1
|
Mikaelian G, Megariotis G, Theodorou DN. Interactions of a Novel Anthracycline with Oligonucleotide DNA and Cyclodextrins in an Aqueous Environment. J Phys Chem B 2024; 128:6291-6307. [PMID: 38899795 PMCID: PMC11228990 DOI: 10.1021/acs.jpcb.4c02213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
Berubicin, a chemotherapy medication belonging to the class of anthracyclines, is simulated in double-stranded DNA sequences and cyclodextrins in an aqueous environment via full-atom molecular dynamics simulations on the time scale of microseconds. The drug is studied in both the neutral and protonated states so as to better comprehend the role of its charge in the formed complexes. The noncovalent berubicin-DNA and berubicin-cyclodextrin complexes are investigated in detail, paying special attention to their thermodynamic description by employing the double decoupling method, the solvent balance method, the weighted solvent accessible surface model, and the linear interaction energy method. A novel approach for extracting the desolvation thermodynamics of the binding process is also presented. Both the binding and desolvation Gibbs energies are decomposed into entropic and enthalpic contributions so as to elucidate the nature of complexation and its driving forces. Selected structural and geometrical properties of all the complexes, which are all stable, are analyzed. Both cyclodextrins under consideration are widely utilized for drug delivery purposes, and a comparative investigation between their bound states with berubicin is carried out.
Collapse
Affiliation(s)
- Georgios Mikaelian
- School
of Chemical Engineering, National Technical
University of Athens (NTUA), 9 Heroon Polytechniou Street, Zografou Campus, 15780 Athens, GR ,Greece
| | - Grigorios Megariotis
- School
of Chemical Engineering, National Technical
University of Athens (NTUA), 9 Heroon Polytechniou Street, Zografou Campus, 15780 Athens, GR ,Greece
- School
of Engineering, Department of Mineral Resources Engineering, University of Western Macedonia, 50100 Kozani, Greece
| | - Doros N. Theodorou
- School
of Chemical Engineering, National Technical
University of Athens (NTUA), 9 Heroon Polytechniou Street, Zografou Campus, 15780 Athens, GR ,Greece
| |
Collapse
|
2
|
Szota M, Szwedowicz U, Rembialkowska N, Janicka-Klos A, Doveiko D, Chen Y, Kulbacka J, Jachimska B. Dendrimer Platforms for Targeted Doxorubicin Delivery-Physicochemical Properties in Context of Biological Responses. Int J Mol Sci 2024; 25:7201. [PMID: 39000306 PMCID: PMC11241532 DOI: 10.3390/ijms25137201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
The unique structure of G4.0 PAMAM dendrimers allows a drug to be enclosed in internal spaces or immobilized on the surface. In the conducted research, the conditions for the formation of the active G4.0 PAMAM complex with doxorubicin hydrochloride (DOX) were optimized. The physicochemical properties of the system were monitored using dynamic light scattering (DLS), circular dichroism (CD), and fluorescence spectroscopy. The Quartz Crystal Microbalance with Dissipation Monitoring (QCM-D) method was chosen to determine the preferential conditions for the complex formation. The highest binding efficiency of the drug to the cationic dendrimer was observed under basic conditions when the DOX molecule was deprotonated. The decrease in the zeta potential of the complex confirms that DOX immobilizes through electrostatic interaction with the carrier's surface amine groups. The binding constants were determined from the fluorescence quenching of the DOX molecule in the presence of G4.0 PAMAM. The two-fold way of binding doxorubicin in the structure of dendrimers was visible in the Isothermal calorimetry (ITC) isotherm. Fluorescence spectra and release curves identified the reversible binding of DOX to the nanocarrier. Among the selected cancer cells, the most promising anticancer activity of the G4.0-DOX complex was observed in A375 malignant melanoma cells. Moreover, the preferred intracellular location of the complexes concerning the free drug was found, which is essential from a therapeutic point of view.
Collapse
Affiliation(s)
- Magdalena Szota
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, 30-239 Cracow, Poland
| | - Urszula Szwedowicz
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Nina Rembialkowska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Anna Janicka-Klos
- Department of Basic Chemistry, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Daniel Doveiko
- Department of Physics, University of Strathclyde, Glasgow G4 0NG, UK
| | - Yu Chen
- Department of Physics, University of Strathclyde, Glasgow G4 0NG, UK
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Barbara Jachimska
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, 30-239 Cracow, Poland
| |
Collapse
|
3
|
Anderson AM, Manet I, Malanga M, Clemens DM, Sadrerafi K, Piñeiro Á, García-Fandiño R, O'Connor MS. Addressing the complexities in measuring cyclodextrin-sterol binding constants: A multidimensional study. Carbohydr Polym 2024; 323:121360. [PMID: 37940263 DOI: 10.1016/j.carbpol.2023.121360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/22/2023] [Accepted: 08/30/2023] [Indexed: 11/10/2023]
Abstract
A class of cyclodextrin (CD) dimers has emerged as a potential new treatment for atherosclerosis; they work by forming strong, soluble inclusion complexes with oxysterols, allowing the body to reduce and heal arterial plaques. However, characterizing the interactions between CD dimers and oxysterols presents formidable challenges due to low sterol solubility, the synthesis of modified CDs resulting in varying number and position of molecular substitutions, and the diversity of interaction mechanisms. To address these challenges and illuminate the nuances of CD-sterol interactions, we have used multiple orthogonal approaches for a comprehensive characterization. Results obtained from three independent techniques - metadynamics simulations, competitive isothermal titration calorimetry, and circular dichroism - to quantify CD-sterol binding are presented. The objective of this study is to obtain the binding constants and gain insights into the intricate nature of the system, while accounting for the advantages and limitations of each method. Notably, our findings demonstrate ∼1000× stronger affinity of the CD dimer for 7-ketocholesterol in comparison to cholesterol for the 1:1 complex in direct binding assays. These methodologies and findings not only enhance our understanding of CD dimer-sterol interactions, but could also be generally applicable to prediction and quantification of other challenging host-guest complex systems.
Collapse
Affiliation(s)
- Amelia M Anderson
- Cyclarity Therapeutics, 8001 Redwood Blvd Novato, CA 94945, USA; Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain; Departamento de Química Orgánica, Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela, Spain
| | - Ilse Manet
- Istituto per la Sintesi Organica e la Fotoreattività (ISOF), Consiglio Nazionale delle Ricerche (CNR), via P. Gobetti 101, Bologna 40129, Italy
| | - Milo Malanga
- CarboHyde, Budapest, Berlini u. 47-49, 1045, Hungary; Cyclolab Cyclodextrin Research and Development Ltd., Budapest, Illatos út 7 1097, Hungary
| | | | | | - Ángel Piñeiro
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain; MD.USE Innovative Solutions S.L., Edificio Emprendia, Campus Vida, Santiago de Compostela, Spain
| | - Rebeca García-Fandiño
- Departamento de Química Orgánica, Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela, Spain; MD.USE Innovative Solutions S.L., Edificio Emprendia, Campus Vida, Santiago de Compostela, Spain
| | | |
Collapse
|
4
|
Shukla A, Kumari S, Sankar M, Nair MS. Insights into the mechanism of binding of doxorubicin and a chlorin compound with 22-mer c-Myc G quadruplex. Biochim Biophys Acta Gen Subj 2023; 1867:130482. [PMID: 37821013 DOI: 10.1016/j.bbagen.2023.130482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/23/2023] [Accepted: 10/02/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND The interaction of small molecules with G quadruplexes is in focus due to its role in molecular recognition and therapeutic drug design. Stabilization of G-quadruplex structures in the promoter regions of oncogenes by small molecule binding has been demonstrated as a potential approach for cancer therapy. METHODS In this study, electronic spectroscopy (ultraviolet-visible, fluorescence, circular dichroism), differential scanning calorimetry, and molecular modeling were employed to explore the interactions between the chemotherapy drug doxorubicin and a chlorin compound 5,10,15,20-tetraphenyl-[2,3]-[bis(carboxy)-methano]chlorin (H2TPC(DAC)), and the c-Myc 22-mer G quadruplex DNA. RESULTS Spectroscopic studies indicated external binding of the compounds with partial stacking at the end quartets. Calorimetric studies and temperature dependent circular dichroism data displayed increased melting temperatures of G quadruplex structure on binding with the compounds. Circular dichroism spectra indicated that the G quadruplex structure is intact upon ligand binding. Both the compounds showed binding affinities of the order of 106 M-1. Fluorescence lifetime studies revealed static quenching as major mechanism for fluorescence quenching. Polymerase chain reaction stop assay hinted that binding of both ligands under study could inhibit the amplification of the DNA sequence. CONCLUSION Results show that doxorubicin and H2TPC(DAC) bind to the 22-mer c-Myc quadruplex structure with good affinity and induce stability. SIGNIFICANCE Doxorubicin and H2TPC(DAC) have demonstrated their affinity towards c-Myc G quadruplex DNA, stabilizing it and inhibiting expression and polymerization. The results can be of practical use in designing new analogs for the two compounds, which can become potent anti-cancer agents targeting the c-Myc GQ structure.
