1
|
Sozcu S, Venkataraman M, Wiener J, Tomkova B, Militky J, Mahmood A. Incorporation of Cellulose-Based Aerogels into Textile Structures. MATERIALS (BASEL, SWITZERLAND) 2023; 17:27. [PMID: 38203881 PMCID: PMC10779952 DOI: 10.3390/ma17010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024]
Abstract
Given their exceptional attributes, aerogels are viewed as a material with immense potential. Being a natural polymer, cellulose offers the advantage of being both replenishable and capable of breaking down naturally. Cellulose-derived aerogels encompass the replenish ability, biocompatible nature, and ability to degrade naturally inherent in cellulose, along with additional benefits like minimal weight, extensive porosity, and expansive specific surface area. Even with increasing appreciation and acceptance, the undiscovered possibilities of aerogels within the textiles sphere continue to be predominantly uninvestigated. In this context, we outline the latest advancements in the study of cellulose aerogels' formulation and their diverse impacts on textile formations. Drawing from the latest studies, we reviewed the materials used for the creation of various kinds of cellulose-focused aerogels and their properties, analytical techniques, and multiple functionalities in relation to textiles. This comprehensive analysis extensively covers the diverse strategies employed to enhance the multifunctionality of cellulose-based aerogels in the textiles industry. Additionally, we focused on the global market size of bio-derivative aerogels, companies in the industry producing goods, and prospects moving forward.
Collapse
Affiliation(s)
- Sebnem Sozcu
- Department of Material Engineering, Faculty of Textile Engineering, Technical University of Liberec, 46117 Liberec, Czech Republic; (J.W.); (B.T.); (J.M.); (A.M.)
| | - Mohanapriya Venkataraman
- Department of Material Engineering, Faculty of Textile Engineering, Technical University of Liberec, 46117 Liberec, Czech Republic; (J.W.); (B.T.); (J.M.); (A.M.)
| | | | | | | | | |
Collapse
|
2
|
Méndez DA, Schroeter B, Martínez-Abad A, Fabra MJ, Gurikov P, López-Rubio A. Pectin-based aerogel particles for drug delivery: Effect of pectin composition on aerogel structure and release properties. Carbohydr Polym 2023; 306:120604. [PMID: 36746590 DOI: 10.1016/j.carbpol.2023.120604] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023]
Abstract
In this work, nanostructured pectin aerogels were prepared via a sol-gel process and subsequent drying under supercritical conditions. To this end, three commercially available citrus pectins and an in-house produced and enzymatically modified watermelon rind pectin (WRP) were compared. Then, the effect of pectin's structure and composition on the aerogel properties were analysed and its potential application as a delivery system was explored by impregnating them with vanillin. Results showed that the molecular weight, degree of esterification and branching degree of the pectin samples played a main role in the production of hydrogels and subsequent aerogels. The developed aerogel particles showed high specific surface areas (468-584 m2/g) and low bulk density (0.025-0.10 g/cm3). The shrinkage effect during aerogel formation was significantly affected by the pectin concentration and structure, while vanillin loading in aerogels and its release profile was also seen to be influenced by the affinity between pectin and vanillin. Furthermore, the results highlight the interest of WRP as a carrier of active compounds which might have potential application in food and biomedical areas, among others.
Collapse
Affiliation(s)
- D A Méndez
- Food Safety and Preservation Department, Institute of Agrochemistry and Food Technology (IATA-CSIC), Valencia, Spain
| | - B Schroeter
- Institute for Thermal Separation Processes, Hamburg University of Technology, Eißendorfer Straße 38, 21073 Hamburg, Germany
| | - A Martínez-Abad
- Food Safety and Preservation Department, Institute of Agrochemistry and Food Technology (IATA-CSIC), Valencia, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy- Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - M J Fabra
- Food Safety and Preservation Department, Institute of Agrochemistry and Food Technology (IATA-CSIC), Valencia, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy- Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - P Gurikov
- Laboratory for Development and Modelling of Novel Nanoporous Materials, Hamburg University of Technology, Eißendorfer Straße 38, 21073 Hamburg, Germany
| | - A López-Rubio
- Food Safety and Preservation Department, Institute of Agrochemistry and Food Technology (IATA-CSIC), Valencia, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy- Spanish National Research Council (SusPlast-CSIC), Madrid, Spain.
| |
Collapse
|
3
|
Biopolymeric Fibrous Aerogels: The Sustainable Alternative for Water Remediation. Polymers (Basel) 2023; 15:polym15020262. [PMID: 36679143 PMCID: PMC9867057 DOI: 10.3390/polym15020262] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 01/07/2023] Open
Abstract
The increment in water pollution due to the massive development in the industrial sector is a worldwide concern due to its impact on the environment and human health. Therefore, the development of new and sustainable alternatives for water remediation is needed. In this context, aerogels present high porosity, low density, and a remarkable adsorption capacity, making them candidates for remediation applications demonstrating high efficiency in removing pollutants from the air, soil, and water. Specifically, polymer-based aerogels could be modified in their high surface area to integrate functional groups, decrease their hydrophilicity, or increase their lipophilicity, among other variations, expanding and enhancing their efficiency as adsorbents for the removal of various pollutants in water. The aerogels based on natural polymers such as cellulose, chitosan, or alginate processed by different techniques presented high adsorption capacities, efficacy in oil/water separation and dye removal, and excellent recyclability after several cycles. Although there are different reviews based on aerogels, this work gives an overview of just the natural biopolymers employed to elaborate aerogels as an eco-friendly and renewable alternative. In addition, here we show the synthesis methods and applications in water cleaning from pollutants such as dyes, oil, and pharmaceuticals, providing novel information for the future development of biopolymeric-based aerogel.
