1
|
Silva JDS, de Almeida LN, Machado AS, de Torres ÉM, de Souza Gil E, Gonçalves C, Lião LM, Lobón GS, Vaz BG, Lopes LG, Menegatti R. Novel matrix formulation for resin composite: Chemical and biomechanical characterization - Part 1. Dent Mater 2024; 40:e53-e62. [PMID: 39117498 DOI: 10.1016/j.dental.2024.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
OBJECTIVE This study aimed to investigate the effects of adding cholesteryl methacrylate (CM) monomer to experimental composite resins and evaluate its impact on polymerization shrinkage force (PSF), Knoop microhardness (KHN), sorption and solubility (SS), vulnerability to spontaneous oxidation (VOE), porosity (BES), viscosity (V), and cross-link density (CLD). CM was synthesized, mixed with varying proportions of Bis-GMA, 70 wt% filler particles, and 40 % TEGDMA. The groups tested were: CM0 (60 % Bis-GMA), CM6 (54 % Bis-GMA/6 % CM), CM12 (48 % Bis-GMA/12 % CM), CM18 (42 % Bis-GMA/18 % CM) and CM24 (36 % Bis-GMA/24 % CM). The PSF was evaluated using a universal testing machine. KHN was measured with a 50 g load for 30 s. SS was determined according to ISO 4049:2009. VOE was measured with a three-electrode system in an electrochemical cell. BES images were obtained using an electron microscope to assess porosity. Viscosity was measured through rheological analysis. CLD was estimated from hardness readings before and after ethanol storage. RESULTS CM6 (0.34 N) and CM12 (0.34 N) exhibited the lowest PSF values compared to CM0 (0.91 N). For KHN, CM6 (32.03) and CM12 (31.03) had higher values than CM0 (25.83) and were similar to CM18 (29.39) and CM24 (28.64). SS showed no significant differences among the groups. VOE indicated low vulnerability across all groups. CM12 had greater porosity compared to CM0 in BES images. CM0 had the lowest viscosity among the groups. No differences in CLD were observed among CM0, CM12, CM18, and CM24 regarding softening effects. SIGNIFICANCE Adding CM to Bis-GMA/TEGDMA composite resins can reduce polymerization shrinkage force and increase the initial Knoop microhardness without affecting the other properties studied.
Collapse
Affiliation(s)
- Julyana Dumas Santos Silva
- Department of Oral Rehabilitation and Prevention, Dental School, Federal University of Goiás, Av. Universitária, Campus Colemar Natal e Silva, Goiânia, GO 74605-220, Brazil.
| | - Letícia Nunes de Almeida
- Department of Oral Rehabilitation and Prevention, Dental School, Federal University of Goiás, Av. Universitária, Campus Colemar Natal e Silva, Goiânia, GO 74605-220, Brazil.
| | - Antônio Silva Machado
- Laboratory of Medicinal Pharmaceutical Chemistry, School of Pharmacy, Federal University of Goiás, 5ª Avenida, Campus Colemar Natal e Silva, Goiânia, GO 74605-170, Brazil.
| | - Érica Miranda de Torres
- Department of Oral Rehabilitation and Prevention, Dental School, Federal University of Goiás, Av. Universitária, Campus Colemar Natal e Silva, Goiânia, GO 74605-220, Brazil.
| | - Eric de Souza Gil
- Laboratory of Pharmaceutical and Environmental Analysis, Federal University of Goiás, 5ª Avenida, Campus Colemar Natal e Silva, Goiânia, GO 74605-170, Brazil.
| | - Cristhiane Gonçalves
- Departament of Electronics Engineering, Federal University of Technology-Parana, Rua Doutor Washington Subtil, Campus Ponta Grossa, Ponta Grossa, PR, Brazil.
| | - Luciano Morais Lião
- Laboratory of Nuclear Magnetic Resonance, Chemistry Institute, Federal University of Goias, Avenida Esperança Bloco IQ-1, Campus Samambaia, Goiânia, GO 74690-900, Brazil.
| | - Germán Sanz Lobón
- Laboratory of Chromatography and Mass Spectrometry-LaCEM, Chemistry Institute, Federal University of Goiás, Avenida Esperança Bloco IQ-1, Campus Samambaia, Goiânia, GO 74690-900, Brazil.
| | - Boniek Gontijo Vaz
- Laboratory of Chromatography and Mass Spectrometry-LaCEM, Chemistry Institute, Federal University of Goiás, Avenida Esperança Bloco IQ-1, Campus Samambaia, Goiânia, GO 74690-900, Brazil.
| | - Lawrence Gonzaga Lopes
- Department of Oral Rehabilitation and Prevention, Dental School, Federal University of Goiás, Av. Universitária, Campus Colemar Natal e Silva, Goiânia, GO 74605-220, Brazil.
| | - Ricardo Menegatti
- Laboratory of Medicinal Pharmaceutical Chemistry, School of Pharmacy, Federal University of Goiás, 5ª Avenida, Campus Colemar Natal e Silva, Goiânia, GO 74605-170, Brazil.
