g-PS and Starch-g-PMMA with controlled graft chains and high graft ratio were prepared at the molecular level.
Collapse
Affiliation(s)
- Leli Wang
- Institute of Polymer Chemistry and Physics
- Beijing Key Laboratory of Energy Conversion and Storage Materials
- College of Chemistry
- Beijing Normal University
- Beijing 100875
| | - Jianan Shen
- Institute of Polymer Chemistry and Physics
- Beijing Key Laboratory of Energy Conversion and Storage Materials
- College of Chemistry
- Beijing Normal University
- Beijing 100875
| | - Yongjun Men
- Institute of Polymer Chemistry and Physics
- Beijing Key Laboratory of Energy Conversion and Storage Materials
- College of Chemistry
- Beijing Normal University
- Beijing 100875
| | - Ying Wu
- Institute of Polymer Chemistry and Physics
- Beijing Key Laboratory of Energy Conversion and Storage Materials
- College of Chemistry
- Beijing Normal University
- Beijing 100875
| | - Qiaohong Peng
- Institute of Polymer Chemistry and Physics
- Beijing Key Laboratory of Energy Conversion and Storage Materials
- College of Chemistry
- Beijing Normal University
- Beijing 100875
| | - Xiaolin Wang
- Institute of Polymer Chemistry and Physics
- Beijing Key Laboratory of Energy Conversion and Storage Materials
- College of Chemistry
- Beijing Normal University
- Beijing 100875
| | - Rui Yang
- Institute of Polymer Chemistry and Physics
- Beijing Key Laboratory of Energy Conversion and Storage Materials
- College of Chemistry
- Beijing Normal University
- Beijing 100875
| | - Khalid Mahmood
- Institute of Polymer Chemistry and Physics
- Beijing Key Laboratory of Energy Conversion and Storage Materials
- College of Chemistry
- Beijing Normal University
- Beijing 100875
| | - Zhengping Liu
- Institute of Polymer Chemistry and Physics
- Beijing Key Laboratory of Energy Conversion and Storage Materials
- College of Chemistry
- Beijing Normal University
- Beijing 100875
| |
Collapse
|
22
|
Affiliation(s)
- Umit Tunca
- Department of Chemistry; Istanbul Technical University; Maslak Istanbul 34469 Turkey
| |
Collapse
|
23
|
Zhang Q, Su L, Collins J, Chen G, Wallis R, Mitchell DA, Haddleton DM, Becer CR. Dendritic Cell Lectin-Targeting Sentinel-like Unimolecular Glycoconjugates To Release an Anti-HIV Drug. J Am Chem Soc 2014; 136:4325-32. [DOI: 10.1021/ja4131565] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Qiang Zhang
- Department
of Chemistry, University of Warwick, CV4 7AL Coventry, United Kingdom
| | - Lu Su
- State
Key Laboratory of Molecular Engineering of Polymers, Ministry of Education
and Department of Macromolecular Science, Fudan University, 220
Handan Road, Shanghai 200433, China
| | - Jennifer Collins
- Department
of Chemistry, University of Warwick, CV4 7AL Coventry, United Kingdom
| | - Guosong Chen
- State
Key Laboratory of Molecular Engineering of Polymers, Ministry of Education
and Department of Macromolecular Science, Fudan University, 220
Handan Road, Shanghai 200433, China
| | - Russell Wallis
- Department
of Biochemistry, University of Leicester, LE1 9HN Leicester, United Kingdom
| | - Daniel A. Mitchell
- Clinical
Sciences Research Laboratories, Warwick Medical School, University of Warwick, CV2 2DX Coventry, United Kingdom
| | - David M. Haddleton
- Department
of Chemistry, University of Warwick, CV4 7AL Coventry, United Kingdom
| | - C. Remzi Becer
- Department
of Chemistry, University of Warwick, CV4 7AL Coventry, United Kingdom
- School
of Engineering and Materials Science, Queen Mary University of London, Mile End Road, E1 4NS London, United Kingdom
| |
Collapse
|
24
|
Sun P, He Y, Lin M, Zhao Y, Ding Y, Chen G, Jiang M. Glyco-regioisomerism Effect on Lectin-Binding and Cell-Uptake Pathway of Glycopolymer-Containing Nanoparticles. ACS Macro Lett 2014; 3:96-101. [PMID: 35651117 DOI: 10.1021/mz400577p] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sugar regioisomerism (glycosidic linkage on different hydroxyl groups of the same sugar) widely exists in various polysaccharides and glycans with a significant contribution to their biological functions. However, the effects of this regioisomersim in glycopolymers and their self-assembled nanoparticles on such functions were almost not investigated previously. In this paper, this regioisomersim effect is studied for self-assembled nanoparticles NP-1-Gal and NP-6-Gal from triblock copolymers carrying different constitutional isomers of the pendent sugar species (1 and 6 denote the glycosidic linkage from the anomeric position and 6 position of the galactose unit, respectively). NP-1-Gal shows strong binding to lectins of Peanut (Arachis hypogea) agglutinin (PNA) and Erythrina cristagalli agglutinin (ECA), while NP-6-Gal does not. More importantly, they show binding behavior similar to the asialoglycoprotein receptor (ASGPR) but different internalization pathways in the Hep G2 cell after ASGPR-mediated endocytosis; i.e., NP-1-Gal can reach the early endosome, late endosome, as well as lysosome, while NP-6-Gal enters the early endosome only but not the others.