Collapse
|
4
|
Pascuta MS, Varvara RA, Teleky BE, Szabo K, Plamada D, Nemeş SA, Mitrea L, Martău GA, Ciont C, Călinoiu LF, Barta G, Vodnar DC. Polysaccharide-Based Edible Gels as Functional Ingredients: Characterization, Applicability, and Human Health Benefits. Gels 2022; 8:524. [PMID: 36005125 PMCID: PMC9407509 DOI: 10.3390/gels8080524] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 12/16/2022] Open
Abstract
Nowadays, edible materials such as polysaccharides have gained attention due to their valuable attributes, especially gelling property. Polysaccharide-based edible gels (PEGs) can be classified as (i) hydrogels, (ii) oleogels and bigels, (iii) and aerogels, cryogels and xerogels, respectively. PEGs have different characteristics and benefits depending on the functional groups of polysaccharide chains (e.g., carboxylic, sulphonic, amino, methoxyl) and on the preparation method. However, PEGs are found in the incipient phase of research and most studies are related to their preparation, characterization, sustainable raw materials, and applicability. Furthermore, all these aspects are treated separately for each class of PEG, without offering an overview of those already obtained PEGs. The novelty of this manuscript is to offer an overview of the classification, definition, formulation, and characterization of PEGs. Furthermore, the applicability of PEGs in the food sector (e.g., food packaging, improving food profile agent, delivery systems) and in the medical/pharmaceutical sector is also critically discussed. Ultimately, the correlation between PEG consumption and polysaccharides properties for human health (e.g., intestinal microecology, "bridge effect" in obesity, gut microbiota) are critically discussed for the first time. Bigels may be valuable for use as ink for 3D food printing in personalized diets for human health treatment. PEGs have a significant role in developing smart materials as both ingredients and coatings and methods, and techniques for exploring PEGs are essential. PEGs as carriers of bioactive compounds have a demonstrated effect on obesity. All the physical, chemical, and biological interactions among PEGs and other organic and inorganic structures should be investigated.
Collapse
Affiliation(s)
- Mihaela Stefana Pascuta
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Rodica-Anita Varvara
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Bernadette-Emőke Teleky
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Katalin Szabo
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| | - Diana Plamada
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Silvia-Amalia Nemeş
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Laura Mitrea
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| | - Gheorghe Adrian Martău
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| | - Călina Ciont
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Lavinia Florina Călinoiu
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| | - Gabriel Barta
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| | - Dan Cristian Vodnar
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| |
Collapse
|
5
|
Ferreira-Gonçalves T, Iglesias-Mejuto A, Linhares T, Coelho JMP, Vieira P, Faísca P, Catarino J, Pinto P, Ferreira D, Ferreira HA, Gaspar MM, Durães L, García-González CA, Reis CP. Biological Thermal Performance of Organic and Inorganic Aerogels as Patches for Photothermal Therapy. Gels 2022; 8:gels8080485. [PMID: 36005086 PMCID: PMC9407269 DOI: 10.3390/gels8080485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/24/2022] [Accepted: 07/27/2022] [Indexed: 11/30/2022] Open
Abstract
Aerogels are materials with unique properties, among which are low density and thermal conductivity. They are also known for their exquisite biocompatibility and biodegradability. All these features make them attractive for biomedical applications, such as their potential use in photothermal therapy (PTT). This technique is, yet, still associated with undesirable effects on surrounding tissues which emphasizes the need to minimize the exposure of healthy regions. One way to do so relies on the use of materials able to block the radiation and the heat generated. Aerogels might be potentially useful for this purpose by acting as insulators. Silica- and pectin-based aerogels are reported as the best inorganic and organic thermal insulators, respectively; thus, the aim of this work relies on assessing the possibility of using these materials as light and thermal insulators and delimiters for PTT. Silica- and pectin-based aerogels were prepared and fully characterized. The thermal protection efficacy of the aerogels when irradiated with a near-infrared laser was assessed using phantoms and ex vivo grafts. Lastly, safety was assessed in human volunteers. Both types presented good textural properties and safe profiles. Moreover, thermal activation unveils the better performance of silica-based aerogels, confirming the potential of this material for PTT.
Collapse
Affiliation(s)
- Tânia Ferreira-Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal; (T.F.-G.); (P.P.); (M.M.G.)
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; (J.M.P.C.); (H.A.F.)
| | - Ana Iglesias-Mejuto
- I+D Farma Group (GI-1645), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain; (A.I.-M.); (C.A.G.-G.)
| | - Teresa Linhares
- University of Coimbra, CIEPQPF, Department of Chemical Engineering, 3030-790 Coimbra, Portugal; (T.L.); (L.D.)
