1
|
Grivin VP, Matveeva SG, Fedunov RG, Yanshole VV, Vasilchenko DB, Glebov EM. Photochemistry of (n-Bu 4N) 2[Pt(NO 3) 6] in acetonitrile. Photochem Photobiol Sci 2024; 23:747-755. [PMID: 38430371 DOI: 10.1007/s43630-024-00550-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 02/08/2024] [Indexed: 03/03/2024]
Abstract
Photochemistry of the (n-Bu4N)2[Pt(NO3)6] complex in acetonitrile was studied by means of stationary photolysis and nanosecond laser flash photolysis. The primary photochemical process was found to be an intramolecular electron transfer followed by an escape of an •NO3 radical to the solution bulk. The spectra of two successive Pt(III) intermediates were detected in the microsecond time domain, and their spectral and kinetic characteristics were determined. These intermediates were identified as PtIII(NO3)52- and PtIII(NO3)4- complexes. Disproportionation of Pt(III) species resulted in formation of final Pt(II) products.
Collapse
Affiliation(s)
- Vjacheslav P Grivin
- V.V. Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, 3 Institutskaya Str, 630090, Novosibirsk, Russian Federation
| | - Svetlana G Matveeva
- V.V. Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, 3 Institutskaya Str, 630090, Novosibirsk, Russian Federation
| | - Roman G Fedunov
- V.V. Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, 3 Institutskaya Str, 630090, Novosibirsk, Russian Federation
| | - Vadim V Yanshole
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, 3a Institutskaya Str., 630090, Novosibirsk, Russian Federation
- Novosibirsk State University, 2 Pirogova Str., 630090, Novosibirsk, Russian Federation
| | - Danila B Vasilchenko
- A.V. Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Institutskaya Str, 630090, Novosibirsk, Russian Federation
| | - Evgeni M Glebov
- V.V. Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, 3 Institutskaya Str, 630090, Novosibirsk, Russian Federation.
- Novosibirsk State University, 2 Pirogova Str., 630090, Novosibirsk, Russian Federation.
| |
Collapse
|
2
|
Glebov EM. Femtochemistry methods for studying the photophysics and photochemistry of halide complexes of platinum metals. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3486-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
3
|
Glebov EM, Plyusnin VF. On the Cause of Solvent Effect in $${\text{Pt}^{\text{IV}}}\text{Cl}_{6}^{{2 - }}$$ Photochemistry. HIGH ENERGY CHEMISTRY 2021. [DOI: 10.1134/s0018143921030036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Glebov EM, Matveeva SG, Pozdnyakov IP, Grivin VP, Plyusnin VF, Vasilchenko DB, Romanova TE, Melnikov AA, Chekalin SV, Fedunov RG. Photochemistry of hexachloroosmate(IV) in ethanol. Photochem Photobiol Sci 2020; 19:1569-1579. [PMID: 33073834 DOI: 10.1039/d0pp00244e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The photochemistry of the OsIVCl62- complex in ethanol was studied by means of stationary photolysis, nanosecond laser flash photolysis, ultrafast pump-probe spectroscopy and quantum chemistry. The direction of the photochemical process was found to be wavelength-dependent. Irradiation in the region of the d-d and LMCT bands results in the photosolvation (with the wavelength-dependent quantum yield) and photoreduction of Os(iv) to Os(iii), correspondingly. The characteristic time of photosolvation is ca. 40 ps. Photoreduction occurs in the micro- and millisecond time domains via several Os(iii) intermediates. The nature of intermediates and the possible mechanisms of photoreduction are discussed. We believe that the lability of the photochemically produced Os(iv) and Os(iii) intermediates determines the synthetic potential of OsIVCl62- photochemistry.
