1
|
Lucero MS, Chimeno Zoth S, Jaton J, Gravisaco MJ, Pinto S, Richetta M, Berinstein A, Gómez E. Oral Immunization With Plant-Based Vaccine Induces a Protective Response Against Infectious Bursal Disease. FRONTIERS IN PLANT SCIENCE 2021; 12:741469. [PMID: 34868126 PMCID: PMC8636702 DOI: 10.3389/fpls.2021.741469] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Infectious bursal disease virus (IBDV) is the etiological agent of an immunosuppressive and highly contagious disease that affects young birds causing important economic losses in the poultry industry worldwide. We have previously developed a plant-based vaccine candidate for infectious bursal disease (IBD) that is able to protect against infection with IBDV when administered through intramuscular (im) route. Given that oral vaccination is non-invasive and stimulates the immunity of the mucosal gastrointestinal surface, the initial site of contact and entry of IBDV, the aim of this work was to study if our immunogen was also able to elicit a protective immune response when orally administered. We demonstrated that 85% of the animals that received two oral doses of the vaccine formulation and all animals that were orally boosted after an im prime scheme developed virus neutralizing antibodies and were protected against IBDV infection, evidenced by the bursa/body weight (BB) ratio, absence of T-cell infiltration, and low viral load in bursa. Although mild to moderate bursal damage was observed in some of these animals, these lesions were not as severe as the ones observed in challenged control groups, which also presented signs of acute inflammation, bursal atrophy, T-cell infiltration, and absence of viral clearance. These results show that two immunizations with our recombinant immunogen are able to induce a specific and protective immune response in chicken against IBDV when orally administered in a prime/boost scheme or when the oral boost follows an im prime scheme. In conclusion, our oral plant-based vaccine candidate could represent a viable alternative to conventional vaccines and is of great interest to the poultry industry.
Collapse
Affiliation(s)
- María Soledad Lucero
- Laboratorio de Inmunología y Vacunas Aviares, Instituto de Agrobiotecnología y Biología Molecular, INTA-CONICET, Buenos Aires, Argentina
| | - Silvina Chimeno Zoth
- Laboratorio de Inmunología y Vacunas Aviares, Instituto de Agrobiotecnología y Biología Molecular, INTA-CONICET, Buenos Aires, Argentina
| | - Juan Jaton
- Laboratorio de Inmunología y Vacunas Aviares, Instituto de Agrobiotecnología y Biología Molecular, INTA-CONICET, Buenos Aires, Argentina
| | - María José Gravisaco
- Laboratorio de Inmunología y Vacunas Aviares, Instituto de Agrobiotecnología y Biología Molecular, INTA-CONICET, Buenos Aires, Argentina
| | - Silvina Pinto
- Cátedra de Patología, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Matías Richetta
- Gerencia de Gestión Estratégica de Procesos Complementarios, Centro de Investigación en Ciencias Veterinarias y Agronómicas, INTA, Buenos Aires, Argentina
| | - Analía Berinstein
- Laboratorio de Inmunología y Vacunas Aviares, Instituto de Agrobiotecnología y Biología Molecular, INTA-CONICET, Buenos Aires, Argentina
| | - Evangelina Gómez
- Laboratorio de Inmunología y Vacunas Aviares, Instituto de Agrobiotecnología y Biología Molecular, INTA-CONICET, Buenos Aires, Argentina
| |
Collapse
|
2
|
Gómez E, Cassani MF, Lucero MS, Parreño V, Chimeno Zoth S, Berinstein A. Development of diagnostic tools for IBDV detection using plants as bioreactors. AMB Express 2020; 10:95. [PMID: 32436057 PMCID: PMC7239984 DOI: 10.1186/s13568-020-01029-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/16/2020] [Indexed: 12/18/2022] Open
Abstract
Infectious bursal disease virus (IBDV) is the etiological agent of an immunosuppressive and highly contagious disease that affects young birds, thus causing important economic losses in the poultry industry. Multimeric particles with different architectures based on the capsid protein VP2 have been widely produced for different purposes. We hereby show the production and easy recovery of IBDV subviral particles (SVP) from transiently transformed Nicotiana benthamiana. The SVP, which were observed by electronic microscopy, proved to be antigenically and immunogenically similar to the virion. Indeed, anti-IBDV antibodies from samples of infected birds recognized these SVP and, when injected intramuscularly, these subviral particles also evoked a humoral immune response in chickens. We developed an in-house ELISA using SVP as coating reagent that demonstrated to be highly accurate and in good agreement with a commercial ELISA. This study demonstrates that the recombinant antigen generated and the technology used to produce it are suitable for developing a diagnostic tool against Infectious bursal disease.
Collapse
|
3
|
Wu J, Wu H, Nakagawa S, Gao J. Virus-derived materials: bury the hatchet with old foes. Biomater Sci 2020; 8:1058-1072. [DOI: 10.1039/c9bm01383k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Viruses, with special architecture and unique biological nature, can be utilized for various biomedical applications.
