1
|
Lin K, Jing B, Zhu Y. pH-Dependent complexation and polyelectrolyte chain conformation of polyzwitterion-polycation coacervates in salted water. SOFT MATTER 2021; 17:8937-8949. [PMID: 34549769 DOI: 10.1039/d1sm00880c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The phase behavior and chain conformational structure of biphasic polyzwitterion-polyelectrolyte coacervates in salted aqueous solution are investigated with a model weak cationic polyelectrolyte, poly(2-vinylpyridine) (P2VP), whose charge fraction can be effectively tuned by pH. It is observed that increasing the pH leads to the increase of the yielding volume fraction and the water content of dense coacervates formed between net neutral polybetaine and cationic P2VP in contrast to the decrease of critical salt concentration for the onset of coacervation, where the P2VP charge fraction is reduced correspondingly. Surprisingly, a single-molecule fluorescence spectroscopic study suggests that P2VP chains upon coacervation seem to adopt a swollen or an even more expanded conformational structure at higher pH. As the hydrophobicity of P2VP chains is accompanied by a reduced charge fraction by increasing the pH, a strong pH-dependent phase and conformational behaviors suggest the shift of entropic and enthalpic contribution to the underlying thermodynamic energy landscape and chain structural dynamics of polyelectrolyte coacervation involving weak polyelectrolytes in aqueous solution.
Collapse
Affiliation(s)
- Kehua Lin
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI 48202, USA.
| | - Benxin Jing
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI 48202, USA.
| | - Yingxi Zhu
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
2
|
Affiliation(s)
- Gregory T. Morrin
- Department of Chemical and
Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Daniel K. Schwartz
- Department of Chemical and
Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
3
|
Zoppe JO, Ataman NC, Mocny P, Wang J, Moraes J, Klok HA. Surface-Initiated Controlled Radical Polymerization: State-of-the-Art, Opportunities, and Challenges in Surface and Interface Engineering with Polymer Brushes. Chem Rev 2017; 117:1105-1318. [PMID: 28135076 DOI: 10.1021/acs.chemrev.6b00314] [Citation(s) in RCA: 603] [Impact Index Per Article: 86.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The generation of polymer brushes by surface-initiated controlled radical polymerization (SI-CRP) techniques has become a powerful approach to tailor the chemical and physical properties of interfaces and has given rise to great advances in surface and interface engineering. Polymer brushes are defined as thin polymer films in which the individual polymer chains are tethered by one chain end to a solid interface. Significant advances have been made over the past years in the field of polymer brushes. This includes novel developments in SI-CRP, as well as the emergence of novel applications such as catalysis, electronics, nanomaterial synthesis and biosensing. Additionally, polymer brushes prepared via SI-CRP have been utilized to modify the surface of novel substrates such as natural fibers, polymer nanofibers, mesoporous materials, graphene, viruses and protein nanoparticles. The last years have also seen exciting advances in the chemical and physical characterization of polymer brushes, as well as an ever increasing set of computational and simulation tools that allow understanding and predictions of these surface-grafted polymer architectures. The aim of this contribution is to provide a comprehensive review that critically assesses recent advances in the field and highlights the opportunities and challenges for future work.
Collapse
Affiliation(s)
- Justin O Zoppe
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Nariye Cavusoglu Ataman
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Piotr Mocny
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Jian Wang
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - John Moraes
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Harm-Anton Klok
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| |
Collapse
|
4
|
Wang D, Chin HY, He C, Stoykovich MP, Schwartz DK. Polymer Surface Transport Is a Combination of in-Plane Diffusion and Desorption-Mediated Flights. ACS Macro Lett 2016; 5:509-514. [PMID: 35607234 DOI: 10.1021/acsmacrolett.6b00183] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Previous studies of polymer motion at solid/liquid interfaces described the transport in the context of a continuous time random walk (CTRW) process, in which diffusion switches between desorption-mediated "flights" (i.e., hopping) and surface-adsorbed waiting-time intervals. However, it has been unclear whether the waiting times represented periods of complete immobility or times during which molecules engaged in a different (e.g., slower or confined) mode of interfacial transport. Here we designed high-throughput, single-molecule tracking measurements to address this question. Specifically, we studied polymer dynamics on either chemically homogeneous or nanopatterned surfaces (hexagonal diblock copolymer films) with chemically distinct domains, where polymers were essentially excluded from the low-affinity domains, eliminating the possibility of significant continuous diffusion in the absence of desorption-mediated flights. Indeed, the step-size distributions on homogeneous surfaces exhibited an additional diffusive mode that was missing on the chemically heterogeneous nanopatterned surfaces, confirming the presence of a slow continuous mode due to 2D in-plane diffusion. Kinetic Monte Carlo simulations were performed to test this model and, with the theoretical in-plane diffusion coefficient of D2D = 0.20 μm2/s, we found a good agreement between simulations and experimental data on both chemically homogeneous and nanopatterned surfaces.