| |
Collapse
|
2
|
Silva JDS, de Almeida LN, Machado AS, de Oliveira AA, Cardoso LS, Gonçalves C, de Macêdo IYL, de Souza Gil E, Veríssimo C, de Aleluia Batista K, Lião LM, Estrela C, Menegatti R, Lopes LG. Characterization of experimental resin composites with cholesteryl methacrylate organic matrix - Part 2. Dent Mater 2024; 40:e63-e71. [PMID: 39112294 DOI: 10.1016/j.dental.2024.07.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE The aim of this study was to evaluate the degree of conversion (%), flexural strength (MPa), elastic modulus (GPa), compressive strength (MPa), Knoop microhardness (KHN), post-gel shrinkage (%) and prediction of ideal concentration of cholesteryl methacrylate (CM) in experimental resins. METHODS Four formulations were manipulated (F): F1, control group, (0 % CM); F2 (15 % CM); F3 (19.8 % CM) and F4 (30 % CM). Bis-GMA and CM percentages were determined using Statistica™ software. For the degree of conversion test, Raman spectroscopy was used. To testing flexural strength, elastic modulus and compressive strength, a universal testing machine was used. For the Knoop microhardness test five indentations were made in each sample. Post-gel shrinkage was determined using the strain gauge method. Statistica™ software processed all data obtained in this study. Results were submitted to one-way ANOVA and Tukey's post hoc tests (α = 0.05). RESULTS Better performance was observed for F2 (15 % CM) and F3 (19,8 % CM) for degree of conversion, elastic modulus and post-gel shrinkage. For Knoop microhardness F2 (15 % CM), F3 (19,8 % CM) and F4 (30 % CM) showed higher values than F1 (0 % CM). For flexural strength F1 (0 % CM) and F3 (19,8 %) were similar and F4 showed the lowest values and for compressive strength F1 (0 % CM) showed the highest values. For mixture designs analysis data, concentrations ≤ 25 % of CM would provide better results. SIGNIFICANCE Addition of CM at concentrations lower than 30 % contributed to a significant increase in the degree of conversion, microhardness values, elastic modulus and reduction of post-gel shrinkage.
Collapse
Affiliation(s)
- Julyana Dumas Santos Silva
- Department of Oral Rehabilitation and Prevention, Dental School, Federal University of Goiás, Campus Colemar Natal e Silva, Av. Universitária, Goiânia, GO 74605-220, Brazil.
| | - Letícia Nunes de Almeida
- Department of Oral Rehabilitation and Prevention, Dental School, Federal University of Goiás, Campus Colemar Natal e Silva, Av. Universitária, Goiânia, GO 74605-220, Brazil.
| | - Antônio Silva Machado
- Laboratory of Medicinal Pharmaceutical Chemistry, School of Pharmacy, Federal University of Goiás, Campus Colemar Natal e Silva, 5ª Avenida, Goiânia, GO 74605-170, Brazil.
| | - Amanda Alves de Oliveira
- Department of Oral Rehabilitation and Prevention, Dental School, Federal University of Goiás, Campus Colemar Natal e Silva, Av. Universitária, Goiânia, GO 74605-220, Brazil.
| | - Luiza Santos Cardoso
- Department of Oral Rehabilitation and Prevention, Dental School, Federal University of Goiás, Campus Colemar Natal e Silva, Av. Universitária, Goiânia, GO 74605-220, Brazil.
| | - Cristhiane Gonçalves
- Departament of Electronics Engineering, Federal University of Technology-Parana, Campus Ponta Grossa, Rua Doutor Washington Subtil, Ponta Grossa, PR, Brazil.
| | - Isaac Yves Lopes de Macêdo
- Laboratory of Pharmaceutical and Environmental Analysis, Federal University of Goiás, Campus Colemar Natal e Silva, 5ª Avenida, Goiânia, GO 74605-170, Brazil.
| | - Eric de Souza Gil
- Laboratory of Pharmaceutical and Environmental Analysis, Federal University of Goiás, Campus Colemar Natal e Silva, 5ª Avenida, Goiânia, GO 74605-170, Brazil.
| | - Crisnicaw Veríssimo
- Department of Oral Rehabilitation and Prevention, Dental School, Federal University of Goiás, Campus Colemar Natal e Silva, Av. Universitária, Goiânia, GO 74605-220, Brazil.
| | - Karla de Aleluia Batista
- Federal Institute for Education, Science and Technology of Goias, Campus Goiania Oeste, Rua R17, Goiânia, GO 74371-204, Brazil.
| | - Luciano Morais Lião
- Laboratory of Nuclear Magnetic Resonance, Chemistry Institute, Federal University of Goias, Campus Samambaia, Avenida Esperança Bloco IQ-1, Goiânia, GO 74690-900, Brazil.
| | - Carlos Estrela
- Department of Oral Rehabilitation and Prevention, Dental School, Federal University of Goiás, Campus Colemar Natal e Silva, Av. Universitária, Goiânia, GO 74605-220, Brazil.
| | - Ricardo Menegatti
- Laboratory of Medicinal Pharmaceutical Chemistry, School of Pharmacy, Federal University of Goiás, Campus Colemar Natal e Silva, 5ª Avenida, Goiânia, GO 74605-170, Brazil.
| | - Lawrence Gonzaga Lopes
- Department of Oral Rehabilitation and Prevention, Dental School, Federal University of Goiás, Campus Colemar Natal e Silva, Av. Universitária, Goiânia, GO 74605-220, Brazil.