- 2C2T-Centre for Textile Science and Technology, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal
| | - João M. P. Coelho
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; (J.M.P.C.); (H.A.F.)
| | - Pedro Vieira
- Physics Department, NOVA School of Science and Technology (Campus de Caparica), 2829-516 Caparica, Portugal;
| | - Pedro Faísca
- CBIOS-Research Center for Biosciences & Health Technologies, Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal;
| | - José Catarino
- Faculdade de Medicina Veterinária, Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal;
| | - Pedro Pinto
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal; (T.F.-G.); (P.P.); (M.M.G.)
| | - David Ferreira
- Comprehensive Health Research Centre (CHRC), Departamento de Desporto e Saúde, Escola de Saúde e Desenvolvimento Humano, Universidade de Évora, Largo dos Colegiais, 7004-516 Évora, Portugal;
| | - Hugo A. Ferreira
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; (J.M.P.C.); (H.A.F.)
| | - Maria Manuela Gaspar
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal; (T.F.-G.); (P.P.); (M.M.G.)
| | - Luísa Durães
- University of Coimbra, CIEPQPF, Department of Chemical Engineering, 3030-790 Coimbra, Portugal; (T.L.); (L.D.)
| | - Carlos A. García-González
- I+D Farma Group (GI-1645), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain; (A.I.-M.); (C.A.G.-G.)
| | - Catarina Pinto Reis
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal; (T.F.-G.); (P.P.); (M.M.G.)
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; (J.M.P.C.); (H.A.F.)
- Correspondence: ; Tel.: +351-217-946-429 (ext. 14244); Fax: +351-217-946-470
| |
Collapse
|
6
|
Horvat G, Pantić M, Knez Ž, Novak Z. A Brief Evaluation of Pore Structure Determination for Bioaerogels. Gels 2022; 8:gels8070438. [PMID: 35877523 PMCID: PMC9316429 DOI: 10.3390/gels8070438] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/01/2022] [Accepted: 07/11/2022] [Indexed: 01/03/2023] Open
Abstract
This review discusses the most commonly employed methods for determining pore size and pore size distribution in bioaerogels. Aerogels are materials with high porosity and large surface areas. Most of their pores are in the range of mesopores, between 2 and 50 nm. They often have smaller or larger pores, which presents a significant challenge in determining the exact mean pore size and pore size distribution in such materials. The precision and actual value of the pore size are of considerable importance since pore size and pore size distribution are among the main properties of aerogels and are often directly connected with the final application of those materials. However, many recently published papers discuss or present pore size as one of the essential achievements despite the misinterpretation or the wrong assignments of pore size determination. This review will help future research and publications evaluate the pore size of aerogels more precisely and discuss it correctly. The study covers methods such as gas adsorption, from which BJH and DFT models are often used, SEM, mercury porosimetry, and thermoporometry. The methods are described, and the results obtained are discussed. The following paper shows that there is still no precise method for determining pore size distribution or mean pore size in aerogels until now. Knowing that, it is expected that this field will evolve in the future.
Collapse
Affiliation(s)
- Gabrijela Horvat
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia; (G.H.); (M.P.); (Ž.K.)
| | - Milica Pantić
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia; (G.H.); (M.P.); (Ž.K.)
| | - Željko Knez
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia; (G.H.); (M.P.); (Ž.K.)
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Zoran Novak
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia; (G.H.); (M.P.); (Ž.K.)
- Correspondence:
| |
Collapse
|
7
|
Influence of the Impregnation Technique on the Release of Esomeprazole from Various Bioaerogels. Polymers (Basel) 2021; 13:polym13111882. [PMID: 34204041 PMCID: PMC8201251 DOI: 10.3390/polym13111882] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/27/2021] [Accepted: 06/03/2021] [Indexed: 12/16/2022] Open
Abstract
The presented study shows the possibility of using bioaerogels, namely neat alginate, pectin, chitosan aerogels, and alginate and pectin aerogels coated with chitosan, as drug delivery systems for esomeprazole. Two different techniques were used for the impregnation of esomeprazole: Supercritical impregnation, and diffusion via ethanol during the sol-gel synthesis. The prepared samples were characterized by employing N2 adsorption-desorption analysis, TGA/DSC, and FTIR. The achieved loadings were satisfactory for all the tested samples and showed to be dependent on the technique used for impregnation. In all cases, higher loadings were achieved when impregnation via diffusion from ethanol was used. Extensive release studies were performed for all impregnated samples. The in vitro dissolution profiles were found to be dependent on the carrier and impregnation method used. Most importantly, in all cases more controlled and delayed release was achieved with the bioaerogels compared to using pure esomeprazole.