Collapse
Affiliation(s)
- Aishwarya Shukla
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Soni Kumari
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Muniappan Sankar
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Maya S Nair
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India.
| |
Collapse
|
5
|
Spiridonov V, Zoirova Z, Alyokhina Y, Perov N, Afanasov M, Pozdyshev D, Krjukova D, Knotko A, Muronetz V, Yaroslavov A. Magnetically Controlled Hyaluronic Acid-Maghemite Nanocomposites with Embedded Doxorubicin. Polymers (Basel) 2023; 15:3644. [PMID: 37688267 PMCID: PMC10489843 DOI: 10.3390/polym15173644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
The controllable delivery of drugs is a key task of pharmacology. For this purpose, a series of polymer composites was synthesized via the cross-linking of hyaluronate and a hyaluronate/polyacrylate mixture with Fe2O3 nanoparticles. The cross-linking imparts magnetic properties to the composites, which are more pronounced for the ternary hyaluronate/polyacrylate/γ-Fe2O3 composites compared with the binary hyaluronate/Fe2O3 composites. When dispersed in water, the composites produce microsized hydrogel particles. Circulation of the ternary microgels in an aqueous solution at a speed of 1.84 cm/s can be stopped using a permanent external magnet with a magnetic flux density of 400 T. The composite hydrogels can absorb the antitumor antibiotic doxorubicin (Dox); the resulting constructs show their cytotoxicity to tumor cells to be comparable to the cytotoxicity of Dox itself. The addition of the hyaluronidase enzyme induces degradation of the binary and ternary microgels down to smaller particles. This study presents prospectives for the preparation of magnetically controlled biodegradable polymer carriers for the encapsulation of bioactive substances.
Collapse
Affiliation(s)
- Vasily Spiridonov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Zukhra Zoirova
- Faculty of Materials Science, Lomonosov Moscow State University, Leninskie Gory 1-73, 119991 Moscow, Russia
| | - Yuliya Alyokhina
- Department of Physics, Lomonosov Moscow State University, Leninskie Gory 1-2, 119991 Moscow, Russia
| | - Nikolai Perov
- Department of Physics, Lomonosov Moscow State University, Leninskie Gory 1-2, 119991 Moscow, Russia
| | - Mikhail Afanasov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Denis Pozdyshev
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskye gory 1-40, 119992 Moscow, Russia (V.M.)
| | - Daria Krjukova
- Faculty of Materials Science, Lomonosov Moscow State University, Leninskie Gory 1-73, 119991 Moscow, Russia
| | - Alexander Knotko
- Faculty of Materials Science, Lomonosov Moscow State University, Leninskie Gory 1-73, 119991 Moscow, Russia
| | - Vladimir Muronetz
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskye gory 1-40, 119992 Moscow, Russia (V.M.)
| | - Alexander Yaroslavov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| |
Collapse
|
6
|
Di Nunzio MR, Douhal A. Robust Inclusion Complex of Topotecan Comprised within a Rhodamine-Labeled β-Cyclodextrin: Competing Proton and Energy Transfer Processes. Pharmaceutics 2023; 15:1620. [PMID: 37376069 DOI: 10.3390/pharmaceutics15061620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/19/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Monitoring the biological fate of medicaments within the environments of cancer cells is an important challenge which is nowadays the object of intensive studies. In this regard, rhodamine-based supramolecular systems are one of the most suitable probes used in drug delivery thanks to their high emission quantum yield and sensitivity to the environment which helps to track the medicament in real time. In this work, we used steady-state and time-resolved spectroscopy techniques to investigate the dynamics of the anticancer drug, topotecan (TPT), in water (pH ~6.2) in the presence of a rhodamine-labeled methylated β-cyclodextrin (RB-RM-βCD). A stable complex of 1:1 stoichiometry is formed with a Keq value of ~4 × 104 M-1 at room temperature. The fluorescence signal of the caged TPT is reduced due to: (1) the CD confinement effect; and (2) a Förster resonance energy transfer (FRET) process from the trapped drug to the RB-RM-βCD occurring in ~43 ps with 40% efficiency. These findings provide additional knowledge about the spectroscopic and photodynamic interactions between drugs and fluorescent functionalized CDs, and may lead to the design of new fluorescent CD-based host-guest nanosystems with efficient FRET to be used in bioimaging for drug delivery monitoring.
Collapse
Affiliation(s)
- Maria Rosaria Di Nunzio
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica and INAMOL, Universidad de Castilla-La Mancha, Av. Carlos III, s/n, 45071 Toledo, Spain
| | - Abderrazzak Douhal
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica and INAMOL, Universidad de Castilla-La Mancha, Av. Carlos III, s/n, 45071 Toledo, Spain
| |
Collapse
|
7
|
Szota M, Jachimska B. Effect of Alkaline Conditions on Forming an Effective G4.0 PAMAM Complex with Doxorubicin. Pharmaceutics 2023; 15:pharmaceutics15030875. [PMID: 36986735 PMCID: PMC10057121 DOI: 10.3390/pharmaceutics15030875] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
In this study, special attention was paid to the correlation between the degree of ionization of the components and the effective formation of the complex under alkaline conditions. Using UV-Vis, 1H NMR, and CD, structural changes of the drug depending on the pH were monitored. In the pH range of 9.0 to 10.0, the G4.0 PAMAM dendrimer can bind 1 to 10 DOX molecules, while the efficiency increases with the concentration of the drug relative to the carrier. The binding efficiency was described by the parameters of loading content (LC = 4.80-39.20%) and encapsulation efficiency (EE = 17.21-40.16%), whose values increased twofold or even fourfold depending on the conditions. The highest efficiency was obtained for G4.0PAMAM-DOX at a molar ratio of 1:24. Nevertheless, regardless of the conditions, the DLS study indicates system aggregation. Changes in the zeta potential confirm the immobilization of an average of two drug molecules on the dendrimer's surface. Circular dichroism spectra analysis shows a stable dendrimer-drug complex for all the systems obtained. Since the doxorubicin molecule can simultaneously act as a therapeutic and an imaging agent, the theranostic properties of the PAMAM-DOX system have been demonstrated by the high fluorescence intensity observable on fluorescence microscopy.
Collapse
Affiliation(s)
- Magdalena Szota
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 30-239 Krakow, Poland
| | - Barbara Jachimska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 30-239 Krakow, Poland
| |
Collapse
|
8
|
Ryzhkina I, Murtazina L, Kostina L, Dokuchaeva I, Sergeeva S, Meleshenko K, Shevelev M, Petrov A. Doxorubicin aqueous systems at low concentrations: Interconnection between self-organization, fluorescent and physicochemical properties, and action on hydrobionts. Front Chem 2022; 10:1063278. [PMID: 36531320 PMCID: PMC9751371 DOI: 10.3389/fchem.2022.1063278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/15/2022] [Indexed: 08/13/2023] Open
Abstract
Doxorubicin (Dox) is a highly effective cytostatic antibiotic that exhibits activity against a wide range of malignant neoplasms and is often used as the basis of various anti-tumor compositions. However, the use of Dox in therapeutic doses is associated with high systemic toxicity, which makes it urgent to find ways to reduce therapeutic concentrations, which is necessary primarily to minimize the side effects on the patient's body, as well as to reduce the harmful effects on aquatic ecosystems, commonly polluted by toxic pharmaceuticals. Studying the self-organization, physicochemical and spectral patterns, and their relation to bioeffects of Dox solutions in the range of low concentrations can reveal useful insights into the unknown effects of Dox as a cytostatic and potential pollutant of ecosystems. The self-organization in solutions and on substrates, physicochemical and spectral properties, and action of Dox solutions on hydrobionts were studied in the range of calculated concentrations from 1·10-20 to 1·10-4 M by methods of dynamic and electrophoretic light scattering (DLS and ELS), scanning electron microscopy (SEM), scanning probe microscopy (SPM), fluorescence spectroscopy, UV absorption spectroscopy, conductometry, tensiometry, pH-metry. Certified techniques for monitoring the toxicity of natural water and wastewater were used to establish the interconnection between these phenomena. It was shown that aqueous solutions of Dox are dispersed systems which rearrange their dispersed phase measuring hundreds of nm in size (nanoassociates) at dilution, followed by concerted changes in nanoassociates' parameters (size and ζ-potential) and properties of systems, as well as their bioassay results. SPM and SEM results confirm and complement the DLS and ELS data indicating the existence of nanoassociates in dilute Dox solutions.