| |
Collapse
|
3
|
Chiu CY, Lin HT, Yen TJ, Chang Y. Self-Assembly Anchored Cationic Copolymer Interfaces for Applying the Control of Counterion-Induced Bacteria Killing/Release Procedure. Macromol Biosci 2022; 22:e2200207. [PMID: 35875978 DOI: 10.1002/mabi.202200207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/30/2022] [Indexed: 12/25/2022]
Abstract
In recent years, daily hygiene and disease control issues have received increasing attention, especially the raging epidemics caused by the spread of deadly viruses. The construction of the interface of new polymer materials is focused on, which can provide a cyclic operation process for the killing and releasing of bacteria, and perform repeated regeneration, which is of great significance for the development of advanced medical biomaterials. In order to explore the basic physical phenomena of bacterial attachment and detachment on the polymer material interface by different amine groups, this study plans to synthesize four different butyl methacrylate (BMA)-based cationic copolymers with primary, ternary, and quaternary amine groups, and compare their effects on bactericidal efficiency. Since BMA can generate strong hydrophobic interactions with the benzene ring structure, this study used a polystyrene substrate to realize a self-assembled cationic copolymer interface for controlling the counterion-induced bacterial killing/release process. Furthermore, negatively charged ions are introduced to induce changes in the hydration capability of water molecules and control the subsequent bacterial detachment function. In this study, possible directions to answer and clarify the above concepts are proposed, and there is a basic reference principle that can lead to research work in macromolecular bioscience fields.
Collapse
Affiliation(s)
- Chieh-Yang Chiu
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu City, 300044, Taiwan (R.O.C.)
| | - Hao-Tung Lin
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Zhongli Dist., Taoyuan City, 320314, Taiwan (R.O.C.)
| | - Ta-Jen Yen
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu City, 300044, Taiwan (R.O.C.)
| | - Yung Chang
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Zhongli Dist., Taoyuan City, 320314, Taiwan (R.O.C.)
| |
Collapse
|
4
|
Kwon K, Lee J, Lee S, Ree M, Kim H. Pneumolysin/Plasma Protein Adsorption, Bacterial Adherence, and Cell Adhesion Characteristics of a Cell-Membrane-Mimicking Polymer System. ACS APPLIED BIO MATERIALS 2022; 5:2240-2252. [PMID: 35436086 DOI: 10.1021/acsabm.2c00111] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This study delivers the first report on a cell-membrane-mimicking polymer system, poly[oxy(4-(13-cholenoatenonyl)-1,2,3-triazoyl-1-methyl)ethylene-random-oxy(4-(13-phosphorylcholinenonyl)-1,2,3-triazoyl-1-methyl)ethylene] (PGA-CholmPCn) films in various compositions in terms of physicochemical properties, protein adsorptions, bacterial adherences, and human cell adhesions. Higher Chol-containing PGA-CholmPCn in a self-assembled multi-bilayer membrane structure is confirmed to show excellently high affinity to pneumolysin (a cytolysin) and its C-terminal fragment (domain 4) but substantially suppressed affinity to the N-terminal fragment (domains 1-3) and further to plasma proteins. Furthermore, the adherences of pathogenic bacteria are increased favorably; however, the adhesion and proliferation of a human HEp-2 cell line are hindered severely. In contrast, higher-PC-containing PGA-CholmPCn membranes promote HEp-2 cell adhesion and proliferation but significantly suppress the adsorptions of pneumolysin and its fragments and plasma proteins as well as bacterial adherence. The results collectively confirm that PGA-CholmPCn can yield a membrane platform enriched with hydrophobic Chol and hydrophilic and zwitterionic PC moieties in any desired compositions, providing highly selective and sensitive physicochemical characters and biocompatibilities which are demanded for applications in various fields including biomedicine, cosmetics, and environmentally friendly consumer products.
Collapse
Affiliation(s)
- Kyungho Kwon
- Hanwha Solution/Chemical Research & Development Institute, 76 Gajeong-ro, Yuseong-gu, Daejeon 34128, Republic of Korea
| | - Jongchan Lee
- Analytical Sciences, LG Chem R&D Center, 188 Munji-ro, Yuseong-gu, Daejeon 34122, Republic of Korea
| | - Soomin Lee
- Department of Microbiology and Dongguk Medical Institute, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea
| | - Moonhor Ree
- Surface Technology Institute, Ceko Corporation, 519 Dunchon-daero, Jungwon-gu, Seongnam 13216, Republic of Korea
| | - Heesoo Kim
- Department of Microbiology and Dongguk Medical Institute, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea
| |
Collapse
|
5
|
Xu Z, Yang D, Long T, Yuan L, Qiu S, Li D, Mu C, Ge L. pH-Sensitive nanoparticles based on amphiphilic imidazole/cholesterol modified hydroxyethyl starch for tumor chemotherapy. Carbohydr Polym 2022; 277:118827. [PMID: 34893244 DOI: 10.1016/j.carbpol.2021.118827] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/18/2021] [Accepted: 10/26/2021] [Indexed: 02/05/2023]
Abstract
pH-Responsive nanoparticles (NPs) have emerged as an effective antitumor drug delivery system, promoting the drugs accumulation in the tumor and selectively releasing drugs in tumoral acidic microenvironment. Herein, we developed a new amphiphilic modified hydroxyethyl starch (HES) based pH-sensitive nanocarrier of antitumor drug delivery. HES was first modified by hydrophilic imidazole and hydrophobic cholesterol to obtain an amphiphilic polymer (IHC). Then IHC can self-assemble to encapsulate doxorubicin (DOX) and form doxorubicin-loaded nanoparticles (DOX/IHC NPs), which displayed good stability for one week storage and acidic sensitive long-term sustained release of DOX. As a result, cancer cell endocytosed DOX/IHC NPs could continuously release doxorubicin into cytoplasm and nucleus to effectively kill cancer cells. Additionally, DOX/IHC NPs could be effectively enriched in the tumor tissue, showing enhanced tumor growth inhibition effect compared to free doxorubicin. Overall, our amphiphilic modified HES-based NPs possess a great potential as drug delivery system for cancer chemotherapy.