Collapse
|
8
|
Shah N, Rehan T, Li X, Tetik H, Yang G, Zhao K, Lin D. Magnetic aerogel: an advanced material of high importance. RSC Adv 2021; 11:7187-7204. [PMID: 35423256 PMCID: PMC8695117 DOI: 10.1039/d0ra10275j] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 01/12/2021] [Indexed: 12/27/2022] Open
Abstract
Magnetic materials have brought innovations in the field of advanced materials. Their incorporation in aerogels has certainly broadened their application area. Magnetic aerogels can be used for various purposes from adsorbents to developing electromagnetic interference shielding and microwave absorbing materials, high-level diagnostic tools, therapeutic systems, and so on. Considering the final use and cost, these can be fabricated from a variety of materials using different approaches. To date, several studies have been published reporting the fabrication and uses of magnetic aerogels. However, to our knowledge, there is no review that specifically focuses only on magnetic aerogels, so we attempted to overview the main developments in this field and ended our study with the conclusion that magnetic aerogels are one of the emerging and futuristic advanced materials with the potential to offer multiple applications of high value.
Collapse
Affiliation(s)
- Nasrullah Shah
- Department of Industrial and Manufacturing Systems Engineering, Kansas State University Manhattan KS 66506 USA +1-765-2372200 +1-785-4911492
- Department of Chemistry, Abdul Wali Khan University Mardan Mardan KP 23200 Pakistan
| | - Touseef Rehan
- Department of Biochemistry, Quaid-i-Azam University Islamabad 24000 Pakistan
| | - Xuemue Li
- Department of Industrial and Manufacturing Systems Engineering, Kansas State University Manhattan KS 66506 USA +1-765-2372200 +1-785-4911492
- Key Laboratory of High Efficiency and Clean Mechanical Engineering, Shandong University Jinan 250061 China
| | - Halil Tetik
- Department of Industrial and Manufacturing Systems Engineering, Kansas State University Manhattan KS 66506 USA +1-765-2372200 +1-785-4911492
| | - Guang Yang
- Department of Industrial and Manufacturing Systems Engineering, Kansas State University Manhattan KS 66506 USA +1-765-2372200 +1-785-4911492
| | - Keren Zhao
- Department of Industrial and Manufacturing Systems Engineering, Kansas State University Manhattan KS 66506 USA +1-765-2372200 +1-785-4911492
| | - Dong Lin
- Department of Industrial and Manufacturing Systems Engineering, Kansas State University Manhattan KS 66506 USA +1-765-2372200 +1-785-4911492
| |
Collapse
|
9
|
Budtova T, Aguilera DA, Beluns S, Berglund L, Chartier C, Espinosa E, Gaidukovs S, Klimek-Kopyra A, Kmita A, Lachowicz D, Liebner F, Platnieks O, Rodríguez A, Tinoco Navarro LK, Zou F, Buwalda SJ. Biorefinery Approach for Aerogels. Polymers (Basel) 2020; 12:E2779. [PMID: 33255498 PMCID: PMC7760295 DOI: 10.3390/polym12122779] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 12/30/2022] Open
Abstract
According to the International Energy Agency, biorefinery is "the sustainable processing of biomass into a spectrum of marketable bio-based products (chemicals, materials) and bioenergy (fuels, power, heat)". In this review, we survey how the biorefinery approach can be applied to highly porous and nanostructured materials, namely aerogels. Historically, aerogels were first developed using inorganic matter. Subsequently, synthetic polymers were also employed. At the beginning of the 21st century, new aerogels were created based on biomass. Which sources of biomass can be used to make aerogels and how? This review answers these questions, paying special attention to bio-aerogels' environmental and biomedical applications. The article is a result of fruitful exchanges in the frame of the European project COST Action "CA 18125 AERoGELS: Advanced Engineering and Research of aeroGels for Environment and Life Sciences".
Collapse
Affiliation(s)
- Tatiana Budtova
- MINES ParisTech, Center for Materials Forming (CEMEF), PSL Research University, UMR CNRS 7635, CS 10207, 06904 Sophia Antipolis, France; (D.A.A.); (C.C.); (F.Z.)
| | - Daniel Antonio Aguilera
- MINES ParisTech, Center for Materials Forming (CEMEF), PSL Research University, UMR CNRS 7635, CS 10207, 06904 Sophia Antipolis, France; (D.A.A.); (C.C.); (F.Z.)
| | - Sergejs Beluns
- Faculty of Materials Science and Applied Chemistry, Institute of Polymer Materials, Riga Technical University, P.Valdena 3/7, LV, 1048 Riga, Latvia; (S.B.); (S.G.); (O.P.)
| | - Linn Berglund
- Division of Materials Science, Department of Engineering Sciences and Mathematics, Luleå University of Technology, SE-971 87 Luleå, Sweden;
| | - Coraline Chartier
- MINES ParisTech, Center for Materials Forming (CEMEF), PSL Research University, UMR CNRS 7635, CS 10207, 06904 Sophia Antipolis, France; (D.A.A.); (C.C.); (F.Z.)
| | - Eduardo Espinosa
- Bioagres Group, Chemical Engineering Department, Faculty of Science, Universidad de Córdoba, Campus of Rabanales, 14014 Córdoba, Spain; (E.E.); (A.R.)
| | - Sergejs Gaidukovs
- Faculty of Materials Science and Applied Chemistry, Institute of Polymer Materials, Riga Technical University, P.Valdena 3/7, LV, 1048 Riga, Latvia; (S.B.); (S.G.); (O.P.)