Collapse
Affiliation(s)
- Irina Ryzhkina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russia
| | - Lyaisan Murtazina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russia
| | - Larisa Kostina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russia
| | - Irina Dokuchaeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russia
| | - Svetlana Sergeeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russia
| | - Kristina Meleshenko
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russia
| | - Maxim Shevelev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russia
| | - Andrew Petrov
- Institute for Problems of Ecology and Mineral Wealth Use of Tatarstan Academy of Sciences, Kazan, Russia
| |
Collapse
|
9
|
Chen CG, Nardi AN, Giustini M, D'Abramo M. Absorption behavior of doxorubicin hydrochloride in visible region in different environments: a combined experimental and computational study. Phys Chem Chem Phys 2022; 24:12027-12035. [PMID: 35536553 DOI: 10.1039/d1cp05182b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The experimental absorption measurements in the interval 350-600 nm (Vis), molecular dynamics simulations, quantum-mechanics calculations and an advanced molecular treatment of simulation data are here combined to provide a complete picture of the absorption behavior in the visible portion of the electromagnetic spectrum of the doxorubicin hydrochloride (DX) molecule in different environments. By such an approach, we have shown that it is possible to characterize the effect of the environment on the DX absorption behavior - including the vibronic contributions - as well as to interpret such differences in terms of molecular electronic excited states, which are found to be strongly influenced by the environment.
Collapse
Affiliation(s)
| | | | - Mauro Giustini
- Department of Chemistry, Sapienza University of Rome, Rome, Italy.
| | - Marco D'Abramo
- Department of Chemistry, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
10
|
Agnes M, Pancani E, Malanga M, Fenyvesi E, Manet I. Implementation of Water-Soluble Cyclodextrin-Based Polymers in Biomedical Applications: How Far are we? Macromol Biosci 2022; 22:e2200090. [PMID: 35452159 DOI: 10.1002/mabi.202200090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/06/2022] [Indexed: 11/10/2022]
Abstract
Cyclodextrin-based polymers can be prepared starting from the naturally occurring monomers following green and low-cost procedures. They can be selectively derivatized pre- or post-polymerization allowing to fine-tune functionalities of ad hoc customized polymers. Preparation nowadays has reached the 100 g scale thanks also to the interest of industries in these extremely versatile compounds. During the last 15 years these macromolecules have been the object of intense investigations in view of possible biomedical applications as the ultimate goal and large amounts of scientific data are now available. Compared to their monomeric models, already used in the formulation of various therapeutic agents, they display superior behavior in terms of their solubility in water and solubilizing power towards drugs incompatible with biological fluids. Moreover, they allow the combination of more than one type of therapeutic agent in the polymeric system. In this review we provide a complete state-of-the-art on the knowledge and potentialities of water-soluble cyclodextrin-based polymers as therapeutic agents as well as carrier systems for different types of therapeutics to implement combination therapy. Finally, we give a perspective on their assets for innovation in disease treatment as well as their limits that still need to be addressed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Marco Agnes
- Istituto per la Sintesi Organica e la Fotoreattività (ISOF), Consiglio Nazionale delle Ricerche (CNR), via P. Gobetti 101, Bologna, 40129, Italy
| | - Elisabetta Pancani
- Advanced Accelerator Applications, A Novartis Company, via Ribes 5, Ivrea, 10010, Italy
| | - Milo Malanga
- CycloLab, Cyclodextrin R&D Ltd., Budapest, H1097, Hungary
| | - Eva Fenyvesi
- CycloLab, Cyclodextrin R&D Ltd., Budapest, H1097, Hungary
| | - Ilse Manet
- Istituto per la Sintesi Organica e la Fotoreattività (ISOF), Consiglio Nazionale delle Ricerche (CNR), via P. Gobetti 101, Bologna, 40129, Italy
| |
Collapse
|
11
|
Gjerde NS, Nardi AN, Chen CG, Di Gianvincenzo P, D’Abramo M, Scipioni A, Galantini L, Moya SE, Giustini M. Complexation and organization of doxorubicin on polystyrene sulfonate chains: impacts on doxorubicin dimerization and quenching. Phys Chem Chem Phys 2022; 24:25990-25998. [DOI: 10.1039/d2cp02714c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The doxorubicin hydrochloride (DX) interaction with polystyrene sulfonate leads to fluorescence quenching due to dimer formation.
Collapse
Affiliation(s)
- Natalie Solfrid Gjerde
- Chemistry Department, “La Sapienza” University of Rome, P. le A. Moro 5, Roma, 00185, Italy
| | | | - Cheng Giuseppe Chen
- Chemistry Department, “La Sapienza” University of Rome, P. le A. Moro 5, Roma, 00185, Italy
| | - Paolo Di Gianvincenzo
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo Miramon 182 C, 20014 Donostia-San Sebastian, Spain
| | - Marco D’Abramo
- Chemistry Department, “La Sapienza” University of Rome, P. le A. Moro 5, Roma, 00185, Italy
| | - Anita Scipioni
- Chemistry Department, “La Sapienza” University of Rome, P. le A. Moro 5, Roma, 00185, Italy
| | - Luciano Galantini
- Chemistry Department, “La Sapienza” University of Rome, P. le A. Moro 5, Roma, 00185, Italy
| | - Sergio E. Moya
- Chemistry Department, “La Sapienza” University of Rome, P. le A. Moro 5, Roma, 00185, Italy
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo Miramon 182 C, 20014 Donostia-San Sebastian, Spain
| | - Mauro Giustini
- Chemistry Department, “La Sapienza” University of Rome, P. le A. Moro 5, Roma, 00185, Italy
| |
Collapse
|
12
|
Martinelli H, Tasca E, Andreozzi P, Libertone S, Ritacco H, Giustini M, Moya SE. Polarity studies of single polyelectrolyte layers in polyelectrolyte multilayers probed by steady state and life time doxorubicin fluorescence. J Colloid Interface Sci 2021; 607:153-162. [PMID: 34506997 DOI: 10.1016/j.jcis.2021.08.207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/20/2021] [Accepted: 08/30/2021] [Indexed: 11/27/2022]
Abstract
HYPOTHESIS Polarity in polyelectrolyte multilayers (PEMs) may vary from the inner to the top layers of the film as the charge compensation of the layers is more effective inside the PEMs than in outer layers. Doxorubicin hydrochloride (DX) is used here to sense polarity at the single polyelectrolyte level inside PEMS. EXPERIMENTAL DX is complexed electrostatically to a polyanion, either polystyrene sulfonate (PSS) or polyacrylic acid (PAA) and assembled at selected positions in a multilayer of the polyanion and polyallylamine hydrochloride (PAH) as polycation. Local polarity in the layer domain is evaluated through changes in the intensity ratio of the first to second band of spectra of DX (I1/I2 ratio) by steady state fluorescence, and by Lifetime fluorescence. FINDINGS PAH/PSS multilayers, show a polarity similar to water with DX/PSS as top layer, decreasing to I1/I2 ratios similar to organic solvents as the number of polyelectrolyte layers assembled on top increases. For PAH/PAA multilayers, polarity values reflect a more polar environment than water when DX/PAA is the top layer, remaining unaltered by the assembly of polyelectrolyte layers on top. Results show that different polar environments may be present in a PEM when considering polarity at the single layer level.
Collapse
Affiliation(s)
- Hernan Martinelli
- Instituto de Física del Sur (IFISUR-CONICET), Av. Alem 1253, Bahía Blanca (8000), Argentina; Soft Matter Nanotechnology Group, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo Miramón 182, 20014 San Sebastián, Guipúzcoa, Spain
| | - Elisamaria Tasca
- Soft Matter Nanotechnology Group, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo Miramón 182, 20014 San Sebastián, Guipúzcoa, Spain; Chemistry Department, University "La Sapienza", P.le Aldo Moro 5, 00185 Rome, Italy
| | - Patrizia Andreozzi
- Soft Matter Nanotechnology Group, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo Miramón 182, 20014 San Sebastián, Guipúzcoa, Spain; Consorzio Sistemi a Grande Interfase, Department of Chemistry 'Ugo Schiff', University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy
| | - Sara Libertone
- Soft Matter Nanotechnology Group, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo Miramón 182, 20014 San Sebastián, Guipúzcoa, Spain
| | - Hernan Ritacco
- Instituto de Física del Sur (IFISUR-CONICET), Av. Alem 1253, Bahía Blanca (8000), Argentina
| | - Mauro Giustini
- Chemistry Department, University "La Sapienza", P.le Aldo Moro 5, 00185 Rome, Italy; Consorzio Sistemi a Grande Interfase, Department of Chemistry 'Ugo Schiff', University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy.