Collapse
Affiliation(s)
- Evgeni M Glebov
- V.V. Voevodsky Institute of Chemical Kinetics and Combustion, 3 Institutskaya Str., 630090, Novosibirsk, Russian Federation. and Novosibirsk State University, 2 Pirogova Str., 630090, Novosibirsk, Russian Federation
| | - Svetlana G Matveeva
- V.V. Voevodsky Institute of Chemical Kinetics and Combustion, 3 Institutskaya Str., 630090, Novosibirsk, Russian Federation.
| | - Ivan P Pozdnyakov
- V.V. Voevodsky Institute of Chemical Kinetics and Combustion, 3 Institutskaya Str., 630090, Novosibirsk, Russian Federation. and Novosibirsk State University, 2 Pirogova Str., 630090, Novosibirsk, Russian Federation
| | - Vjacheslav P Grivin
- V.V. Voevodsky Institute of Chemical Kinetics and Combustion, 3 Institutskaya Str., 630090, Novosibirsk, Russian Federation. and Novosibirsk State University, 2 Pirogova Str., 630090, Novosibirsk, Russian Federation
| | - Victor F Plyusnin
- V.V. Voevodsky Institute of Chemical Kinetics and Combustion, 3 Institutskaya Str., 630090, Novosibirsk, Russian Federation. and Novosibirsk State University, 2 Pirogova Str., 630090, Novosibirsk, Russian Federation
| | - Danila B Vasilchenko
- A.V. Nikolaev Institute of Inorganic Chemistry, 3 Lavrentyev Ave., 630090, Novosibirsk, Russian Federation. and Novosibirsk State University, 2 Pirogova Str., 630090, Novosibirsk, Russian Federation
| | - Tamara E Romanova
- A.V. Nikolaev Institute of Inorganic Chemistry, 3 Lavrentyev Ave., 630090, Novosibirsk, Russian Federation. and Novosibirsk State University, 2 Pirogova Str., 630090, Novosibirsk, Russian Federation
| | - Alexei A Melnikov
- Institute of Spectroscopy, Russian Academy of Sciences, 5 Fizicheskaya Str., 119333, Troitsk, Moscow, Russian Federation. and Faculty of Physics, National Research University Higher School of Economics, 20 Myasnitskaya Str., 101000 Moscow, Russian Federation
| | - Sergey V Chekalin
- Institute of Spectroscopy, Russian Academy of Sciences, 5 Fizicheskaya Str., 119333, Troitsk, Moscow, Russian Federation.
| | - Roman G Fedunov
- V.V. Voevodsky Institute of Chemical Kinetics and Combustion, 3 Institutskaya Str., 630090, Novosibirsk, Russian Federation.
| |
Collapse
|
5
|
Melnikov AA, Pozdnyakov IP, Chekalin SV, Glebov EM. Direct measurement of ultrafast intersystem crossing time for the PtIVBr62− complex. MENDELEEV COMMUNICATIONS 2020. [DOI: 10.1016/j.mencom.2020.07.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Zhang C, Gao L, Yuan Q, Zhao L, Niu W, Cai P, Li J, Han X, He Z, Gao F, Wang Y, Jiang H, Chai Z, Gao X. Is GSH Chelated Pt Molecule Inactive in Anti-Cancer Treatment? A Case Study of Pt 6 GS 4. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002044. [PMID: 32500659 DOI: 10.1002/smll.202002044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/24/2020] [Indexed: 06/11/2023]
Abstract
Platinum (Pt) drugs are widely used in anti-cancer treatment although many reports advocated that tumor cells could inactivate Pt drugs via glutathione-Pt (GSH-Pt) adducts formation. To date, GSH chelated Pt molecules have not been assessed in cancer treatment because GSH-Pt adducts are not capable of killing cancer cells, which is widely accepted and well followed. In this report, endogenous biothiol is utilized to precisely synthesize a GSH chelated Pt molecule (Pt6 GS4 ). This Pt6 GS4 molecule can be well taken up by aggressive triple negative breast cancer (TNBC) cells. Subsequently, its metabolites could enter nuclei to interact with DNA, finally the DNA-Pt complex triggers TNBC cell apoptosis via the p53 pathway. Impressively, high efficacy for anti-cancer treatment is achieved by Pt6 GS4 both in vitro and in vivo when compared with traditional first-line carboplatin in the same dosage. Compared with carboplatin, Pt6 GS4 keeps tumor bearing mice alive for a longer time and is non-toxic for the liver and kidneys. This work opens a route to explore polynuclear Pt compound with accurate architecture for enhancing therapeutic effects and reducing systemic toxicity.