Collapse
Affiliation(s)
- Zhilang Xu
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Die Yang
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Tao Long
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Lun Yuan
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Shi Qiu
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610065, PR China
| | - Defu Li
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Changdao Mu
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Liming Ge
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
6
|
Wang Z, Sun J, Li M, Luo T, Shen Y, Cao A, Sheng R. Natural steroid-based cationic copolymers cholesterol/diosgenin- r-PDMAEMAs and their pDNA nanoplexes: impact of steroid structures and hydrophobic/hydrophilic ratios on pDNA delivery. RSC Adv 2021; 11:19450-19460. [PMID: 35479247 PMCID: PMC9033666 DOI: 10.1039/d1ra00223f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/05/2021] [Indexed: 11/21/2022] Open
Abstract
Using natural-based lipids to construct biocompatible, controllable and efficient nanocarriers and elucidating their structure-function relationships, was regarded as an important area for creating sustainable biomaterials. Herein, we utilized two natural steroids: cholesterol and diosgenin (bearing different hydrophobic tails) as the building blocks, to synthesize a series of natural steroid-based cationic random copolymers PMA6Chol-r-PDMAEMA and PMA6Dios-r-PDMAEMA via RAFT polymerization. The results demonstrated that the steroid-r-PDMAEMA copolymers could efficiently bind pDNA (N/P < 3.0) and then form near-spherical shape (142-449 nm) and positively-charged (+11.5 to +19.6 mV) nanoparticles. The in vitro cytotoxicity and gene transfection efficiency greatly depend on the steroid hydrophobic tail structures and steroid/PDMAEMA block ratios. Optimum transfection efficiency of the (Chol-P1/pDNA and Dios-P3/pDNA) nanoplexes could reach to 18.1-31.2% of the PEI-25K/pDNA complex. Moreover, all of the steroid-r-PDMAEMA/Cy3-pDNA nanoplexes have an obvious "lysosome localization" effect, indicating the steroid structures do not remarkably influence the intracellular localization behaviors of these nanoplexes.
Collapse
Affiliation(s)
- Zhao Wang
- Department of Radiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University Shanghai 200072 China.,School of Material Engineering, Jinling Institute of Technology Nanjing 211169 China.,CAS Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Jingjing Sun
- Department of Radiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University Shanghai 200072 China.,CAS Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Mingrui Li
- CAS Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Ting Luo
- CAS Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Yulin Shen
- School of Material Engineering, Jinling Institute of Technology Nanjing 211169 China
| | - Amin Cao
- CAS Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Ruilong Sheng
- Department of Radiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University Shanghai 200072 China.,CAS Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China.,CQM-Centro de Quimica da Madeira, Universidade da Madeira Campus da Penteada Funchal Madeira 9000-390 Portugal
| |
Collapse
|
7
|
Abedi F, Davaran S, Hekmati M, Akbarzadeh A, Baradaran B, Moghaddam SV. An improved method in fabrication of smart dual-responsive nanogels for controlled release of doxorubicin and curcumin in HT-29 colon cancer cells. J Nanobiotechnology 2021; 19:18. [PMID: 33422062 PMCID: PMC7797119 DOI: 10.1186/s12951-020-00764-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/26/2020] [Indexed: 02/06/2023] Open
Abstract
The combination therapy which has been proposed as the strategy for the cancer treatment could achieve a synergistic effect for cancer therapies and reduce the dosage of the applied drugs. On account of the the unique properties as the high absorbed water content, biocompatibility, and flexibility, the targeting nanogels have been considred as a suitable platform. Herein, a non-toxic pH/thermo-responsive hydrogel P(NIPAAm-co-DMAEMA) was synthesized and characterized through the free-radical polymerization and expanded upon an easy process for the preparation of the smart responsive nanogels; that is, the nanogels were used for the efficient and controlled delivery of the anti-cancer drug doxorubicin (DOX) and chemosensitizer curcumin (CUR) simultaneously like a promising strategy for the cancer treatment. The size of the nanogels, which were made, was about 70 nm which is relatively optimal for the enhanced permeability and retention (EPR) effects. The DOX and CUR co-loaded nanocarriers were prepared by the high encapsulation efficiency (EE). It is important to mention that the controlled drug release behavior of the nanocarriers was also investigated. An enhanced ability of DOX and CUR-loaded nanoformulation to induce the cell apoptosis in the HT-29 colon cancer cells which represented the greater antitumor efficacy than the single-drug formulations or free drugs was resulted through the In vitro cytotoxicity. Overall, according to the data, the simultaneous delivery of the dual drugs through the fabricated nanogels could synergistically potentiate the antitumor effects on the colon cancer (CC). ![]()
Collapse
Affiliation(s)
- Fatemeh Abedi
- Department of Organic Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soodabeh Davaran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran.