| | - Sergio E Moya
- Soft Matter Nanotechnology Group, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo Miramón 182, 20014 San Sebastián, Guipúzcoa, Spain; Chemistry Department, University "La Sapienza", P.le Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
13
|
Song M, Fu W, Liu Y, Yao H, Zheng K, Liu L, Xue J, Xu P, Chen Y, Huang M, Li J. Unveiling the molecular mechanism of pH-dependent interactions of human serum albumin with chemotherapeutic agent doxorubicin: A combined spectroscopic and constant-pH molecular dynamics study. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Neupane D, Bhattarai JK, Demchenko AV, Stine KJ. A pH sensitive thiolated β-cyclodextrin-modified nanoporous gold for controlled release of doxorubicin. J Drug Deliv Sci Technol 2020; 60. [PMID: 32922527 DOI: 10.1016/j.jddst.2020.101985] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This article reports a novel thiolated β-cyclodextrin (HS-β-CD) modified nanoporous gold (NPG) wire for pH sensitive delivery of doxorubicin (DOX) in controlled manner. Nanoporous gold is a versatile material because of its three-dimensional nanoscale network of pores, facile surface functionalization, biocompatibility, and high capacity for the DOX payload. HS-β-CD can form supramolecular inclusion complexes with DOX affording the possibility of altering the controlled release behavior. DOX is one of the most potent anti-tumor drugs used in the treatment of different cancers. The binding of HS-β-CD and DOX was examined using UV-Vis spectroscopy. The prepared NPG structure exhibited excellent properties for controlled drug release outlining the potential of a pH sensitive drug implant for biomedical applications. This delivery system could improve local targeting of the drug as well as alter the rate of release of DOX near tumors.
Collapse
Affiliation(s)
- Dharmendra Neupane
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, Saint Louis, MO 63121
| | - Jay K Bhattarai
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, Saint Louis, MO 63121
| | - Alexei V Demchenko
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, Saint Louis, MO 63121
| | - Keith J Stine
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, Saint Louis, MO 63121
| |
Collapse
|
15
|
Galievsky V, Pawliszyn J. Fluorometer for Screening of Doxorubicin in Perfusate Solution and Tissue with Solid-Phase Microextraction Chemical Biopsy Sampling. Anal Chem 2020; 92:13025-13033. [PMID: 32847350 DOI: 10.1021/acs.analchem.0c01905] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The recent development of an in vivo solid-phase microextraction (SPME) method capable of analyzing drugs and metabolic products in biofluids and living tissues holds great promise. The standard in vivo SPME protocol based on mass spectrometry is a very powerful analytical approach, but it is not practical for on-site analysis in many cases. In this paper, we present a fluorescence-based SPME method and a prototype of a portable fluorometer that is capable of quickly quantifying concentrations of the anticancer drug, doxorubicin (DOX). The instrument uses thin coated, biocompatible SPME fibers, which we have previously presented as a chemical biopsy tool for use during in vivo lung perfusion (IVLP) procedures within a hospital setting. In this research, we test SPME fibers with C8-SCX, C18, and HLB coatings with our fluorometer. The mixed-mode C8-SCX fibers showed the best sensitivity of the three and were therefore used to examine DOX extraction from perfusate solution and a homogenized lamb lung tissue. The maximum concentration of free active sites in the C8-SCX fiber and the adsorption equilibrium constant were determined to be (9.1 ± 0.3) × 10-7 mol m-2 and 420 ± 30 m3 mol-1, respectively. Finally, the detection limits for DOX extracted from buffer, perfusate, and lung tissue were 40, 100, and 3700 μg L-1, respectively.
Collapse
Affiliation(s)
- Victor Galievsky
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
16
|
Piorecka K, Kurjata J, Bak-Sypien I, Cypryk M, Steinke U, Stanczyk WA. Reasons for enhanced activity of doxorubicin on co-delivery with octa(3-aminopropyl)silsesquioxane. RSC Adv 2020; 10:15579-15585. [PMID: 35495453 PMCID: PMC9052520 DOI: 10.1039/d0ra01319f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/13/2020] [Indexed: 11/21/2022] Open
Abstract
This paper presents results of spectroscopic (NMR, FTIR, fluorescence), Q-TOF mass spectrometry and Z-potential analyses of interactions between octa(3-aminopropyl)silsesquioxane hydrochloride (POSS-NH2·HCl) and anticancer drug - doxorubicin hydrochloride. These studies aimed at explanation of the enhanced activity of doxorubicin on co-delivery with POSS-NH2. The results point to the formation of active complexes via ionic interactions between the ammonium chloride groups of silsesquioxane and the drug, and not, as suggested earlier, via NH⋯N hydrogen bonding. It has also been shown that the main driving force for the formation of the complexes can be strengthened by π-π stacking and hydrogen bonds. The experimental results are supported by quantum mechanical calculations. This work has proven that co-delivery with POSS offers a potentially advantageous and simple approach for improved efficacy in chemotherapy, avoiding often complicated synthesis of conjugates, involving covalent bonding between drug, nanocarrier and targeting agents.
Collapse
Affiliation(s)
- Kinga Piorecka
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences Sienkiewicza 112 90-363 Lodz Poland +48-42-6803-203
| | - Jan Kurjata
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences Sienkiewicza 112 90-363 Lodz Poland +48-42-6803-203
| | - Irena Bak-Sypien
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences Sienkiewicza 112 90-363 Lodz Poland +48-42-6803-203
| | - Marek Cypryk
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences Sienkiewicza 112 90-363 Lodz Poland +48-42-6803-203
| | - Urszula Steinke
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences Sienkiewicza 112 90-363 Lodz Poland +48-42-6803-203
| | - Wlodzimierz A Stanczyk
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences Sienkiewicza 112 90-363 Lodz Poland +48-42-6803-203
| |
Collapse
|
17
|
Florêncio E Silva E, Machado ES, Vasconcelos IB, Junior SA, L Dutra JD, Freire RO, da Costa NB. Are the Absorption Spectra of Doxorubicin Properly Described by Considering Different Tautomers? J Chem Inf Model 2020; 60:513-521. [PMID: 31833765 DOI: 10.1021/acs.jcim.9b00785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The elucidation of the action of doxorubicin (DOX) has been considered a challenge for cancer therapy. Using theoretical approaches, we investigated the structure and electronic properties of DOX as a function of pH, which we thought likely to be related to the influence of its tautomers. Regarding the relative stabilities among the tautomers, the results obtained from PM6 were the most similar to those obtained from DFT. The theoretical absorption spectrum for each tautomeric species simply showed a single absorption peak located around 400 nm, in contrast to the experimental absorption spectra in the literature that showed four absorption bands. The experimental evidence was properly explained by considering four tautomeric conformers of DOX. The spectroscopic study of the deprotonated tautomers also suggested the presence of four deprotonated tautomers at more basic pH values. The spectrum at pH 10.08 can be explained by the presence of protonated and deprotonated doxorubicin species.
Collapse
Affiliation(s)
- Edvonaldo Florêncio E Silva
- Pople Computational Chemistry Laboratory, Departamento de Química, CCET , UFS , 49100-000 , São Cristóvão , Sergipe , Brazil
| | - Edna S Machado
- Pople Computational Chemistry Laboratory, Departamento de Química, CCET , UFS , 49100-000 , São Cristóvão , Sergipe , Brazil
| | - Iane B Vasconcelos
- Departamento de Química Fundamental, CCEN , UFPE , 50590-470 , Recife , Pernambuco , Brazil
| | - Severino A Junior
- Departamento de Química Fundamental, CCEN , UFPE , 50590-470 , Recife , Pernambuco , Brazil
| | - José Diogo L Dutra
- Pople Computational Chemistry Laboratory, Departamento de Química, CCET , UFS , 49100-000 , São Cristóvão , Sergipe , Brazil
| | - Ricardo O Freire
- Pople Computational Chemistry Laboratory, Departamento de Química, CCET , UFS , 49100-000 , São Cristóvão , Sergipe , Brazil
| | - Nivan B da Costa
- Pople Computational Chemistry Laboratory, Departamento de Química, CCET , UFS , 49100-000 , São Cristóvão , Sergipe , Brazil
| |
Collapse
|
18
|
Tasca E, Alba J, Galantini L, D’Abramo M, Giuliani AM, Amadei A, Palazzo G, Giustini M. The self-association equilibria of doxorubicin at high concentration and ionic strength characterized by fluorescence spectroscopy and molecular dynamics simulations. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
19
|
Tasca E, Giudice AD, Galantini L, Schillén K, Giuliani AM, Giustini M. A fluorescence study of the loading and time stability of doxorubicin in sodium cholate/PEO-PPO-PEO triblock copolymer mixed micelles. J Colloid Interface Sci 2019; 540:593-601. [PMID: 30677613 DOI: 10.1016/j.jcis.2019.01.075] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/14/2019] [Accepted: 01/16/2019] [Indexed: 11/25/2022]
Abstract
HYPOTHESIS Doxorubicin hydrochloride (DX) is one of the most powerful anticancer agents though its clinical use is impaired by severe undesired side effects. DX encapsulation in nanocarrier systems has been introduced as a mean to reduce its toxicity. Micelles of the nonionic triblock copolymers of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO) (PEO-PPO-PEO), are very promising carrier systems. The positive charge of DX confines the drug to the hydrophilic corona region of the micelles. The use of mixed micelles of PEO-PPO-PEO copolymers and a negatively charged bile salt should favour the solubilization of DX in the apolar core region of the micelles. EXPERIMENTS We studied the DX uptake in the micellar systems formed by sodium cholate (NaC) and the PEO100PPO65PEO100 (F127) copolymer, prepared with different mole ratios (MR = nNaC/nF127) in the range 0 ÷ 1. The systems were characterized by small angle X-ray scattering (SAXS) and dynamic light scattering (DLS); DX encapsulation was followed by steady-state and time-resolved fluorescence spectroscopy. FINDINGS The successful solubilization of DX in the host micellar systems did not affect their structure, as evidenced by both SAXS and DLS data. In the presence of NaC, DX experiences a more apolar environment as indicated by its characteristic fluorescent behaviour. The almost complete uptake of the drug occurred shortly after the sample preparation; however, time resolved fluorescence revealed a slow partition of DX between corona and core regions of the micelles. DX degradation in the mixed micellar systems was markedly reduced relative to aqueous DX solutions.