Collapse
Affiliation(s)
- Chunyu Zhang
- Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Liang Gao
- Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Qing Yuan
- Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Lina Zhao
- CAS Key Laboratory for the Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wenchao Niu
- Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Pengju Cai
- CAS Key Laboratory for the Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jiaojiao Li
- Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Xu Han
- CAS Key Laboratory for the Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhesheng He
- CAS Key Laboratory for the Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Fuping Gao
- CAS Key Laboratory for the Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yaling Wang
- CAS Key Laboratory for the Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Huaidong Jiang
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, 201210, P. R. China
| | - Zhifang Chai
- CAS Key Laboratory for the Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xueyun Gao
- Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
| |
Collapse
|
7
|
Choi EH, Ahn DS, Park S, Kim C, Ahn CW, Kim S, Choi M, Yang C, Kim TW, Ki H, Choi J, Pedersen MN, Wulff M, Kim J, Ihee H. Structural Dynamics of Bismuth Triiodide in Solution Triggered by Photoinduced Ligand-to-Metal Charge Transfer. J Phys Chem Lett 2019; 10:1279-1285. [PMID: 30835478 DOI: 10.1021/acs.jpclett.9b00365] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Bismuth triiodide, BiI3, is one of the simplest bismuth halides, which have recently attracted considerable attention because of their promising properties. Here, we investigate the structural dynamics of a photoinduced reaction of BiI3 in solution phase using time-resolved X-ray liquidography (TRXL) and density functional theory (DFT) and time-dependent DFT (TDDFT) calculations. The photoreaction was initiated by excitation at 400 nm, which corresponds to the ligand-to-metal charge-transfer transition. The detailed structures and kinetic profiles of all relevant intermediate species from the TRXL data show that the trigonal planar structure of BiI3, which is predicted to be the most stable structure of the lowest excited state by TDDFT calculation, was not observed, and the photoreaction proceeds via two parallel pathways within the time resolution of 100 ps: (i) isomer formation to produce iso-BiI2-I, which relaxes back to the ground-state structure, and (ii) dissociation into BiI2· and I· radicals, which nongeminately recombine to generate ground-state BiI3 and I2.
Collapse
Affiliation(s)
- Eun Hyuk Choi
- Department of Chemistry and KI for the BioCentury , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea
- Center for Nanomaterials and Chemical Reactions , Institute for Basic Science (IBS) , Daejeon 34141 , Republic of Korea
| | - Doo-Sik Ahn
- Department of Chemistry and KI for the BioCentury , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea
- Center for Nanomaterials and Chemical Reactions , Institute for Basic Science (IBS) , Daejeon 34141 , Republic of Korea
| | - Sungjun Park
- Department of Chemistry and KI for the BioCentury , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea
- Center for Nanomaterials and Chemical Reactions , Institute for Basic Science (IBS) , Daejeon 34141 , Republic of Korea
| | - Changwon Kim
- Department of Chemistry and KI for the BioCentury , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea
- Center for Nanomaterials and Chemical Reactions , Institute for Basic Science (IBS) , Daejeon 34141 , Republic of Korea
| | - Chi Woo Ahn
- Department of Chemistry and KI for the BioCentury , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea
- Center for Nanomaterials and Chemical Reactions , Institute for Basic Science (IBS) , Daejeon 34141 , Republic of Korea
| | - Siin Kim
- Department of Chemistry and KI for the BioCentury , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea
- Center for Nanomaterials and Chemical Reactions , Institute for Basic Science (IBS) , Daejeon 34141 , Republic of Korea
| | - Minseo Choi
- Department of Chemistry and KI for the BioCentury , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea
- Center for Nanomaterials and Chemical Reactions , Institute for Basic Science (IBS) , Daejeon 34141 , Republic of Korea
| | - Cheolhee Yang
- Center for Nanomaterials and Chemical Reactions , Institute for Basic Science (IBS) , Daejeon 34141 , Republic of Korea
| | - Tae Wu Kim
- Center for Nanomaterials and Chemical Reactions , Institute for Basic Science (IBS) , Daejeon 34141 , Republic of Korea
| | - Hosung Ki
- Center for Nanomaterials and Chemical Reactions , Institute for Basic Science (IBS) , Daejeon 34141 , Republic of Korea
| | - Jungkweon Choi
- Department of Chemistry and KI for the BioCentury , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea
- Center for Nanomaterials and Chemical Reactions , Institute for Basic Science (IBS) , Daejeon 34141 , Republic of Korea
| | | | - Michael Wulff
- European Synchrotron Radiation Facility (ESRF) , 38000 Grenoble Cedex 9, France
| | - Jeongho Kim
- Department of Chemistry , Inha University , 100 Inha-ro, Nam-gu , Incheon 22212 , Republic of Korea
| | - Hyotcherl Ihee
- Department of Chemistry and KI for the BioCentury , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea
- Center for Nanomaterials and Chemical Reactions , Institute for Basic Science (IBS) , Daejeon 34141 , Republic of Korea
| |
Collapse
|
8
|
Rogozina MV, Matveeva SG, Glebov EM, Fedunov RG. Quantum chemistry of OsCl62− photoaquation products and the reaction scheme. Photochem Photobiol Sci 2019; 18:1122-1129. [DOI: 10.1039/c8pp00553b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The mechanism of formation of the hydroxocomplex OsIVCl5(OH)2− after photoexcitation of OsIVCl62−.