| | - Malak Hekmati
- Department of Organic Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Abolfazl Akbarzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Universal Scientific Education and Research Network (USERN), Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
8
|
Lin HT, Venault A, Chang Y. Reducing the pathogenicity of wastewater with killer vapor-induced phase separation membranes. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118543] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Thünemann AF, Gruber A, Klinger D. Amphiphilic Nanogels: Fuzzy Spheres with a Pseudo-Periodic Internal Structure. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:10979-10988. [PMID: 32854501 DOI: 10.1021/acs.langmuir.0c01812] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Amphiphilic polymer nanogels (NGs) are promising drug delivery vehicles that extend the application of conventional hydrophilic NGs to hydrophobic cargoes. By randomly introducing hydrophobic groups into a hydrophilic polymer network, loading and release profiles as well as surface characteristics of these colloids can be tuned. However, very little is known about the underlying internal structure of such complex colloidal architectures. Of special interest is the question how the amphiphilic network composition influences the internal morphology and the "fuzzy" surface structure. To shine light into the influence of varying network amphiphilicity on these structural features, we investigated a small library of water-swollen amphiphilic NGs using small-angle X-ray scattering (SAXS). It was found that overall hydrophilic NGs, consisting of pure poly(N-(2-hydroxypropyl)methacrylamide) (PHPMA), display a disordered internal structure as indicated by the absence of a SAXS peak. In contrast, a SAXS peak is present for amphiphilic NGs with various amounts of incorporated hydrophobic groups such as cholesteryl (CHOLA) or dodecyl (DODA). The internal composition of the NGs is considered structurally homologous to microgels. Application of the Teubner-Strey model reveals that hydrophilic PHPMA NGs have a disordered internal structure (positive amphiphilicity factor) while CHOLA and DODA samples have an ordered internal structure (negative amphiphilicity factor). From the SAXS data it can be derived that the internal structure of the amphiphilic NGs consists of regularly alternating hydrophilic and hydrophobic domains with repeat distances of 3.45-5.83 nm.
Collapse
Affiliation(s)
- Andreas F Thünemann
- Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany
| | - Alexandra Gruber
- Institute of Pharmacy (Pharmaceutical Chemistry), Freie Universität Berlin, Königin-Luise Straße 2-4, 14195 Berlin, Germany
| | - Daniel Klinger
- Institute of Pharmacy (Pharmaceutical Chemistry), Freie Universität Berlin, Königin-Luise Straße 2-4, 14195 Berlin, Germany
| |
Collapse
|
10
|
El Asmar A, Morandi G, Burel F. Synthesis of Dual Sensitive Lipid- b-Poly(dimethylaminoethyl methacrylate) Copolymers, Self-Assemblies and Modulation of Cloud Point Temperatures through Physical Blends with Lipid- b-Poly(2-isopropyl-2-oxazoline). Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01348] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Arlette El Asmar
- Normandie Univ, France; INSA Rouen, PBS 76800 Saint Etienne du Rouvray, France; CNRS UMR 6270, Rouen, France
| | - Gaelle Morandi
- Normandie Univ, France; INSA Rouen, PBS 76800 Saint Etienne du Rouvray, France; CNRS UMR 6270, Rouen, France
| | - Fabrice Burel
- Normandie Univ, France; INSA Rouen, PBS 76800 Saint Etienne du Rouvray, France; CNRS UMR 6270, Rouen, France
| |
Collapse
|
11
|
Taipaleenmäki EM, Mouritzen SA, Schattling PS, Zhang Y, Städler B. Mucopenetrating micelles with a PEG corona. NANOSCALE 2017; 9:18438-18448. [PMID: 29159350 DOI: 10.1039/c7nr06821b] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Crossing the intestinal mucus layer is a long-standing challenge for orally delivered nanoparticles carrying therapeutic cargo. We report the assembly of mucopenetrating cargo-loaded micelles using block copolymers consisting of either linear poly(ethylene glycol) (PEG) or bottle-brush poly(oligo(ethylene glycol)methacrylate) (PEGb) as the hydrophilic block and poly(caprolactone) (PCL) or poly(cholesteryl methacrylate) (PCMA) as the hydrophobic extension. The micelles were shown to preserve their stability and retain ∼50% of their cargo in simulated gastric fluid. The ability of micelles to diffuse through reconstituted porcine mucus was assessed in a microfluidic set-up. Finally, the delivery of Nile Red as a hydrophobic model cargo across a mucus layer produced by epithelial cells was demonstrated. These engineered mucopenetrating micelles have potential to be developed into efficient absorption enhancers, contributing a nanotechnology solution to oral drug delivery.
Collapse
Affiliation(s)
- Essi M Taipaleenmäki
- Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark.