Collapse
Affiliation(s)
- Elisamaria Tasca
- Chemistry Department, University "La Sapienza", P.le Aldo Moro 5, 00185 Rome, Italy
| | | | - Luciano Galantini
- Chemistry Department, University "La Sapienza", P.le Aldo Moro 5, 00185 Rome, Italy; Centre for Colloid and Surface Science - C.S.G.I. Operative Unit of Bari, c/o Chemistry Department, University "Aldo Moro", Bari, Italy
| | - Karin Schillén
- Division of Physical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | | | - Mauro Giustini
- Chemistry Department, University "La Sapienza", P.le Aldo Moro 5, 00185 Rome, Italy; Centre for Colloid and Surface Science - C.S.G.I. Operative Unit of Bari, c/o Chemistry Department, University "Aldo Moro", Bari, Italy.
| |
Collapse
|
20
|
Srivastava A, Liu C, Lv J, kumar deb D, Qiao W. Enhanced intercellular release of anticancer drug by using nano-sized catanionic vesicles of doxorubicin hydrochloride and gemini surfactants. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.03.065] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
21
|
Tasca E, D'Abramo M, Galantini L, Giuliani AM, Pavel NV, Palazzo G, Giustini M. A Stereochemically Driven Supramolecular Polymerisation. Chemistry 2018; 24:8195-8204. [DOI: 10.1002/chem.201800644] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Elisamaria Tasca
- Chemistry Department; University “La Sapienza”; P.le Aldo Moro 5 00185 Rome Italy
| | - Marco D'Abramo
- Chemistry Department; University “La Sapienza”; P.le Aldo Moro 5 00185 Rome Italy
| | - Luciano Galantini
- Chemistry Department; University “La Sapienza”; P.le Aldo Moro 5 00185 Rome Italy
- Center for Colloid and Surface Science-C.S.G.I. Operative Unit of Bari c/o Chemistry Department; University “Aldo Moro”; Bari Italy
| | - Anna Maria Giuliani
- STEBICEF Department; University of Palermo; V.le delle Scienze 90128 Palermo Italy
| | - Nicolae Viorel Pavel
- Chemistry Department; University “La Sapienza”; P.le Aldo Moro 5 00185 Rome Italy
| | - Gerardo Palazzo
- Center for Colloid and Surface Science-C.S.G.I. Operative Unit of Bari c/o Chemistry Department; University “Aldo Moro”; Bari Italy
- Chemistry Department; University “Aldo Moro”; Via E. Orabona, 4 70126 Bari Italy
| | - Mauro Giustini
- Chemistry Department; University “La Sapienza”; P.le Aldo Moro 5 00185 Rome Italy
- Center for Colloid and Surface Science-C.S.G.I. Operative Unit of Bari c/o Chemistry Department; University “Aldo Moro”; Bari Italy
| |
Collapse
|
22
|
PEG and PEG-peptide based doxorubicin delivery systems containing hydrazone bond. JOURNAL OF POLYMER RESEARCH 2018. [DOI: 10.1007/s10965-018-1506-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
23
|
Varghese B, Suliman FO, Al-Hajri A, Al Bishri NSS, Al-Rwashda N. Spectral and theoretical study on complexation of sulfamethoxazole with β- and HPβ-cyclodextrins in binary and ternary systems. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 190:392-401. [PMID: 28950231 DOI: 10.1016/j.saa.2017.09.060] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 09/16/2017] [Accepted: 09/20/2017] [Indexed: 06/07/2023]
Abstract
The inclusion complexes of sulfamethoxazole (SMX) with β-cyclodextrin (βCD) and (2-hydroxypropyl) β-cyclodextrin (HPβCD) were prepared. Fluorescence spectroscopy and electrospray mass spectrometry, ESI-MS, were used to investigate and characterize the inclusion complexation of SMX with cyclodextrins in solutions. Whereas in the solid state the complexes were characterized by Fourier transform infrared spectroscopy (FTIR), powder X-ray diffraction (PXRD) and Raman techniques. Enhanced twisted intramolecular charge transfer (TICT), emission as well as local excited (LE) bands were observed upon addition of HPβCD indicate that SMX enters deeper into the cyclodextrins cavity. The stoichiometries and association constants of these complexes have been determined by monitoring the fluorescence data. The effect of presence of ternary components like arginine and cysteine on the complexation efficiency of SMX with cyclodextrins was investigated. Molecular Dynamic simulations were also performed to shed an atomistic insight into the complexation mechanism. The results obtained showed that complexes of SMX with both cyclodextrins are stabilized in aqueous media by strong hydrogen bonding interactions.
Collapse
Affiliation(s)
- Beena Varghese
- Department of Chemistry, College of Science, Sultan Qaboos University, Box 36, Al-khod 123, Oman
| | - FakhrEldin O Suliman
- Department of Chemistry, College of Science, Sultan Qaboos University, Box 36, Al-khod 123, Oman.
| | - Aalia Al-Hajri
- Department of Chemistry, College of Science, Sultan Qaboos University, Box 36, Al-khod 123, Oman
| | - Nahed Surur S Al Bishri
- Department of Chemistry, College of Science, Sultan Qaboos University, Box 36, Al-khod 123, Oman
| | - Nathir Al-Rwashda
- Department of Applied Chemical Sciences, Jordan University of Science & Technology, P. O. Box 3030, Irbid 22110, Jordan.
| |
Collapse
|
24
|
Ceborska M. Folate appended cyclodextrins for drug, DNA, and siRNA delivery. Eur J Pharm Biopharm 2017; 120:133-145. [DOI: 10.1016/j.ejpb.2017.09.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 09/01/2017] [Accepted: 09/08/2017] [Indexed: 12/11/2022]
|
25
|
Salzano G, Wankar J, Ottani S, Villemagne B, Baulard AR, Willand N, Brodin P, Manet I, Gref R. Cyclodextrin-based nanocarriers containing a synergic drug combination: A potential formulation for pulmonary administration of antitubercular drugs. Int J Pharm 2017; 531:577-587. [PMID: 28522424 DOI: 10.1016/j.ijpharm.2017.05.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/11/2017] [Accepted: 05/12/2017] [Indexed: 01/25/2023]
Abstract
Tuberculosis (TB) remains a major global health problem. The use of ethionamide (ETH), a main second line drug, is associated to severe toxic side-effects due to its low therapeutic index. In this challenging context, "booster" molecules have been synthetized to increase the efficacy of ETH. However, the administration of ETH/booster pair is mostly hampered by the low solubility of these drugs and the tendency of ETH to crystallize. Here, ETH and a poorly water-soluble booster, so-called BDM43266, were simultaneously loaded in polymeric β-cyclodextrin nanoparticles (pβCyD NPs) following a "green" protocol. The interaction of ETH and BDM43266 with pβCyD NPs was investigated by complementary techniques. Remarkably, the inclusion of ETH and BDM43266 pβCyD NPs led to an increase of their apparent solubility in water of 10- and 90-fold, respectively. Competition studies of ETH and BDM43266 for the CyD cavities of pβCyD NPs corroborated the fact that the drugs did not compete with each other, confirming the possibility to simultaneously co-incorporate them in NPs. The drug-loaded NP suspensions could be filtered through 0.22μm filters. Finally, the drug-loaded NPs were passed through a Microsprayer® to evaluate the feasibility to administer pβCyD NPs by pulmonary route. Each spray delivered a constant amount of both drugs and the NPs were totally recovered after passage through the Microsprayer®. These promising results pave the way for a future use of pβCyD NPs for the pulmonary delivery of the ETH/BDM43266 pair.