| | - Agnieszka Klimek-Kopyra
- Department of Agroecology and Plant Production, Faculty of Agriculture and Economics, University of Agriculture, Aleja Mickieiwcza 21, 31-120 Kraków, Poland;
| | - Angelika Kmita
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Krakow, Poland; (A.K.); (D.L.)
| | - Dorota Lachowicz
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Krakow, Poland; (A.K.); (D.L.)
| | - Falk Liebner
- Department of Chemistry, Institute for Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Straße 24, A-3430 Tulln an der Donau, Austria;
| | - Oskars Platnieks
- Faculty of Materials Science and Applied Chemistry, Institute of Polymer Materials, Riga Technical University, P.Valdena 3/7, LV, 1048 Riga, Latvia; (S.B.); (S.G.); (O.P.)
| | - Alejandro Rodríguez
- Bioagres Group, Chemical Engineering Department, Faculty of Science, Universidad de Córdoba, Campus of Rabanales, 14014 Córdoba, Spain; (E.E.); (A.R.)
| | - Lizeth Katherine Tinoco Navarro
- CEITEC-VUT Central European Institute of Technology—Brno university of Technology, Purkyňova 123, 612 00 Brno-Královo Pole, Czech Republic;
| | - Fangxin Zou
- MINES ParisTech, Center for Materials Forming (CEMEF), PSL Research University, UMR CNRS 7635, CS 10207, 06904 Sophia Antipolis, France; (D.A.A.); (C.C.); (F.Z.)
| | - Sytze J. Buwalda
- MINES ParisTech, Center for Materials Forming (CEMEF), PSL Research University, UMR CNRS 7635, CS 10207, 06904 Sophia Antipolis, France; (D.A.A.); (C.C.); (F.Z.)
| |
Collapse
|
10
|
Alvarado-Hidalgo F, Ramírez-Sánchez K, Starbird-Perez R. Smart Porous Multi-Stimulus Polysaccharide-Based Biomaterials for Tissue Engineering. Molecules 2020; 25:E5286. [PMID: 33202707 PMCID: PMC7697121 DOI: 10.3390/molecules25225286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 01/01/2023] Open
Abstract
Recently, tissue engineering and regenerative medicine studies have evaluated smart biomaterials as implantable scaffolds and their interaction with cells for biomedical applications. Porous materials have been used in tissue engineering as synthetic extracellular matrices, promoting the attachment and migration of host cells to induce the in vitro regeneration of different tissues. Biomimetic 3D scaffold systems allow control over biophysical and biochemical cues, modulating the extracellular environment through mechanical, electrical, and biochemical stimulation of cells, driving their molecular reprogramming. In this review, first we outline the main advantages of using polysaccharides as raw materials for porous scaffolds, as well as the most common processing pathways to obtain the adequate textural properties, allowing the integration and attachment of cells. The second approach focuses on the tunable characteristics of the synthetic matrix, emphasizing the effect of their mechanical properties and the modification with conducting polymers in the cell response. The use and influence of polysaccharide-based porous materials as drug delivery systems for biochemical stimulation of cells is also described. Overall, engineered biomaterials are proposed as an effective strategy to improve in vitro tissue regeneration and future research directions of modified polysaccharide-based materials in the biomedical field are suggested.
Collapse
Affiliation(s)
- Fernando Alvarado-Hidalgo
- Centro de Investigación en Servicios Químicos y Microbiológicos, CEQIATEC, Escuela de Química, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
- Master Program in Medical Devices Engineering, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
| | - Karla Ramírez-Sánchez
- Centro de Investigación en Servicios Químicos y Microbiológicos, CEQIATEC, Escuela de Química, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
- Centro de Investigación en Enfermedades Tropicales, CIET, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica
| | - Ricardo Starbird-Perez
- Centro de Investigación en Servicios Químicos y Microbiológicos, CEQIATEC, Escuela de Química, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
| |
Collapse
|
11
|
Wu K, Fang Y, Wu H, Wan Y, Qian H, Jiang F, Chen S. Improving konjac glucomannan-based aerogels filtration properties by combining aerogel pieces in series with different pore size distributions. Int J Biol Macromol 2020; 166:1499-1507. [PMID: 33181223 DOI: 10.1016/j.ijbiomac.2020.11.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 12/01/2022]
Abstract
The pore size distribution of konjac glucomannan (KGM)-based aerogels seriously impacted the air filtration efficiency and filtration resistance. This study aimed to investigate the pore size distribution control of KGM-based aerogels through total solid concentration of the sol and to improve the filtration performance by preparing aerogel stacks, which were made by combining KGM-based aerogels with different pore size distribution (range: 0-180 μm). Results indicated that with increased total solid concentration from 50% to 100% of the origin formulae, aerogel pore size became smaller and the porosity was decreased for all the three sample formulae. Meanwhile, the aerogel mechanical property and filtration efficiency were both strengthened with increased total solid concentration, but the air resistance became significantly higher. The changing extent and rule were influenced by the sample components (KGM, starch, gelatin, wheat straw). The aerogel stacks prepared by in series combining the aerogel pieces with different pore size distribution (from large size to small size) was found to improve filtration efficiency (e.g. from 70% to 80% for K1G2S4WS2) and significantly lower the air resistance (e.g. from 270 Pa to 190 Pa for K1G2S4WS2). This study could guide the filtration performance improvement of aerogels.