| | | | | | | | | |
Collapse
|
12
|
Chmielarz P. Synthesis of pyridoxine-based eagle-shaped asymmetric star polymers throughseATRP. POLYM ADVAN TECHNOL 2017. [DOI: 10.1002/pat.4062] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Paweł Chmielarz
- Faculty of Chemistry, Department of Physical Chemistry; Rzeszów University of Technology; Al. Powstańców Warszawy 6 35-959 Rzeszów Poland
| |
Collapse
|
13
|
Oliveira M. RAFT Inverse Microemulsion Polymerization: Effects of Monomer Solubility and Different Types of Initiators. MACROMOL REACT ENG 2017. [DOI: 10.1002/mren.201600066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Marco Oliveira
- Institute of Chemistry; Federal University of Rio Grande do Sul; Porto Alegre RS 91501-970 (Postal code 15003) Brazil
- Department of Polymer Science; The University of Southern Mississippi; Hattiesburg MS 39406 USA
| |
Collapse
|
14
|
Sevimli S, Knight FC, Gilchuk P, Joyce S, Wilson JT. Fatty Acid-Mimetic Micelles for Dual Delivery of Antigens and Imidazoquinoline Adjuvants. ACS Biomater Sci Eng 2017; 3:179-194. [PMID: 29046894 PMCID: PMC5642296 DOI: 10.1021/acsbiomaterials.6b00408] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Vaccine design has undergone a shift towards the use of purified protein subunit vaccines, which offer increased safety and greater control over antigen specificity, but at the expense of immunogenicity. Here we report the development of a new polymer-based vaccine delivery platform engineered to enhance immunity through the co-delivery of protein antigens and the Toll-like receptor 7 (TLR7) agonist imiquimod (IMQ). Owing to the preferential solubility of IMQ in fatty acids, a series of block copolymer micelles with a fatty acid-mimetic core comprising lauryl methacrylate (LMA) and methacrylic acid (MAA), and a poly(ethylene glycol) methyl ether methacrylate (PEGMA) corona decorated with pyridyl disulfide ethyl methacrylate (PDSM) moieties for antigen conjugation were synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization. Carriers composed of 50 mole% LMA (LMA50) demonstrated the highest IMQ loading (2.2 w/w%) and significantly enhanced the immunostimulatory capacity of IMQ to induce dendritic cell maturation and proinflammatory cytokine production. Conjugation of a model antigen, ovalbumin (OVA), to the corona of IMQ-loaded LMA50 micelles enhanced in vitro antigen uptake and cross-presentation on MHC class I (MHC-I). A single intranasal (IN) immunization of mice with carriers co-loaded with IMQ and OVA elicited significantly higher pulmonary and systemic CD8+ T cell responses and increased serum IgG titer relative to a soluble formulation of antigen and adjuvant. Collectively, these data demonstrate that rationally designed fatty acid-mimetic micelles enhance intracellular antigen and IMQ delivery and have potential as synthetic vectors for enhancing the immunogenicity of subunit vaccines.
Collapse
Affiliation(s)
- Sema Sevimli
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, 2400 Highland Avenue
| | - Frances C. Knight
- Department of Biomedical Engineering, Vanderbilt University, 2301 Vanderbilt Place
| | - Pavlo Gilchuk
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Medical Center North
- Department of Veterans Administration Tennessee Valley Healthcare System, 1310 24th Avenue South
| | - Sebastian Joyce
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Medical Center North
- Department of Veterans Administration Tennessee Valley Healthcare System, 1310 24th Avenue South
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, 2301 Vanderbilt Place, Nashville, TN 37235, USA
| | - John T. Wilson
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, 2400 Highland Avenue
- Department of Biomedical Engineering, Vanderbilt University, 2301 Vanderbilt Place
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, 2301 Vanderbilt Place, Nashville, TN 37235, USA
| |
Collapse
|
15
|
Ercole F, Whittaker MR, Quinn JF, Davis TP. Cholesterol Modified Self-Assemblies and Their Application to Nanomedicine. Biomacromolecules 2015; 16:1886-914. [DOI: 10.1021/acs.biomac.5b00550] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Francesca Ercole
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Michael R. Whittaker
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - John F. Quinn
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Thomas P. Davis
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Department
of Chemistry, University of Warwick, Coventry, ULCV4 7AL, United Kingdom
| |
Collapse
|
16
|
Sevimli S, Sagnella S, Macmillan A, Whan R, Kavallaris M, Bulmus V, Davis TP. The endocytic pathway and therapeutic efficiency of doxorubicin conjugated cholesterol-derived polymers. Biomater Sci 2015. [DOI: 10.1039/c4bm00224e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Previously synthesized poly(methacrylic acid-co-cholesteryl methacrylate) P(MAA-co-CMA) copolymers were examined as potential drug delivery vehicles.
Collapse
Affiliation(s)
- Sema Sevimli
- The Centre for Advanced Macromolecular Design (CAMD)
- The University of New South Wales
- Sydney
- Australia
- Australian Centre for Nanomedicine (ACN)
| | - Sharon Sagnella
- Australian Centre for Nanomedicine (ACN)
- The University of New South Wales
- Sydney
- Australia
- Children's Cancer Institute Australia (CCIA)
| | - Alexander Macmillan
- Children's Cancer Institute Australia (CCIA)
- Lowy Cancer Research Centre
- The University of New South Wales
- Sydney
- Australia
| | - Renee Whan
- Children's Cancer Institute Australia (CCIA)
- Lowy Cancer Research Centre
- The University of New South Wales
- Sydney
- Australia
| | - Maria Kavallaris
- Australian Centre for Nanomedicine (ACN)
- The University of New South Wales
- Sydney
- Australia
- Children's Cancer Institute Australia (CCIA)
| | - Volga Bulmus
- Department of Chemical Engineering
- Biotechnology and Bioengineering Graduate Program
- Izmir Institute of Technology
- Urla
- Turkey
| | - Thomas P. Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Melbourne
- Australia
| |
Collapse
|
17
|
Bogomolova A, Keller S, Klingler J, Sedlak M, Rak D, Sturcova A, Hruby M, Stepanek P, Filippov SK. Self-assembly thermodynamics of pH-responsive amino-acid-based polymers with a nonionic surfactant. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:11307-11318. [PMID: 25192406 DOI: 10.1021/la5031262] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The behavior of pH-responsive polymers poly(N-methacryloyl-l-valine) (P1), poly(N-methacryloyl-l-phenylalanine) (P2), and poly(N-methacryloylglycyne-l-leucine) (P3) has been studied in the presence of the nonionic surfactant Brij98. The pure polymers phase-separate in an acidic medium with critical pHtr values of 3.7, 5.5, and 3.4, respectively. The addition of the surfactant prevents phase separation and promotes reorganization of polymer molecules. The nature of the interaction between polymer and surfactant depends on the amino acid structure in the side chain of the polymer. This effect was investigated by dynamic light scattering, isothermal titration calorimetry, electrophoretic measurements, small-angle neutron scattering, and infrared spectroscopy. Thermodynamic analysis revealed an endothermic association reaction in P1/Brij98 mixture, whereas a strong exothermic effect was observed for P2/Brij98 and P3/Brij98. Application of regular solution theory for the analysis of experimental enthalpograms indicated dominant hydrophobic interactions between P1 and Brij98 and specific interactions for the P2/Brij98 system. Electrophoretic and dynamic light scattering measurements support the applicability of the theory to these cases. The specific interactions can be ascribed to hydrogen bonds formed between the carboxylic groups of the polymer and the oligo(ethylene oxide) head groups of the surfactant. Thus, differences in polymer-surfactant interactions between P1 and P2 polymers result in different structures of polymer-surfactant complexes. Specifically, small-angle neutron scattering revealed pearl-necklace complexes and "core-shell" structures for P1/Brij98 and P2/Brij98 systems, respectively. These results may help in the design of new pH-responsive site-specific micellar drug delivery systems or pH-responsive membrane-disrupting agents.