Collapse
Affiliation(s)
- Giuseppina Salzano
- Institute of Molecular Sciences, UMR CNRS 8214, Paris-Sud University, 91400 Orsay, France
| | - Jitendra Wankar
- Istituto per la Sintesi Organica e la Fotoreattività, ISOF, CNR, via P. Gobetti 101, 40129 Bologna, Italy
| | - Stefano Ottani
- Istituto per la Sintesi Organica e la Fotoreattività, ISOF, CNR, via P. Gobetti 101, 40129 Bologna, Italy
| | - Baptiste Villemagne
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000 Lille, France
| | - Alain R Baulard
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR8204 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Nicolas Willand
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000 Lille, France
| | - Priscille Brodin
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR8204 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Ilse Manet
- Istituto per la Sintesi Organica e la Fotoreattività, ISOF, CNR, via P. Gobetti 101, 40129 Bologna, Italy.
| | - Ruxandra Gref
- Institute of Molecular Sciences, UMR CNRS 8214, Paris-Sud University, 91400 Orsay, France.
| |
Collapse
|
26
|
Wei YY, Liu Z, Ju XJ, Shi K, Xie R, Wang W, Cheng Z, Chu LY. Gamma-Cyclodextrin-Recognition-Responsive Characteristics of Poly(N-isopropylacrylamide)-Based Hydrogels with Benzo-12-crown-4 Units as Signal Receptors. MACROMOL CHEM PHYS 2016. [DOI: 10.1002/macp.201600386] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yun-Yan Wei
- School of Chemical Engineering; Sichuan University; Chengdu Sichuan 610065 China
| | - Zhuang Liu
- School of Chemical Engineering; Sichuan University; Chengdu Sichuan 610065 China
| | - Xiao-Jie Ju
- School of Chemical Engineering; Sichuan University; Chengdu Sichuan 610065 China
- State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu Sichuan 610065 China
| | - Kun Shi
- School of Chemical Engineering; Sichuan University; Chengdu Sichuan 610065 China
| | - Rui Xie
- School of Chemical Engineering; Sichuan University; Chengdu Sichuan 610065 China
- State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu Sichuan 610065 China
| | - Wei Wang
- School of Chemical Engineering; Sichuan University; Chengdu Sichuan 610065 China
- State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu Sichuan 610065 China
| | - Zhengdong Cheng
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter; Guangdong University of Technology; Guangzhou Guangdong 510006 China
- Artie-McFerrin Department of Chemical Engineering; Texas A&M University; College Station TX 77843-3122 USA
| | - Liang-Yin Chu
- School of Chemical Engineering; Sichuan University; Chengdu Sichuan 610065 China
- State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu Sichuan 610065 China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); Nanjing Jiangsu 211816 China
| |
Collapse
|
27
|
Roik NV, Belyakova LA, Dziazko MO. Adsorption of antitumor antibiotic doxorubicin on MCM-41-type silica surface. ADSORPT SCI TECHNOL 2016. [DOI: 10.1177/0263617416669504] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Nadiia V Roik
- Chuiko Institute of Surface Chemistry of NAS of Ukraine, Kyiv, Ukraine
| | | | - Marina O Dziazko
- Chuiko Institute of Surface Chemistry of NAS of Ukraine, Kyiv, Ukraine
| |
Collapse
|
28
|
Ramezanpour M, Leung SSW, Delgado-Magnero KH, Bashe BYM, Thewalt J, Tieleman DP. Computational and experimental approaches for investigating nanoparticle-based drug delivery systems. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1688-709. [PMID: 26930298 DOI: 10.1016/j.bbamem.2016.02.028] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 02/20/2016] [Accepted: 02/23/2016] [Indexed: 12/21/2022]
Abstract
Most therapeutic agents suffer from poor solubility, rapid clearance from the blood stream, a lack of targeting, and often poor translocation ability across cell membranes. Drug/gene delivery systems (DDSs) are capable of overcoming some of these barriers to enhance delivery of drugs to their right place of action, e.g. inside cancer cells. In this review, we focus on nanoparticles as DDSs. Complementary experimental and computational studies have enhanced our understanding of the mechanism of action of nanocarriers and their underlying interactions with drugs, biomembranes and other biological molecules. We review key biophysical aspects of DDSs and discuss how computer modeling can assist in rational design of DDSs with improved and optimized properties. We summarize commonly used experimental techniques for the study of DDSs. Then we review computational studies for several major categories of nanocarriers, including dendrimers and dendrons, polymer-, peptide-, nucleic acid-, lipid-, and carbon-based DDSs, and gold nanoparticles. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov.
Collapse
Affiliation(s)
- M Ramezanpour
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - S S W Leung
- Department of Physics, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - K H Delgado-Magnero
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - B Y M Bashe
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - J Thewalt
- Department of Physics, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - D P Tieleman
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
29
|
Changenet-Barret P, Gustavsson T, Markovitsi D, Manet I. Ultrafast Electron Transfer in Complexes of Doxorubicin with Human Telomeric G-Quadruplexes and GC Duplexes Probed by Femtosecond Fluorescence Spectroscopy. Chemphyschem 2016; 17:1264-72. [PMID: 26790038 DOI: 10.1002/cphc.201501091] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Indexed: 01/23/2023]
Abstract
Doxorubicin (DOX) is a natural anthracycline widely used in chemotherapy; its combined application as a chemotherapeutic and photodynamic agent has been recently proposed. In this context, understanding the photoinduced properties of DOX complexes with nucleic acids is crucial. Herein, the study of photoinduced electron transfer in DOX-DNA complexes by femtosecond fluorescence spectroscopy is reported. The behaviour of complexes with two model DNA structures, a G-quadruplex (G4) formed by the human telomeric sequence (Tel21) and a d(GC) duplex, is compared. The DOX affinity for these two sequences is similar. Although both 1:1 and 2:1 stoichiometries have been reported for DOX-G4 complexes, only 1:1 complexes form with the duplex. The steady-state absorption indicates a strong binding interaction with the duplex due to drug intercalation between the GC base pairs. In contrast, the interaction of DOX with Tel21 is much weaker and arises from drug binding on the G4 external faces at two independent binding sites. As observed for DOX-d(GC) complexes, fluorescence of the drug in the first binding site of Tel21 exhibits decays within a few picoseconds following a biphasic pattern; this is attributed to the existence of two drug conformations. The fluorescence of the drug in the second binding site of Tel21 shows slower decays within 150 ps. These timescales are consistent with electron transfer from the guanines to the excited drug, as favoured by the lower oxidation potential of the stacked guanines of G4 with respect to those in the duplex.
Collapse
Affiliation(s)
- Pascale Changenet-Barret
- LIDYL, CEA, CNRS, Université Paris Saclay, F-91191, Gif-sur-Yvette, France. .,LOB, CNRS, INSERM, Université Paris Saclay, 91128, Palaiseau, France.
| | - Thomas Gustavsson
- LIDYL, CEA, CNRS, Université Paris Saclay, F-91191, Gif-sur-Yvette, France
| | - Dimitra Markovitsi
- LIDYL, CEA, CNRS, Université Paris Saclay, F-91191, Gif-sur-Yvette, France
| | - Ilse Manet
- Istituto per la Sintesi Organica e la Fotoreattività, CNR, via P. Gobetti 101, 40129, Bologna, Italy.
| |
Collapse
|
30
|
Iafisco M, Drouet C, Adamiano A, Pascaud P, Montesi M, Panseri S, Sarda S, Tampieri A. Superparamagnetic iron-doped nanocrystalline apatite as a delivery system for doxorubicin. J Mater Chem B 2016; 4:57-70. [DOI: 10.1039/c5tb01524c] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Iron-doped superparamagnetic apatite nanoparticles are promising materials for magnetic drug delivery systems due to their ability to strongly bind the anticancer doxorubicin and provide an active control over the drug release by using a low-frequency pulsed electromagnetic field.