Collapse
Affiliation(s)
- Kao Wu
- Glyn O. Philips Hydrocolloid Research Centre at HUT, Hubei University of Technology, Wuhan 430068, China
| | - Ying Fang
- Glyn O. Philips Hydrocolloid Research Centre at HUT, Hubei University of Technology, Wuhan 430068, China
| | - Huaxin Wu
- Glyn O. Philips Hydrocolloid Research Centre at HUT, Hubei University of Technology, Wuhan 430068, China
| | - Yi Wan
- Glyn O. Philips Hydrocolloid Research Centre at HUT, Hubei University of Technology, Wuhan 430068, China
| | - Hong Qian
- Glyn O. Philips Hydrocolloid Research Centre at HUT, Hubei University of Technology, Wuhan 430068, China
| | - Fatang Jiang
- Glyn O. Philips Hydrocolloid Research Centre at HUT, Hubei University of Technology, Wuhan 430068, China; Department of Architecture and Built Environment, Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| | - Sheng Chen
- Yellow Crane Tower Science and Technology Park (Group) Co., Ltd., Wuhan 430040, Hubei, China.
| |
Collapse
|
12
|
New Trends in Bio-Based Aerogels. Pharmaceutics 2020; 12:pharmaceutics12050449. [PMID: 32414217 PMCID: PMC7284463 DOI: 10.3390/pharmaceutics12050449] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/27/2020] [Accepted: 05/11/2020] [Indexed: 01/16/2023] Open
Abstract
(1) Background: The fascinating properties of currently synthesized aerogels associated with the flexible approach of sol-gel chemistry play an important role in the emergence of special biomedical applications. Although it is increasingly known and mentioned, the potential of aerogels in the medical field is not sufficiently explored. Interest in aerogels has increased greatly in recent decades due to their special properties, such as high surface area, excellent thermal and acoustic properties, low density and thermal conductivity, high porosity, flame resistance and humidity, and low refractive index and dielectric constant. On the other hand, high manufacturing costs and poor mechanical strength limit the growth of the market. (2) Results: In this paper, we analyze more than 180 articles from recent literature studies focused on the dynamics of aerogels research to summarize the technologies used in manufacturing and the properties of materials based on natural polymers from renewable sources. Biomedical applications of these bio-based materials are also introduced. (3) Conclusions: Due to their complementary functionalities (bioactivity, biocompatibility, biodegradability, and unique chemistry), bio-based materials provide a vast capability for utilization in the field of interdisciplinary and multidisciplinary scientific research.
Collapse
|
13
|
Chamorro E, Tenorio MJ, Calvo L, Torralvo MJ, Sáez-Puche R, Cabañas A. One-step sustainable preparation of superparamagnetic iron oxide nanoparticles supported on mesoporous SiO2. J Supercrit Fluids 2020. [DOI: 10.1016/j.supflu.2020.104775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Preparation and Characterization of Chitosan-Coated Pectin Aerogels: Curcumin Case Study. Molecules 2020; 25:molecules25051187. [PMID: 32155739 PMCID: PMC7179465 DOI: 10.3390/molecules25051187] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/02/2020] [Accepted: 03/05/2020] [Indexed: 11/19/2022] Open
Abstract
The following study describes the preparation of pectin aerogels and pectin aerogels coated with an external layer of chitosan. For the preparation of chitosan-coated pectin aerogels, a modified coating procedure was employed. Since pectin as well as pectin aerogels are highly water soluble, a function of chitosan coating is to slow down the dissolution of pectin and consequently the release of the active substances. Textural properties, surface morphologies, thermal properties, and functional groups of prepared aerogels were determined. Results indicated that the coating procedure affected the textural properties of pectin aerogels, resulting in smaller specific surface areas of 276 m2/g, compared to 441 m2/g. However, chitosan-coated pectin aerogels still retained favorable properties for carriers of active substances. The case study for prepared aerogels was conducted with curcumin. Prior to in-vitro release studies, swelling studies were performed. Curcumin’s dissolution from both aerogels showed to be successful. Pectin aerogels released curcumin in 3 h showing a burst release profile. Chitosan-coated pectin aerogels prolonged curcumin release up to 24 h, thus showing a controlled release profile.
Collapse
|
15
|
Druel L, Kenkel A, Baudron V, Buwalda S, Budtova T. Cellulose Aerogel Microparticles via Emulsion-Coagulation Technique. Biomacromolecules 2020; 21:1824-1831. [PMID: 32011867 DOI: 10.1021/acs.biomac.9b01725] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cellulose aerogel microparticles were made via emulsification/nonsolvent induced phase separation/drying with supercritical CO2. Cellulose was dissolved in NaOH-based solvent with and without additives in order to control solution gelation. Two emulsions, cellulose solution/oil and cellulose nonsolvent/oil, were mixed to start nonsolvent induced phase separation (or coagulation) of cellulose inside each cellulose droplet leading to the formation of so-called microgels. Different options of triggering coagulation were tested, by coalescence of droplets of cellulose solution and cellulose nonsolvent and by diffusion of nonsolvent partly soluble in the oil, accompanied by coalescence. The second option was found to be the most efficient for stabilization of the shape of coagulated cellulose microgels. The influence of gelation on particle formation and aerogel properties was investigated. The aerogel particles' diameter was around a few tens of microns, and the specific surface area was 250-350 m2/g.