Collapse
Affiliation(s)
- Anna Bogomolova
- Institute of Macromolecular Chemistry AS CR, v.v.i, 162 06 Prague, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Guo W, Wang T, Tang X, Zhang Q, Yu F, Pei M. Triple stimuli-responsive amphiphilic glycopolymer. ACTA ACUST UNITED AC 2014. [DOI: 10.1002/pola.27222] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Wenjuan Guo
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering; University of Jinan; Jinan 250022 China
| | - Tieshi Wang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering; University of Jinan; Jinan 250022 China
| | - Xinde Tang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering; University of Jinan; Jinan 250022 China
- Department of Polymeric Materials, School of Material Science and Engineering; Shandong Jiaotong University; Jinan 250023 China
| | - Qun Zhang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering; University of Jinan; Jinan 250022 China
| | - Faqi Yu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering; University of Jinan; Jinan 250022 China
| | - Meishan Pei
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering; University of Jinan; Jinan 250022 China
| |
Collapse
|
19
|
Preparation of polyoligo(ethyleneglycol) methacrylate decorated with pendant cholesterol moieties: Hydrogel and mesoglobule preparation and their use for entrapping lipophilic nanomaterials. Colloids Surf A Physicochem Eng Asp 2014. [DOI: 10.1016/j.colsurfa.2013.12.057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Kurtulus I, Yilmaz G, Ucuncu M, Emrullahoglu M, Becer CR, Bulmus V. A new proton sponge polymer synthesized by RAFT polymerization for intracellular delivery of biotherapeutics. Polym Chem 2014. [DOI: 10.1039/c3py01244a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
21
|
Huang Q, Liu T, Bao C, Lin Q, Ma M, Zhu L. Light and reductive dual stimuli-responsive PEI nanoparticles: “AND” logic response and controllable release. J Mater Chem B 2014; 2:3333-3339. [DOI: 10.1039/c4tb00087k] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel photo and reduction dual-responsive PEI micelles were fabricated and applied for “AND” logic responsive drug release.
Collapse
Affiliation(s)
- Qi Huang
- Key Laboratory for Advanced Materials
- Institute of Fine Chemicals
- East China University of Science and Technology
- Shanghai, P. R. China
| | - Tao Liu
- Key Laboratory for Advanced Materials
- Institute of Fine Chemicals
- East China University of Science and Technology
- Shanghai, P. R. China
| | - Chunyan Bao
- Key Laboratory for Advanced Materials
- Institute of Fine Chemicals
- East China University of Science and Technology
- Shanghai, P. R. China
| | - Qiuning Lin
- Key Laboratory for Advanced Materials
- Institute of Fine Chemicals
- East China University of Science and Technology
- Shanghai, P. R. China
| | - Meixin Ma
- Key Laboratory for Advanced Materials
- Institute of Fine Chemicals
- East China University of Science and Technology
- Shanghai, P. R. China
| | - Linyong Zhu
- Key Laboratory for Advanced Materials
- Institute of Fine Chemicals
- East China University of Science and Technology
- Shanghai, P. R. China
| |
Collapse
|
22
|
Sevimli S, Sagnella S, Kavallaris M, Bulmus V, Davis TP. Assessment of cholesterol-derived ionic copolymers as potential vectors for gene delivery. Biomacromolecules 2013; 14:4135-49. [PMID: 24125032 DOI: 10.1021/bm4013088] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A library of cholesterol-derived ionic copolymers were previously synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization as 'smart' gene delivery vehicles that hold diverse surface charges. Polyplex systems formed with anionic poly(methacrylic acid-co-cholesteryl methacrylate) (P(MAA-co-CMA)) and cationic poly(dimethylamino ethyl methacrylate-co-cholesteryl methacrylate) (Q-P(DMAEMA-co-CMA)) copolymer series were evaluated for their therapeutic efficiency. Cell viability assays, conducted on SHEP, HepG2, H460, and MRC5 cell lines, revealed that alterations in the copolymer composition (CMA mol %) affected the cytotoxicity profile. Increasing the number of cholesterol moieties in Q-P(DMAEMA-co-CMA) copolymers reduced the overall toxicity (in H460 and HepG2 cells) while P(MAA-co-CMA) series displayed no significant toxicity regardless of the CMA content. Agarose gel electrophoresis was employed to investigate the formation of stable polyplexes and determine their complete conjugation ratios. P(MAA-co-CMA) copolymer series were conjugated to DNA through a cationic linker, oligolysine, while Q-P(DMAEMA-co-CMA)-siRNA complexes were readily formed via electrostatic interactions at conjugation ratios beginning from 6:1:1 (oligolysine-P(MAA-co-CMA)-DNA) and 