Collapse
Affiliation(s)
| | - Svetlana G. Matveeva
- Voevodsky Institute of Chemical Kinetics and Combustion
- Novosibirsk
- Russian Federation
| | - Evgeni M. Glebov
- Voevodsky Institute of Chemical Kinetics and Combustion
- Novosibirsk
- Russian Federation
- Novosibirsk State University
- Novosibirsk
| | | |
Collapse
|
9
|
Matveeva SG, Shushakov AA, Pozdnyakov IP, Grivin VP, Plyusnin VF, Vasilchenko DB, Zadesenets AV, Melnikov AA, Chekalin SV, Glebov EM. A cis,fac-[RuCl 2(DMSO) 3(H 2O)] complex exhibits ultrafast photochemical aquation/rearrangement. Photochem Photobiol Sci 2018; 17:1222-1228. [PMID: 30070288 DOI: 10.1039/c8pp00232k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
It is known that both cis,fac-[RuCl2(DMSO)3(H2O)] (1a) and trans,cis,cis-[RuCl2(DMSO)2(H2O)2] (2a) complexes, which are formed on the dissolution of trans and cis-isomers of [RuCl2(DMSO)4] in water, demonstrate light-induced anticancer activity. The first stage of 1a photochemistry is its transformation to 2a occurring with a rather high quantum yield, 0.64 ± 0.17. The mechanism of the 1a → 2a phototransformation was studied by means of nanosecond laser flash photolysis and ultrafast pump-probe spectroscopy. The reaction occurs in the picosecond time range via the formation and decay of two successive intermediates interpreted as Ru(ii) complexes with different sets of ligands. A tentative mechanism of phototransformation is proposed.
Collapse
Affiliation(s)
- Svetlana G Matveeva
- Voevodsky Institute of Chemical Kinetics and Combustion, 3 Institutskaya Str., 630090, Novosibirsk, Russian Federation.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Matveeva SG, Grivin VP, Plyusnin VF, Vasilchenko DB, Glebov EM. Mechanism of chain photochemical reaction of ( n -Bu 4 N) 2 [PtCl 6 ] in chloroform. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2018.03.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
11
|
Glebov EM, Pozdnyakov IP, Vasilchenko DB, Zadesenets AV, Melnikov AA, Magin IM, Grivin VP, Chekalin SV, Plyusnin VF. Photochemistry of cis,trans-[Pt(en)(I)2(OH)2] complex in aqueous solutions. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2017.06.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
12
|
Rogozina MV, Yudanov VV, Fedunov RG, Pozdnyakov IP, Melnikov AA, Chekalin SV, Glebov EM. Short-lived intermediates in photochemistry of an OsCl62− complex in aqueous solutions. Photochem Photobiol Sci 2018; 17:18-26. [DOI: 10.1039/c7pp00299h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photoaquation of an OsIVCl62− complex occurs via a pentacoordinated OsIVCl5− intermediate.