Collapse
Affiliation(s)
- Jiahe Wu
- Institute of Pharmaceutics
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058
- China
| | - Honghui Wu
- Institute of Pharmaceutics
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058
- China
| | - Shinsaku Nakagawa
- Department of Pharmaceutics
- Graduate School of Pharmaceutical Sciences
- Osaka University
- Suita
- Japan
| | - Jianqing Gao
- Institute of Pharmaceutics
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058
- China
| |
Collapse
|
4
|
Salem R, Assem SK, Omar OA, Khalil AA, Basry MA, Waly FR, Samir N, El-Kholy AA. Expressing the immunodominant projection domain of infectious bursal disease virus fused to the fragment crystallizable of chicken IgY in yellow maize for a prospective edible vaccine. Mol Immunol 2019; 118:132-141. [PMID: 31881424 DOI: 10.1016/j.molimm.2019.12.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/13/2019] [Accepted: 12/19/2019] [Indexed: 12/18/2022]
Abstract
Control of Infectious bursal disease virus (IBDV) in endemic countries has been based on early immunization of chicks using conventional live or inactivated vaccines that became not fully effectual and have biosafety concerns. This endeavor seeks generating a recombinant chimeric protein merging the projection domain (PD) of IBDV VP2 capsid with the fragment crystallizable (Fc) of avian IgY (FcIgY), in maize as a prospective poultry edible vaccine. The PD sequence was built on the basis of very virulent IBDV isolates circulating in Egypt. After optimization of codon-usage in maize, sequences of PD and FcIgY were effectively expressed in two elites of yellow maize via bombardment transformation in immature embryos. Chimeric protein amount in stable transgenic samples ranged from1.36% to 3.03% of the total soluble protein based on tissue age and maize cultivar. IBDV VP2 coding sequence was amplified from viral RNA, cloned, and expressed in E. coli. A group of Balb/C mice were hyper-immunized with purified recombinant VP2 protein for raising anti- recombinant VP2 antibodies (anti-rVP2 Ab). Proper expression in maize and immunoreactivity of the chimeric protein (PD-FcIgY) to chicken anti- IBDV and anti-rVP2 Ab were confirmed by both direct and indirect double antibody sandwich (DAS)-ELISAs as well as western blotting. Seeds of regenerated transgenic maize will be validated for chickens as edible vaccination in further studies.
Collapse
Affiliation(s)
- Reda Salem
- Agricultural Genetic Engineering Research Institute (AGERI), ARC, 12619, Giza, Egypt.
| | - Shireen K Assem
- Agricultural Genetic Engineering Research Institute (AGERI), ARC, 12619, Giza, Egypt
| | - Omar A Omar
- Agricultural Genetic Engineering Research Institute (AGERI), ARC, 12619, Giza, Egypt
| | - Ahmed A Khalil
- Veterinary Sera and Vaccines Research Institute (VSVRI), ARC, Abbassia, P.O. Box #131, 11381, Cairo, Egypt
| | - Mahmoud A Basry
- Agricultural Genetic Engineering Research Institute (AGERI), ARC, 12619, Giza, Egypt
| | - Fatma R Waly
- Agricultural Genetic Engineering Research Institute (AGERI), ARC, 12619, Giza, Egypt
| | - Noha Samir
- Agricultural Genetic Engineering Research Institute (AGERI), ARC, 12619, Giza, Egypt
| | - Alaa A El-Kholy
- Veterinary Sera and Vaccines Research Institute (VSVRI), ARC, Abbassia, P.O. Box #131, 11381, Cairo, Egypt
| |
Collapse
|
5
|
Protective oral vaccination against infectious bursal disease virus using the major viral antigenic protein VP2 produced in Pichia pastoris. PLoS One 2013; 8:e83210. [PMID: 24376665 PMCID: PMC3869785 DOI: 10.1371/journal.pone.0083210] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 11/01/2013] [Indexed: 11/19/2022] Open
Abstract
Infectious bursal disease virus (IBDV) causes economically important immunosuppressive disease in young chickens. The self-assembling capsid protein (VP2) from IBDV strain IR01 was expressed in Pichia pastoris resulting in the formation of homomeric, 23-nm infectious bursal disease subviral particles (IBD-SVPs) with a yield of 76 mg/l before and 38 mg/l after purification. Anti-IBDV antibodies were detected in chickens injected with purified IBD-SVPs or fed with either purified IBD-SVPs or inactivated P. pastoris cells containing IBD-VP2 (cell-encapsulated). Challenge studies using the heterologous classical IBDV strain (MB3) showed that intramuscular vaccination with 20 µg purified IBD-SVPs conferred full protection, achieved complete virus clearance and prevented bursal damage and atrophy, compared with only 40% protection, 0-10% virus clearance accompanied by severe atrophy and substantial bursal damage in mock-vaccinated and challenge controls. The commercial IBDV vaccine also conferred full protection and achieved complete virus clearance, albeit with partial bursal atrophy. Oral administration of 500 µg purified IBD-SVPs with and without adjuvant conferred 100% protection but achieved only 60% virus clearance with adjuvant and none without it. Moderate bursal damage was observed in both cases but the inclusion of adjuvant resulted in bursal atrophy similar to that observed with live-attenuated vaccine and parenteral administration of 20 µg purified IBD-SVPs. The oral administration of 250 mg P. pastoris cells containing IBD-VP2 resulted in 100% protection with adjuvant and 60% without, accompanied by moderate bursal damage and atrophy in both groups, whereas 25 mg P. pastoris cells containing IBD-VP2 resulted in 90-100% protection with moderate bursal lesions and severe atrophy. Finally, the oral delivery of 50 µg purified IBD-SVPs achieved 40-60% protection with severe bursal lesions and atrophy. Both oral and parenteral administration of yeast-derived IBD-VP2 can therefore induce a specific and protective immune response against IBDV without affecting the growth rate of chickens.
Collapse
|