Collapse
Affiliation(s)
- Pengfei Sun
- The
State Key Laboratory of Molecular Engineering of Polymers and Department
of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Yu He
- School
of Life Sciences, Fudan University, Shanghai 200433, China
| | - Mingchang Lin
- The
State Key Laboratory of Molecular Engineering of Polymers and Department
of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Yu Zhao
- The
State Key Laboratory of Molecular Engineering of Polymers and Department
of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Yu Ding
- School
of Life Sciences, Fudan University, Shanghai 200433, China
| | - Guosong Chen
- The
State Key Laboratory of Molecular Engineering of Polymers and Department
of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Ming Jiang
- The
State Key Laboratory of Molecular Engineering of Polymers and Department
of Macromolecular Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
25
|
Lowe AB. Thiol–ene “click” reactions and recent applications in polymer and materials synthesis: a first update. Polym Chem 2014. [DOI: 10.1039/c4py00339j] [Citation(s) in RCA: 579] [Impact Index Per Article: 57.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This contribution serves as an update to a previous review (Polym. Chem.2010,1, 17–36) and highlights recent applications of thiol–ene ‘click’ chemistry as an efficient tool for both polymer/materials synthesis as well as modification.
Collapse
Affiliation(s)
- Andrew B. Lowe
- School of Chemical Engineering
- Centre for Advanced Macromolecular Design
- UNSW Australia
- University of New South Wales
- Kensington Sydney, Australia
| |
Collapse
|
26
|
Zhang Q, Anastasaki A, Li GZ, Haddleton AJ, Wilson P, Haddleton DM. Multiblock sequence-controlled glycopolymers via Cu(0)-LRP following efficient thiol–halogen, thiol–epoxy and CuAAC reactions. Polym Chem 2014. [DOI: 10.1039/c4py00320a] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The combination of copper(0) mediated living radical polymerization (Cu(0)-LRP) with thiol–halogen, thiol–epoxy and copper catalysed alkyne azide coupling (CuAAC) click chemistry has been employed to give a new route to multiblock sequence-controlled glycopolymers.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Chemistry
- University of Warwick
- Coventry, UK
| | | | - Guang-Zhao Li
- Department of Chemistry
- University of Warwick
- Coventry, UK
- Department of Chemistry
- Vanderbilt University
| | | | - Paul Wilson
- Department of Chemistry
- University of Warwick
- Coventry, UK
- Monash Institute of Pharmaceutical Sciences
- Monash University
| | - David M. Haddleton
- Department of Chemistry
- University of Warwick
- Coventry, UK
- Monash Institute of Pharmaceutical Sciences
- Monash University
| |
Collapse
|
27
|
Sequential Thiol-Epoxy and Esterification Reactions: A Facile Route to Bifunctional Homopolymer Sequences. MULTI-COMPONENT AND SEQUENTIAL REACTIONS IN POLYMER SYNTHESIS 2014. [DOI: 10.1007/12_2014_299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
28
|
Basuki JS, Esser L, Duong HTT, Zhang Q, Wilson P, Whittaker MR, Haddleton DM, Boyer C, Davis TP. Magnetic nanoparticles with diblock glycopolymer shells give lectin concentration-dependent MRI signals and selective cell uptake. Chem Sci 2014. [DOI: 10.1039/c3sc52838c] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
29
|
Affiliation(s)
- Ikhlas Gadwal
- Department of Materials, ETH-Zürich, CH-8093 Zürich, Switzerland
| | - Jingyi Rao
- Department of Materials, ETH-Zürich, CH-8093 Zürich, Switzerland
| | - Julia Baettig
- Department of Materials, ETH-Zürich, CH-8093 Zürich, Switzerland
| | - Anzar Khan
- Department of Materials, ETH-Zürich, CH-8093 Zürich, Switzerland
| |
Collapse
|
30
|
Shi XJ, Chen GJ, Wang YW, Yuan L, Zhang Q, Haddleton DM, Chen H. Control the wettability of poly(n-isopropylacrylamide-co-1-adamantan-1-ylmethyl acrylate) modified surfaces: the more Ada, the bigger impact? LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:14188-14195. [PMID: 24152189 DOI: 10.1021/la4037748] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Surface-initiated SET-LRP was used to synthesize polymer brush containing N-isopropylacrylamide and adamantyl acrylate using Cu(I)Cl/Me6-TREN as precursor catalyst and isopropanol/H2O as solvent. Different reaction conditions were explored to investigate the influence of different parameters (reaction time, catalyst concentration, monomer concentration) on the polymerization. Copolymers with variable 1-adamantan-1-ylmethyl acrylate (Ada) content and comparable thickness were synthesized onto silicon surfaces. Furthermore, the hydrophilic and bioactive molecule β-cyclodextrin-(mannose)7 (CDm) was synthesized and complexed with adamantane via host-guest interaction. The effect of adamantane alone and the effect of CDm together with adamantane on the wettability and thermoresponsive property of surface were investigated in detail. Experimental and molecular structure analysis showed that Ada at certain content together with CDm has the greatest impact on surface wettability. When Ada content was high (20%), copolymer-CDm surfaces showed almost no CDm complexed with Ada as the result of steric hindrance.