Collapse
Affiliation(s)
- Marina V. Rogozina
- Voevodsky Institute of Chemical Kinetics and Combustion
- Novosibirsk
- Russian Federation
- Vologograd State University
- Volgograd
| | - Vladislav V. Yudanov
- Voevodsky Institute of Chemical Kinetics and Combustion
- Novosibirsk
- Russian Federation
- Vologograd State University
- Volgograd
| | | | - Ivan P. Pozdnyakov
- Voevodsky Institute of Chemical Kinetics and Combustion
- Novosibirsk
- Russian Federation
- Novosibirsk State University
- Novosibirsk
| | - Alexey A. Melnikov
- Institute of Spectroscopy
- Russian Academy of Sciences
- 119333 Troitsk, Moscow
- Russian Federation
| | - Sergey V. Chekalin
- Institute of Spectroscopy
- Russian Academy of Sciences
- 119333 Troitsk, Moscow
- Russian Federation
| | - Evgeni M. Glebov
- Voevodsky Institute of Chemical Kinetics and Combustion
- Novosibirsk
- Russian Federation
- Novosibirsk State University
- Novosibirsk
| |
Collapse
|
13
|
Glebov EM, Grivin VP, Vasil’chenko DB, Zadesenets AV, Plyusnin VF. Two-quantum photochemistry of the complex cis,trans-[PtIV(en)(I)2(CH3COO)2]. HIGH ENERGY CHEMISTRY 2017. [DOI: 10.1134/s0018143917060078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Glebov EM, Pozdnyakov IP, Matveeva SG, Melnikov AA, Chekalin SV, Rogozina MV, Yudanov VV, Grivin VP, Plyusnin VF. Primary photophysical and photochemical processes for hexachloroosmate(iv) in aqueous solution. Photochem Photobiol Sci 2017; 16:220-227. [PMID: 28009886 DOI: 10.1039/c6pp00382f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The photoaquation of the OsIVCl62- complex was studied by means of stationary photolysis, nanosecond laser flash photolysis and ultrafast kinetic spectroscopy. The OsIVCl5(OH)2- complex was found to be the only reaction product. The quantum yield of photoaquation is rather low and wavelength-dependent. No impact of redox processes on photoaquation was revealed. The total characteristic lifetime of the process is about 80 ps. Three intermediates were recorded in the femto- and picosecond time domains and assigned to different Os(iv) species. The nature of intermediates and possible mechanisms of photoaquation are discussed.
Collapse
Affiliation(s)
- Evgeni M Glebov
- Voevodsky Institute of Chemical Kinetics and Combustion, 3 Institutskaya Str., 630090, Novosibirsk, Russian Federation. and Novosibirsk State University, 2 Pirogova Str., 630090, Novosibirsk, Russian Federation
| | - Ivan P Pozdnyakov
- Voevodsky Institute of Chemical Kinetics and Combustion, 3 Institutskaya Str., 630090, Novosibirsk, Russian Federation. and Novosibirsk State University, 2 Pirogova Str., 630090, Novosibirsk, Russian Federation
| | - Svetlana G Matveeva
- Voevodsky Institute of Chemical Kinetics and Combustion, 3 Institutskaya Str., 630090, Novosibirsk, Russian Federation.
| | - Alexei A Melnikov
- Institute of Spectroscopy, Russian Academy of Sciences, 5 Fizicheskaya Str., 119333 Troitsk, Moscow, Russian Federation.
| | - Sergey V Chekalin
- Institute of Spectroscopy, Russian Academy of Sciences, 5 Fizicheskaya Str., 119333 Troitsk, Moscow, Russian Federation.
| | - Marina V Rogozina
- Voevodsky Institute of Chemical Kinetics and Combustion, 3 Institutskaya Str., 630090, Novosibirsk, Russian Federation. and Vologograd State University, 100 University Ave., 400062, Volgograd, Russian Federation.
| | - Vladislav V Yudanov
- Voevodsky Institute of Chemical Kinetics and Combustion, 3 Institutskaya Str., 630090, Novosibirsk, Russian Federation. and Vologograd State University, 100 University Ave., 400062, Volgograd, Russian Federation.
| | - Vjacheslav P Grivin
- Voevodsky Institute of Chemical Kinetics and Combustion, 3 Institutskaya Str., 630090, Novosibirsk, Russian Federation.