Collapse
Affiliation(s)
- Michele Iafisco
- Institute of Science and Technology for Ceramics (ISTEC)
- National Research Council (CNR)
- 48018 Faenza (RA)
- Italy
| | - Christophe Drouet
- CIRIMAT Carnot Institute
- University of Toulouse
- UMR CNRS/INPT/UPS 5085
- Ensiacet
- 31030 Toulouse Cedex 4
| | - Alessio Adamiano
- Institute of Science and Technology for Ceramics (ISTEC)
- National Research Council (CNR)
- 48018 Faenza (RA)
- Italy
| | - Patricia Pascaud
- CIRIMAT Carnot Institute
- University of Toulouse
- UMR CNRS/INPT/UPS 5085
- Ensiacet
- 31030 Toulouse Cedex 4
| | - Monica Montesi
- Institute of Science and Technology for Ceramics (ISTEC)
- National Research Council (CNR)
- 48018 Faenza (RA)
- Italy
| | - Silvia Panseri
- Institute of Science and Technology for Ceramics (ISTEC)
- National Research Council (CNR)
- 48018 Faenza (RA)
- Italy
| | - Stephanie Sarda
- CIRIMAT Carnot Institute
- University of Toulouse
- UMR CNRS/INPT/UPS 5085
- Ensiacet
- 31030 Toulouse Cedex 4
| | - Anna Tampieri
- Institute of Science and Technology for Ceramics (ISTEC)
- National Research Council (CNR)
- 48018 Faenza (RA)
- Italy
| |
Collapse
|
31
|
Raffaini G, Mazzaglia A, Ganazzoli F. Aggregation behaviour of amphiphilic cyclodextrins: the nucleation stage by atomistic molecular dynamics simulations. Beilstein J Org Chem 2015; 11:2459-73. [PMID: 26734094 PMCID: PMC4685891 DOI: 10.3762/bjoc.11.267] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 11/19/2015] [Indexed: 01/01/2023] Open
Abstract
Amphiphilically modified cyclodextrins may form various supramolecular aggregates. Here we report a theoretical study of the aggregation of a few amphiphilic cyclodextrins carrying hydrophobic thioalkyl groups and hydrophilic ethylene glycol moieties at opposite rims, focusing on the initial nucleation stage in an apolar solvent and in water. The study is based on atomistic molecular dynamics methods with a "bottom up" approach that can provide important information about the initial aggregates of few molecules. The focus is on the interaction pattern of amphiphilic cyclodextrin (aCD), which may interact by mutual inclusion of the substituent groups in the hydrophobic cavity of neighbouring molecules or by dispersion interactions at their lateral surface. We suggest that these aggregates can also form the nucleation stage of larger systems as well as the building blocks of micelles, vesicle, membranes, or generally nanoparticles thus opening new perspectives in the design of aggregates correlating their structures with the pharmaceutical properties.
Collapse
Affiliation(s)
- Giuseppina Raffaini
- Dipartimento di Chimica, Materiali e Ingegneria Chimica ‘G. Natta’, Politecnico di Milano, via L. Mancinelli 7, 20131 Milano, Italy
- Unità Politecnico, INSTM, piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Antonino Mazzaglia
- CNR-ISMN Istituto per lo Studio dei Materiali Nanostrutturati, c/o Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali dell’Università di Messina, Via F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Fabio Ganazzoli
- Dipartimento di Chimica, Materiali e Ingegneria Chimica ‘G. Natta’, Politecnico di Milano, via L. Mancinelli 7, 20131 Milano, Italy
- Unità Politecnico, INSTM, piazza Leonardo da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
32
|
Izawa H, Yamamoto K, Yoshihashi S, Ifuku S, Morimoto M, Saimoto H. Facile preparation of cyclodextrin-grafted chitosans and their conversion into nanoparticles for an anticancer drug delivery system. Polym J 2015. [DOI: 10.1038/pj.2015.90] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
33
|
Csuhai E, Kangarlou S, Xiang TX, Ponta A, Bummer P, Choi D, Anderson BD. Determination of Key Parameters for a Mechanism-Based Model to Predict Doxorubicin Release from Actively Loaded Liposomes. J Pharm Sci 2015; 104:1087-98. [DOI: 10.1002/jps.24307] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 09/24/2014] [Accepted: 11/19/2014] [Indexed: 11/06/2022]
|
34
|
Krüger HR, Schütz I, Justies A, Licha K, Welker P, Haucke V, Calderón M. Imaging of doxorubicin release from theranostic macromolecular prodrugs via fluorescence resonance energy transfer. J Control Release 2014; 194:189-96. [PMID: 25176577 DOI: 10.1016/j.jconrel.2014.08.018] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 08/14/2014] [Accepted: 08/19/2014] [Indexed: 12/22/2022]
Abstract
Herein we present a FRET-based theranostic macromolecular prodrug (TMP) composed of (a) dendritic polyglycerol (PG) as polymeric nanocarrier, (b) doxorubicin (Dox) linked via a pH-sensitive hydrazone to (c) a tri-functional linker, and (d) an indodicarbocyanine dye (IDCC) attached in close proximity to Dox. The drug fluorescence is quenched via intramolecular FRET until the pH-sensitive hydrazone bond between the TMP and Dox is cleaved at acidic pH. By measuring its fluorescence, we characterized the TMP cleavage kinetics at different pH values in vitro. The intracellular release of Dox from the carrier was monitored in real time in intact cancer cells, giving more insight into the mode of action of a polymer drug conjugate.
Collapse
Affiliation(s)
- Harald R Krüger
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3-6, Berlin 14195, Germany
| | - Irene Schütz
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3-6, Berlin 14195, Germany; Leibniz-Institut für Molekulare Pharmakologie (FMP) & Freie Universität Berlin, Robert-Roessle-Str. 10, Berlin 13125, Germany
| | - Aileen Justies
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3-6, Berlin 14195, Germany
| | - Kai Licha
- mivenion GmbH, Robert-Koch-Platz 4, Berlin 10115, Germany
| | - Pia Welker
- mivenion GmbH, Robert-Koch-Platz 4, Berlin 10115, Germany
| | - Volker Haucke
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3-6, Berlin 14195, Germany; Leibniz-Institut für Molekulare Pharmakologie (FMP) & Freie Universität Berlin, Robert-Roessle-Str. 10, Berlin 13125, Germany
| | - Marcelo Calderón
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3-6, Berlin 14195, Germany.
| |
Collapse
|
35
|
Anand R, Borghi F, Manoli F, Manet I, Agostoni V, Reschiglian P, Gref R, Monti S. Host-guest interactions in Fe(III)-trimesate MOF nanoparticles loaded with doxorubicin. J Phys Chem B 2014; 118:8532-9. [PMID: 24960194 DOI: 10.1021/jp503809w] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Doxorubicin (DOX) entrapment in porous Fe(III)-trimesate metal organic frameworks (MIL-100(Fe)) nanoparticles was investigated in neutral Tris buffer via UV-vis absorption, circular dichroism (CD), and fluorescence. The binding constants and the absolute spectra of the DOX-MIL-100(Fe) complexes were determined via absorption and fluorescence titrations. A binding model where DOX associates as monomer to the dehydrated Fe3O (OH)(H2O)2 [(C6H3)(CO2)3]2 structural unit in 1:1 stoichiometry, with apparent association constant of (1.1 to 1.8) × 10(4) M(-1), was found to reasonably fit the experimental data. Spectroscopic data indicate that DOX binding occurs via the formation of highly stable coordination bonds between one or both deprotonated hydroxyl groups of the aglycone moiety and coordinatively unsaturated Fe(III) centers. Complete quenching of the DOX fluorescence and remarkable thermal and photochemical stability were observed for DOX incorporated in the MIL-100(Fe) framework.