Collapse
Affiliation(s)
- Dapeng Wang
- Department of Chemical and
Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Huai-Ying Chin
- Department of Chemical and
Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Chunlin He
- Department of Chemical and
Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Mark P. Stoykovich
- Department of Chemical and
Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Daniel K. Schwartz
- Department of Chemical and
Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
5
|
Tauzin LJ, Shen H, Moringo NA, Roddy MH, Bothof CA, Griesgraber GW, McNulty AK, Rasmussen JK, Landes CF. Variable surface transport modalities on functionalized nylon films revealed with single molecule spectroscopy. RSC Adv 2016. [DOI: 10.1039/c5ra25592a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Functionalization of separation membranes with ion-exchange ligands allows control of the surface mobility of protein molecules facilitating optimized membrane design.
Collapse
Affiliation(s)
| | - Hao Shen
- Department of Chemistry
- Rice University
- Houston
- USA
| | | | | | - Cathy A. Bothof
- 3M Corporate Research Laboratories
- 3M Center 201-3E-03
- St. Paul
- USA
| | | | - Amy K. McNulty
- 3M Corporate Research Laboratories
- 3M Center 201-3E-03
- St. Paul
- USA
| | | | | |
Collapse
|
6
|
Chin HY, Wang D, Schwartz DK. Dynamic Molecular Behavior on Thermoresponsive Polymer Brushes. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b00729] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Huai-Ying Chin
- Department of Chemical and
Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Dapeng Wang
- Department of Chemical and
Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Daniel K. Schwartz
- Department of Chemical and
Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
7
|
Tauzin L, Shuang B, Kisley L, Mansur AP, Chen J, de Leon A, Advincula RC, Landes CF. Charge-dependent transport switching of single molecular ions in a weak polyelectrolyte multilayer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:8391-9. [PMID: 24960617 PMCID: PMC4216201 DOI: 10.1021/la5012007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The tunable nature of weak polyelectrolyte multilayers makes them ideal candidates for drug loading and delivery, water filtration, and separations, yet the lateral transport of charged molecules in these systems remains largely unexplored at the single molecule level. We report the direct measurement of the charge-dependent, pH-tunable, multimodal interaction of single charged molecules with a weak polyelectrolyte multilayer thin film, a 10 bilayer film of poly(acrylic acid) and poly(allylamine hydrochloride) PAA/PAH. Using fluorescence microscopy and single-molecule tracking, two modes of interaction were detected: (1) adsorption, characterized by the molecule remaining immobilized in a subresolution region and (2) diffusion trajectories characteristic of hopping (D ∼ 10(-9) cm(2)/s). Radius of gyration evolution analysis and comparison with simulated trajectories confirmed the coexistence of the two transport modes in the same single molecule trajectories. A mechanistic explanation for the probe and condition mediated dynamics is proposed based on a combination of electrostatics and a reversible, pH-induced alteration of the nanoscopic structure of the film. Our results are in good agreement with ensemble studies conducted on similar films, confirm a previously-unobserved hopping mechanism for charged molecules in polyelectrolyte multilayers, and demonstrate that single molecule spectroscopy can offer mechanistic insight into the role of electrostatics and nanoscale tunability of transport in weak polyelectrolyte multilayers.
Collapse
Affiliation(s)
- Lawrence
J. Tauzin
- Department
of Chemistry and Department of Electrical and Chemical Engineering, Rice University, Houston, Texas 77251, United States
| | - Bo Shuang
- Department
of Chemistry and Department of Electrical and Chemical Engineering, Rice University, Houston, Texas 77251, United States
| | - Lydia Kisley
- Department
of Chemistry and Department of Electrical and Chemical Engineering, Rice University, Houston, Texas 77251, United States
| | - Andrea P. Mansur
- Department
of Chemistry and Department of Electrical and Chemical Engineering, Rice University, Houston, Texas 77251, United States
| | - Jixin Chen
- Department
of Chemistry and Department of Electrical and Chemical Engineering, Rice University, Houston, Texas 77251, United States
| | - Al de Leon
- Department
of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Rigoberto C. Advincula
- Department
of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Christy F. Landes
- Department
of Chemistry and Department of Electrical and Chemical Engineering, Rice University, Houston, Texas 77251, United States
- E-mail:
| |
Collapse
|
8
|
Wang S, Jing B, Zhu Y. Molecule motion at polymer brush interfaces from single-molecule experimental perspectives. ACTA ACUST UNITED AC 2013. [DOI: 10.1002/polb.23414] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Shengqin Wang
- Institute of Materials Research and Engineering; A*STAR (Agency for Science, Technology and Research); 3 Research Link Singapore 117602 Singapore
| | - Benxin Jing
- Department of Chemical and Biomolecular Engineering; University of Notre Dame; Notre Dame Indiana 46556
| | - Yingxi Zhu
- Department of Chemical and Biomolecular Engineering; University of Notre Dame; Notre Dame Indiana 46556
| |
Collapse
|