| | - Victor F Plyusnin
- Voevodsky Institute of Chemical Kinetics and Combustion, 3 Institutskaya Str., 630090, Novosibirsk, Russian Federation. and Novosibirsk State University, 2 Pirogova Str., 630090, Novosibirsk, Russian Federation
| |
Collapse
|
15
|
Glebov EM, Pozdnyakov IP, Chernetsov VP, Grivin VP, Venediktov AB, Melnikov AA, Chekalin SV, Plyusnin VF. Primary photophysical and photochemical processes for Pt(SCN)6
2– complex. Russ Chem Bull 2017. [DOI: 10.1007/s11172-017-1749-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Shushakov AA, Pozdnyakov IP, Grivin VP, Plyusnin VF, Vasilchenko DB, Zadesenets AV, Melnikov AA, Chekalin SV, Glebov EM. Primary photochemical processes for Pt(iv) diazido complexes prospective in photodynamic therapy of tumors. Dalton Trans 2017; 46:9440-9450. [DOI: 10.1039/c7dt01529a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A case study of chain photoaquation of mixed-ligand Pt(iv) diazido complexes tested in PDT of tumors is performed.
Collapse
Affiliation(s)
- Anton A. Shushakov
- Voevodsky Institute of Chemical Kinetics and Combustion
- Novosibirsk
- Russian Federation
- Novosibirsk State University
- Novosibirsk
| | - Ivan P. Pozdnyakov
- Voevodsky Institute of Chemical Kinetics and Combustion
- Novosibirsk
- Russian Federation
- Novosibirsk State University
- Novosibirsk
| | - Vjacheslav P. Grivin
- Voevodsky Institute of Chemical Kinetics and Combustion
- Novosibirsk
- Russian Federation
| | - Victor F. Plyusnin
- Voevodsky Institute of Chemical Kinetics and Combustion
- Novosibirsk
- Russian Federation
- Novosibirsk State University
- Novosibirsk
| | - Danila B. Vasilchenko
- Nikolaev Institute of Inorganic Chemistry
- Novosibirsk
- Russian Federation
- Novosibirsk State University
- Novosibirsk
| | - Andrei V. Zadesenets
- Nikolaev Institute of Inorganic Chemistry
- Novosibirsk
- Russian Federation
- Novosibirsk State University
- Novosibirsk
| | - Alexei A. Melnikov
- Institute of Spectroscopy
- Russian Academy of Sciences
- Troitsk, Moscow
- Russian Federation
| | - Sergey V. Chekalin
- Institute of Spectroscopy
- Russian Academy of Sciences
- Troitsk, Moscow
- Russian Federation
| | - Evgeni M. Glebov
- Voevodsky Institute of Chemical Kinetics and Combustion
- Novosibirsk
- Russian Federation
- Novosibirsk State University
- Novosibirsk
| |
Collapse
|
17
|
|
18
|
Primary photophysical and photochemical processes upon UV excitation of PtBr6 2– and PtCl6 2– complexes in water and methanol. Russ Chem Bull 2016. [DOI: 10.1007/s11172-015-1072-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Znakovskaya IV, Glebov EM. Photochemistry of the PtCl62– complex in acidic aqueous solutions. MENDELEEV COMMUNICATIONS 2016. [DOI: 10.1016/j.mencom.2016.01.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
20
|
Glebov EM, Pozdnyakov IP, Plyusnin VF, Khmelinskii I. Primary reactions in the photochemistry of hexahalide complexes of platinum group metals: A minireview. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2015. [DOI: 10.1016/j.jphotochemrev.2015.05.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
Latsuzbaia R, Negro E, Koper G. Bicontinuous microemulsions for high yield, wet synthesis of ultrafine nanoparticles: a general approach. Faraday Discuss 2015; 181:37-48. [DOI: 10.1039/c5fd00004a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The design of a synthesis strategy for metal nanoparticles by templating dense microemulsions is proposed. Particle size is controlled by surfactant size rather than by microemulsion composition. The strategy was demonstrated with various systems with different surfactant: cationic, anionic and non-ionic and of different sizes. Formulations were determined using the microemulsion phase diagrams. Synthesis was demonstrated for platinum nanoparticles with some examples for gold. The nanoparticles were subsequently extracted from the microemulsion by absorption onto a carbon support, after which the surfactant was recycled.