Collapse
Affiliation(s)
- Xiu-Juan Shi
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, P. R. China
| | | | | | | | | | | | | |
Collapse
|
31
|
Zammit CM, Wills M. Use of triazole-ring formation to attach a Ru/TsDPEN complex for asymmetric transfer hydrogenation to a soluble polymer. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.tetasy.2013.05.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
32
|
Lu G, Li Y, Guo H, Du W, Huang X. SET-LRP synthesis of novel polyallene-based well-defined amphiphilic graft copolymers in acetone. Polym Chem 2013. [DOI: 10.1039/c3py00145h] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
33
|
Anastasaki A, Waldron C, Nikolaou V, Wilson P, McHale R, Smith T, Haddleton DM. Polymerization of long chain [meth]acrylates by Cu(0)-mediated and catalytic chain transfer polymerisation (CCTP): high fidelity end group incorporation and modification. Polym Chem 2013. [DOI: 10.1039/c3py00618b] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
34
|
McEwan KA, Slavin S, Tunnah E, Haddleton DM. Dual-functional materials via CCTP and selective orthogonal thiol-Michael addition/epoxide ring opening reactions. Polym Chem 2013. [DOI: 10.1039/c3py21104e] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
35
|
Liu M, Tan BH, Burford RP, Lowe AB. Nucleophilic thiol-Michael chemistry and hyperbranched (co)polymers: synthesis and ring-opening metathesis (co)polymerization of novel difunctional exo-7-oxanorbornenes with in situ inimer formation. Polym Chem 2013. [DOI: 10.1039/c3py00110e] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
36
|
Tunca U. Triple Click Reaction Strategy for Macromolecular Diversity. Macromol Rapid Commun 2012; 34:38-46. [DOI: 10.1002/marc.201200656] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 10/18/2012] [Indexed: 12/24/2022]
|
37
|
Sanders GC, Duchateau R, Lin CY, Coote ML, Heuts JPA. End-Functional Styrene–Maleic Anhydride Copolymers via Catalytic Chain Transfer Polymerization. Macromolecules 2012. [DOI: 10.1021/ma301161u] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Gemma C. Sanders
- Laboratory
of Polymer Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600
MB Eindhoven, The Netherlands
- Dutch Polymer Institute (DPI), John F. Kennedylaan 2, 5612 AB Eindhoven, The
Netherlands
| | - Robbert Duchateau
- Laboratory
of Polymer Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600
MB Eindhoven, The Netherlands
| | - Ching Yeh Lin
- ARC Centre of
Excellence for Free-Radical
Chemistry and Biotechnology, Research School of Chemistry, Australian National University, Canberra, ACT 0200,
Australia
| | - Michelle L. Coote
- ARC Centre of
Excellence for Free-Radical
Chemistry and Biotechnology, Research School of Chemistry, Australian National University, Canberra, ACT 0200,
Australia
| | - Johan P. A. Heuts
- Laboratory
of Polymer Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600
MB Eindhoven, The Netherlands
| |
Collapse
|
38
|
Zhang Q, Li GZ, Becer CR, Haddleton DM. Cyclodextrin-centred star polymers synthesized via a combination of thiol-ene click and ring opening polymerization. Chem Commun (Camb) 2012; 48:8063-5. [DOI: 10.1039/c2cc33742h] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
39
|
Li J, El harfi J, Howdle SM, Carmichael K, Irvine DJ. Controlled oligomerisation of isoprene-towards the synthesis of squalene analogues. Polym Chem 2012. [DOI: 10.1039/c2py20066j] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
40
|
Tedja R, Soeriyadi AH, Whittaker MR, Lim M, Marquis C, Boyer C, Davis TP, Amal R. Effect of TiO2 nanoparticle surface functionalization on protein adsorption, cellular uptake and cytotoxicity: the attachment of PEG comb polymers using catalytic chain transfer and thiol–ene chemistry. Polym Chem 2012. [DOI: 10.1039/c2py20450a] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
41
|
De S, Stelzer C, Khan A. A general synthetic strategy to prepare poly(ethylene glycol)-based multifunctional copolymers. Polym Chem 2012. [DOI: 10.1039/c2py20289a] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|