Collapse
Affiliation(s)
- Lucile Druel
- MINES ParisTech, PSL Research University, Center for Materials Forming (CEMEF), UMR CNRS 7635, CS 10207, 06904 Sophia Antipolis, France
| | - Amelie Kenkel
- MINES ParisTech, PSL Research University, Center for Materials Forming (CEMEF), UMR CNRS 7635, CS 10207, 06904 Sophia Antipolis, France.,Institute of Thermal Separation Processes, Hamburg University of Technology, Eißendorfer Straße 38, 21073 Hamburg, Germany
| | - Victor Baudron
- Institute of Thermal Separation Processes, Hamburg University of Technology, Eißendorfer Straße 38, 21073 Hamburg, Germany
| | - Sytze Buwalda
- MINES ParisTech, PSL Research University, Center for Materials Forming (CEMEF), UMR CNRS 7635, CS 10207, 06904 Sophia Antipolis, France
| | - Tatiana Budtova
- MINES ParisTech, PSL Research University, Center for Materials Forming (CEMEF), UMR CNRS 7635, CS 10207, 06904 Sophia Antipolis, France
| |
Collapse
|
16
|
El-Naggar ME, Othman SI, Allam AA, Morsy OM. Synthesis, drying process and medical application of polysaccharide-based aerogels. Int J Biol Macromol 2020; 145:1115-1128. [DOI: 10.1016/j.ijbiomac.2019.10.037] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 09/28/2019] [Accepted: 10/03/2019] [Indexed: 12/11/2022]
|
17
|
Ganesan K, Budtova T, Ratke L, Gurikov P, Baudron V, Preibisch I, Niemeyer P, Smirnova I, Milow B. Review on the Production of Polysaccharide Aerogel Particles. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E2144. [PMID: 30384442 PMCID: PMC6265924 DOI: 10.3390/ma11112144] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/10/2018] [Accepted: 10/23/2018] [Indexed: 02/04/2023]
Abstract
A detailed study of the production of polysaccharide aerogel (bio-aerogel) particles from lab to pilot scale is surveyed in this article. An introduction to various droplets techniques available in the market is given and compared with the lab scale production of droplets using pipettes and syringes. An overview of the mechanisms of gelation of polysaccharide solutions together with non-solvent induced phase separation option is then discussed in the view of making wet particles. The main steps of particle recovery and solvent exchange are briefly described in order to pass through the final drying process. Various drying processes are overviewed and the importance of supercritical drying is highlighted. In addition, we present the characterization techniques to analyse the morphology and properties of the aerogels. The case studies of bio-aerogel (agar, alginate, cellulose, chitin, κ-carrageenan, pectin and starch) particles are reviewed. Potential applications of polysaccharide aerogel particles are briefly given. Finally, the conclusions summarize the prospects of the potential scale-up methods for producing bio-aerogel particles.
Collapse
Affiliation(s)
- Kathirvel Ganesan
- German Aerospace Center, Institute of Materials Research, Linder Hoehe, 51147 Cologne, Germany.
| | - Tatiana Budtova
- MINES Paris Tech, PSL Research University, Center for Materials Forming (CEMEF), UMR CNRS 7635, CS 10207, 06904 Sophia Antipolis, France.
| | - Lorenz Ratke
- German Aerospace Center, Institute of Materials Research, Linder Hoehe, 51147 Cologne, Germany.
| | - Pavel Gurikov
- Institute of Thermal Separation Processes, Hamburg University of Technology, Eißendorfer Straße 38, 21073 Hamburg, Germany.
| | - Victor Baudron
- Institute of Thermal Separation Processes, Hamburg University of Technology, Eißendorfer Straße 38, 21073 Hamburg, Germany.
| | - Imke Preibisch
- Institute of Thermal Separation Processes, Hamburg University of Technology, Eißendorfer Straße 38, 21073 Hamburg, Germany.
| | - Philipp Niemeyer
- German Aerospace Center, Institute of Materials Research, Linder Hoehe, 51147 Cologne, Germany.
| | - Irina Smirnova
- Institute of Thermal Separation Processes, Hamburg University of Technology, Eißendorfer Straße 38, 21073 Hamburg, Germany.
| | - Barbara Milow
- German Aerospace Center, Institute of Materials Research, Linder Hoehe, 51147 Cologne, Germany.