Collapse
Affiliation(s)
- Roman Latsuzbaia
- Department of Chemical Engineering
- Delft University of Technology
- Netherlands
| | - Emanuela Negro
- Department of Chemical Engineering
- Delft University of Technology
- Netherlands
| | - Ger Koper
- Department of Chemical Engineering
- Delft University of Technology
- Netherlands
| |
Collapse
|
22
|
Glebov EM, Pozdnyakov IP, Melnikov AA, Chekalin SV. Photophysical and photochemical processes followed by 320nm femtosecond laser excitation of IrCl62− complex in aqueous and methanol solutions. J Photochem Photobiol A Chem 2014. [DOI: 10.1016/j.jphotochem.2014.07.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Wickramasinghe LA, Sharp PR. Dihydrogen Trioxide (HOOOH) Photoelimination from a Platinum(IV) Hydroperoxo-Hydroxo Complex. J Am Chem Soc 2014; 136:13979-82. [DOI: 10.1021/ja507263f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Lasantha A. Wickramasinghe
- Department of Chemistry, University of Missouri, 125 Chemistry Building, Columbia, Missouri 65211-7600, United States
| | - Paul R. Sharp
- Department of Chemistry, University of Missouri, 125 Chemistry Building, Columbia, Missouri 65211-7600, United States
| |
Collapse
|
24
|
Perera TA, Masjedi M, Sharp PR. Photoreduction of Pt(IV) Chloro Complexes: Substrate Chlorination by a Triplet Excited State. Inorg Chem 2014; 53:7608-21. [DOI: 10.1021/ic5009413] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Tharushi A. Perera
- Department
of Chemistry, University of Missouri, 125 Chemistry Building, Columbia, Missouri 65211-7600, United States
| | - Mehdi Masjedi
- Department
of Chemistry, University of Missouri, 125 Chemistry Building, Columbia, Missouri 65211-7600, United States
| | - Paul R. Sharp
- Department
of Chemistry, University of Missouri, 125 Chemistry Building, Columbia, Missouri 65211-7600, United States
| |
Collapse
|
25
|
Kolbeck C, Taccardi N, Paape N, Schulz PS, Wasserscheid P, Steinrück HP, Maier F. Redox chemistry, solubility, and surface distribution of Pt(II) and Pt(IV) complexes dissolved in ionic liquids. J Mol Liq 2014. [DOI: 10.1016/j.molliq.2013.07.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Glebov EM, Kolomeets AV, Pozdnyakov IP, Grivin VP, Plyusnin VF, Tkachenko NV, Lemmetyinen H. Chain processes in the photochemistry of PtIV halide complexes in aqueous solutions. Russ Chem Bull 2014. [DOI: 10.1007/s11172-013-0221-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
27
|
Glebov EM, Chernetsov VP, Grivin VP, Plyusnin VF, Venediktov AB. Photochemistry of Pt complex in aqueous solutions. MENDELEEV COMMUNICATIONS 2014. [DOI: 10.1016/j.mencom.2014.03.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Wickramasinghe LA, Sharp PR. Photoreduction of Pt(IV) Halo-Hydroxo Complexes: Possible Hypohalous Acid Elimination. Inorg Chem 2014; 53:1430-42. [DOI: 10.1021/ic402358s] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Lasantha A. Wickramasinghe
- Department
of Chemistry, University of Missouri—Columbia, 125 Chemistry Building, Columbia, Missouri 65211-7600, United States
| | - Paul R. Sharp
- Department
of Chemistry, University of Missouri—Columbia, 125 Chemistry Building, Columbia, Missouri 65211-7600, United States
| |
Collapse
|
29
|
Ross A, Sharp PR. Triphos Iridium(III) Halide Complex Photochemistry: Triphos Arm Dissociation. Inorg Chem 2013; 52:12645-54. [DOI: 10.1021/ic401835d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Andreas Ross
- Department of Chemistry, University of Missouri-Columbia, 125 Chemistry Building, Columbia, Missouri 65211-7600, United States
| | - Paul R. Sharp
- Department of Chemistry, University of Missouri-Columbia, 125 Chemistry Building, Columbia, Missouri 65211-7600, United States
| |
Collapse
|