20:1 (Q-P(DMAEMA-co-CMA)-siRNA), respectively. The hydrodynamic diameter, ζ potential and complex stability of the polyplexes were evaluated in accordance to complexation ratios and copolymer composition by dynamic light scattering (DLS). The therapeutic efficiency of the conjugates was assessed in SHEP cells via transfection and imaging assays using RT-qPCR, Western blotting, flow cytometry, and confocal microscopy. DNA transfection studies revealed P(MAA-co-CMA)-oligolysine-DNA ternary complexes to be ineffective transfection vehicles that mostly adhere to the cell surface as opposed to internalizing and partaking in endosomal disrupting activity. The transfection efficiency of Q-P(DMAEMA-co-CMA)-GFP siRNA complexes were found to be polymer composition and N/P ratio dependent, with Q-2% CMA-GFP siRNA polyplexes at N/P ratio 20:1 showing the highest gene suppression in GFP expressing SHEP cells. Cellular internalization studies suggested that Q-P(DMAEMA-co-CMA)-siRNA conjugates efficiently escaped the endolysosomal pathway and released siRNA into the cytoplasm. The gene delivery profile, reported herein, illuminates the positive and negative attributes of each therapeutic design and strongly suggests Q-P(DMAEMA-co-CMA)-siRNA particles are extremely promising candidates for in vivo applications of siRNA therapy.
Collapse
Affiliation(s)
- Sema Sevimli
- Australian Centre for Nanomedicine (ACN), The University of New South Wales , Sydney, New South Wales 2052, Australia
| | | | | | | | | |
Collapse
|
23
|
Huang X, Sevimli SI, Bulmus V. pH-labile sheddable block copolymers by RAFT polymerization: Synthesis and potential use as siRNA conjugates. Eur Polym J 2013. [DOI: 10.1016/j.eurpolymj.2013.03.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
24
|
|
25
|
Venkataraman S, Lee AL, Maune HT, Hedrick JL, Prabhu VM, Yang YY. Formation of Disk- and Stacked-Disk-like Self-Assembled Morphologies from Cholesterol-Functionalized Amphiphilic Polycarbonate Diblock Copolymers. Macromolecules 2013. [DOI: 10.1021/ma400423b] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Shrinivas Venkataraman
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore
138669, Singapore
| | - Ashlynn L. Lee
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore
138669, Singapore
| | - Hareem T. Maune
- IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120,
United States
| | - James L. Hedrick
- IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120,
United States
| | - Vivek M. Prabhu
- Materials Science
and Engineering
Division, Materials Measurement Laboratory, National Institute of Standards and Technology (NIST), 100 Bureau
Drive, Gaithersburg, Maryland 20899-8541, United States
| | - Yi Yan Yang
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore
138669, Singapore
| |
Collapse
|
26
|
Hosta-Rigau L, Zhang Y, Teo BM, Postma A, Städler B. Cholesterol--a biological compound as a building block in bionanotechnology. NANOSCALE 2013; 5:89-109. [PMID: 23172231 DOI: 10.1039/c2nr32923a] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Cholesterol is a molecule with many tasks in nature but also a long history in science. This feature article highlights the contribution of this small compound to bionanotechnology. We discuss relevant chemical aspects in this context followed by an overview of its self-assembly capabilities both as a free molecule and when conjugated to a polymer. Further, cholesterol in the context of liposomes is reviewed and its impact ranging from biosensing to drug delivery is outlined. Cholesterol is and will be an indispensable player in bionanotechnology, contributing to the progress of this potent field of research.
Collapse
|
27
|
Chen J, Liu M, Gong H, Cui G, Lü S, Gao C, Huang F, Chen T, Zhang X, Liu Z. Synthesis of linear amphiphilic tetrablock quaterpolymers with dual stimulus response through the combination of ATRP and RAFT by a click chemistry site transformation approach. Polym Chem 2013. [DOI: 10.1039/c2py20946b] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
28
|
Sevimli S, Inci F, Zareie HM, Bulmus V. Well-Defined Cholesterol Polymers with pH-Controlled Membrane Switching Activity. Biomacromolecules 2012; 13:3064-75. [DOI: 10.1021/bm300846e] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
| | - Fatih Inci
- Department of Molecular
Biology-Genetics and Biotechnology Program (MOBGAM), Istanbul Technical University, Istanbul 34469, Turkey
| | - Hadi M. Zareie
- Department of Electrical-Electronics
Engineering and Nanotechnology Graduate Program, Gediz University, Izmir 35665, Turkey
- Microstructural
Analysis Unit, School of Physics and Advanced Materials, University of Technology, Sydney, Altimo NSW 2007,
Australia
| | | |
Collapse
|