Collapse
Affiliation(s)
- Resmi Anand
- Istituto per la Sintesi Organica e la Fotoreattività, ISOF-CNR , Via Piero Gobetti 101, Bologna I-40129, Italy
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Martin C, Cohen B, Gaamoussi I, Ijjaali M, Douhal A. Ultrafast Dynamics of C30 in Solution and within CDs and HSA Protein. J Phys Chem B 2014; 118:5760-71. [DOI: 10.1021/jp5026575] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Cristina Martin
- Departamento
de Química Física, Facultad de Ciencias Ambientales
y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S/N, 45071 Toledo, Spain
| | - Boiko Cohen
- Departamento
de Química Física, Facultad de Ciencias Ambientales
y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S/N, 45071 Toledo, Spain
| | - Issam Gaamoussi
- Departamento
de Química Física, Facultad de Ciencias Ambientales
y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S/N, 45071 Toledo, Spain
- Laboratorie
de Chimie de la Matière Condensée, Faculté des
Sciences et Techniques, University of Sidi Mohamed Ben Abdellah, Fez, Morocco 2202
| | - Mustapha Ijjaali
- Laboratorie
de Chimie de la Matière Condensée, Faculté des
Sciences et Techniques, University of Sidi Mohamed Ben Abdellah, Fez, Morocco 2202
| | - Abderrazzak Douhal
- Departamento
de Química Física, Facultad de Ciencias Ambientales
y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S/N, 45071 Toledo, Spain
| |
Collapse
|
37
|
Anand R, Malanga M, Manet I, Manoli F, Tuza K, Aykaç A, Ladavière C, Fenyvesi E, Vargas-Berenguel A, Gref R, Monti S. Citric acid-γ-cyclodextrin crosslinked oligomers as carriers for doxorubicin delivery. Photochem Photobiol Sci 2014; 12:1841-54. [PMID: 23900688 DOI: 10.1039/c3pp50169h] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Two citric acid crosslinked γ-cyclodextrin oligomers (pγ-CyD) with a MW of 21-33 kDa and 10-15 γ-CyD units per molecule were prepared by following green chemistry methods and were fully characterized. The non-covalent association of doxorubicin (DOX) with these macromolecules was investigated in neutral aqueous medium by means of circular dichroism (CD), UV-vis absorption and fluorescence. Global analysis of multiwavelength spectroscopic CD and fluorescence titration data, taking into account the DOX monomer-dimer equilibrium, evidenced the formation of 1 : 1 and 1 : 2 pγ-CyD unit-DOX complexes. The binding constants are 1-2 orders of magnitude higher than those obtained for γ-CyD and depend on the characteristics of the oligomer batch used. The concentration profiles of the species in solution evidence the progressive monomerization of DOX with increasing oligomer concentration. Confocal fluorescence imaging and spectral imaging showed a similar drug distribution within the MCF-7 cell line incubated with either DOX complexed to pγ-CyD or free DOX. In both cases DOX is taken up into the cell nucleus without any degradation.
Collapse
Affiliation(s)
- Resmi Anand
- Institute for Organic Synthesis and Photoreactivity, CNR, via P. Gobetti 101, 40129 Bologna, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Airoldi M, Barone G, Gennaro G, Giuliani AM, Giustini M. Interaction of doxorubicin with polynucleotides. A spectroscopic study. Biochemistry 2014; 53:2197-207. [PMID: 24641674 DOI: 10.1021/bi401687v] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The interaction of doxorubicin (DX) with model polynucleotides poly(dG-dC)·poly(dG-dC) (polyGC), poly(dA-dT)·poly(dA-dT) (polyAT), and calf thymus DNA has been studied by several spectroscopic techniques in phosphate buffer aqueous solutions. UV-vis, circular dichroism, and fluorescence spectroscopic data confirm that intercalation is the prevailing mode of interaction, and also reveal that the interaction with AT-rich regions leads to the transfer of excitation energy to DX not previously documented in the literature. Moreover, the DX affinity for AT sites has been found to be on the same order of magnitude as that reported for GC sites.
Collapse
Affiliation(s)
- Marta Airoldi
- Dipartimento STEBICEF, Università di Palermo, Viale delle Scienze , Parco D'Orleans, Pad. 17, 90128 Palermo, Italy
| | | | | | | | | |
Collapse
|
39
|
Xu D, Wang L, Gourevich D, Kabha E, Arditti F, Athamna M, Cochran S, Melzer A, Gnaim JM. Synthesis and Inclusion Study of a Novel γ-Cyclodextrin Derivative as a Potential Thermo-Sensitive Carrier for Doxorubicin. Chem Pharm Bull (Tokyo) 2014; 62:627-35. [DOI: 10.1248/cpb.c13-00950] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Doudou Xu
- Institute for Medical Science and Technology (IMSaT), College of Medicine, Dentistry and Nursing, University of Dundee
| | - Lijun Wang
- Institute for Medical Science and Technology (IMSaT), College of Medicine, Dentistry and Nursing, University of Dundee
| | - Dana Gourevich
- Institute for Medical Science and Technology (IMSaT), College of Medicine, Dentistry and Nursing, University of Dundee
| | | | | | | | - Sandy Cochran
- Institute for Medical Science and Technology (IMSaT), College of Medicine, Dentistry and Nursing, University of Dundee
| | - Andreas Melzer
- Institute for Medical Science and Technology (IMSaT), College of Medicine, Dentistry and Nursing, University of Dundee
| | | |
Collapse
|
40
|
Gourevich D, Dogadkin O, Volovick A, Wang L, Gnaim J, Cochran S, Melzer A. Ultrasound-mediated targeted drug delivery with a novel cyclodextrin-based drug carrier by mechanical and thermal mechanisms. J Control Release 2013; 170:316-24. [DOI: 10.1016/j.jconrel.2013.05.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 05/25/2013] [Accepted: 05/29/2013] [Indexed: 01/10/2023]
|
41
|
di Nunzio MR, Wang Y, Douhal A. Spectroscopy and dynamics of topotecan anti-cancer drug comprised within cyclodextrins. J Photochem Photobiol A Chem 2013. [DOI: 10.1016/j.jphotochem.2013.05.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
42
|
Fülöp Z, Gref R, Loftsson T. A permeation method for detection of self-aggregation of doxorubicin in aqueous environment. Int J Pharm 2013; 454:559-61. [PMID: 23850794 DOI: 10.1016/j.ijpharm.2013.06.058] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 06/14/2013] [Accepted: 06/17/2013] [Indexed: 10/26/2022]
Abstract
For pharmaceutical scientists, it is important to know if dissolved drug molecules are present only as monomers or in the form of aggregates in a test solution or formulation. Amphiphilic or hydrophobic drugs frequently self-associate to form dimers, trimers or higher order aggregates. Doxorubicin aggregation was examined by a previously developed permeation technique to detect oligosaccharide aggregation in aqueous solutions. At very low doxorubicin concentrations dimers and trimers have been observed, but in aqueous 0.5mg/ml doxorubicin solutions aggregates containing about 40 molecules were observed. The permeation studies were supported by TEM studies. The results indicate that neutral doxorubicin molecules aggregate more readily than the protonated ones. Doxorubicin aggregation is a stepwise process resulting in formation of aggregates of variable sizes are enhanced aggregation with increasing doxorubicin concentration.
Collapse
Affiliation(s)
- Zoltán Fülöp
- Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, 107 Reykjavík, Iceland.
| | | | | |
Collapse
|
43
|
Oliveri V, D'Agata R, Giglio V, Spoto G, Vecchio G. Cyclodextrin-functionalised gold nanoparticles via streptavidin: a supramolecular approach. Supramol Chem 2013. [DOI: 10.1080/10610278.2013.794278] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Valentina Oliveri
- a Dipartimento di Scienze Chimiche , University of Catania , Viale A. Doria 6, 95125 , Catania , Italy
| | - Roberta D'Agata
- a Dipartimento di Scienze Chimiche , University of Catania , Viale A. Doria 6, 95125 , Catania , Italy
| | - Valentina Giglio
- a Dipartimento di Scienze Chimiche , University of Catania , Viale A. Doria 6, 95125 , Catania , Italy
| | - Giuseppe Spoto
- a Dipartimento di Scienze Chimiche , University of Catania , Viale A. Doria 6, 95125 , Catania , Italy
| | - Graziella Vecchio
- a Dipartimento di Scienze Chimiche , University of Catania , Viale A. Doria 6, 95125 , Catania , Italy
| |
Collapse
|
44
|
Changenet-Barret P, Gustavsson T, Markovitsi D, Manet I, Monti S. Unravelling molecular mechanisms in the fluorescence spectra of doxorubicin in aqueous solution by femtosecond fluorescence spectroscopy. Phys Chem Chem Phys 2013; 15:2937-44. [DOI: 10.1039/c2cp44056c] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
45
|
Anand R, Manoli F, Manet I, Daoud-Mahammed S, Agostoni V, Gref R, Monti S. β-Cyclodextrin polymer nanoparticles as carriers for doxorubicin and artemisinin: a spectroscopic and photophysical study. Photochem Photobiol Sci 2012; 11:1285-92. [PMID: 22576059 DOI: 10.1039/c2pp25014d] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The association of doxorubicin (DOX) and artemisinin (ART) to a β-CyD-epichlorohydrin crosslinked polymer (pβ-CyD), organized in nanoparticles of ca. 15 nm size, was investigated in neutral aqueous medium by circular dichroism (CD), UV-vis absorption and fluorescence. The stability constants and the absolute CD spectra of the drug complexes were determined by global analysis of multiwavelength data from spectroscopic titrations. The polymer pβ-CyD proved able to disrupt the DOX dimer when the latter is the predominant form of DOX in solution. The spectroscopic and photophysical properties of the complexes evidenced an alcohol-like environment for ART and an improved inherent emission ability for DOX in the nanoparticle frame.
Collapse
Affiliation(s)
- Resmi Anand
- Istituto per la Sintesi Organica e la Fotoreattività, ISOF-CNR, Bologna, Italy
| | | | | | | | | | | | | |
Collapse
|