| |
Collapse
|
18
|
Zamora-Sequeira R, Ardao I, Starbird R, García-González CA. Conductive nanostructured materials based on poly-(3,4-ethylenedioxythiophene) (PEDOT) and starch/κ-carrageenan for biomedical applications. Carbohydr Polym 2018; 189:304-312. [DOI: 10.1016/j.carbpol.2018.02.040] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 01/03/2023]
|
19
|
Zhao S, Malfait WJ, Guerrero-Alburquerque N, Koebel MM, Nyström G. Biopolymer-Aerogele und -Schäume: Chemie, Eigenschaften und Anwendungen. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201709014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Shanyu Zhao
- Building Energy Materials & Components; Eidgenössische Materialprüfungs- und Forschungsanstalt (Empa); Überlandstrasse 129 CH-8600 Dübendorf Schweiz
| | - Wim J. Malfait
- Building Energy Materials & Components; Eidgenössische Materialprüfungs- und Forschungsanstalt (Empa); Überlandstrasse 129 CH-8600 Dübendorf Schweiz
| | - Natalia Guerrero-Alburquerque
- Building Energy Materials & Components; Eidgenössische Materialprüfungs- und Forschungsanstalt (Empa); Überlandstrasse 129 CH-8600 Dübendorf Schweiz
| | - Matthias M. Koebel
- Building Energy Materials & Components; Eidgenössische Materialprüfungs- und Forschungsanstalt (Empa); Überlandstrasse 129 CH-8600 Dübendorf Schweiz
| | - Gustav Nyström
- Angewandte Holzforschung; Eidgenössische Materialprüfungs- und Forschungsanstalt (Empa); Überlandstrasse 129 CH-8600 Dübendorf Schweiz
- Departement Gesundheitswissenschaften und Technologie; ETH Zürich; Schmelzbergstrasse 9 CH-8092 Zürich Schweiz
| |
Collapse
|
20
|
Zhao S, Malfait WJ, Guerrero-Alburquerque N, Koebel MM, Nyström G. Biopolymer Aerogels and Foams: Chemistry, Properties, and Applications. Angew Chem Int Ed Engl 2018; 57:7580-7608. [DOI: 10.1002/anie.201709014] [Citation(s) in RCA: 336] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Shanyu Zhao
- Building Energy Materials & Components Laboratory; Swiss Federal Laboratories for Materials Science and Technology (Empa); Überlandstrasse 129 CH-8600 Dübendorf Switzerland
| | - Wim J. Malfait
- Building Energy Materials & Components Laboratory; Swiss Federal Laboratories for Materials Science and Technology (Empa); Überlandstrasse 129 CH-8600 Dübendorf Switzerland
| | - Natalia Guerrero-Alburquerque
- Building Energy Materials & Components Laboratory; Swiss Federal Laboratories for Materials Science and Technology (Empa); Überlandstrasse 129 CH-8600 Dübendorf Switzerland
| | - Matthias M. Koebel
- Building Energy Materials & Components Laboratory; Swiss Federal Laboratories for Materials Science and Technology (Empa); Überlandstrasse 129 CH-8600 Dübendorf Switzerland
| | - Gustav Nyström
- Applied Wood Materials Laboratory; Swiss Federal Laboratories for Materials Science and Technology (Empa); Überlandstrasse 129 CH-8600 Dübendorf Switzerland
- Department of Health Science and Technology; ETH Zurich; Schmelzbergstrasse 9 CH-8092 Zürich Switzerland
| |
Collapse
|
21
|
Gurikov P, Smirnova I. Non-Conventional Methods for Gelation of Alginate. Gels 2018; 4:E14. [PMID: 30674790 PMCID: PMC6318612 DOI: 10.3390/gels4010014] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/25/2018] [Accepted: 01/26/2018] [Indexed: 11/21/2022] Open
Abstract
This review presents and critically evaluates recent advances in non-conventional gelation method of native alginate. A special focus is given to the following three methods: cryotropic gelation, non-solvent induced phase separation and carbon dioxide induced gelation. A few other gelation approaches are also briefly reviewed. Results are discussed in the context of subsequent freeze and supercritical drying. The methods are selected so as to provide the readers with a range of novel tools and tactics of pore engineering for alginate and other anionic polysaccharides.
Collapse
Affiliation(s)
- Pavel Gurikov
- Institute of Thermal Separation Processes, Hamburg University of Technology, Eißendorfer Straße 38, 21073 Hamburg, Germany.
| | - Irina Smirnova
- Institute of Thermal Separation Processes, Hamburg University of Technology, Eißendorfer Straße 38, 21073 Hamburg, Germany.
| |
Collapse
|
22
|
Surfactant-free synthesis of silica aerogel microspheres with hierarchically porous structure. J Colloid Interface Sci 2018; 515:1-9. [PMID: 29324269 DOI: 10.1016/j.jcis.2018.01.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 12/23/2017] [Accepted: 01/03/2018] [Indexed: 11/21/2022]
Abstract
In this work, we developed a new method to synthesize silica aerogel microspheres via ambient pressure drying (APD) process without applying any surfactants and mechanical stirring. An ethanol solution of partially hydrolyzed, partially condensed silica (CS) was used as precursor in the synthesis, the water-repellent n-Heptane as solvent, while the water-soluble ammonia gas (NH3) as catalyst. After a fast sol-gel process and APD process, aerogel microspheres were obtained in the form of white powder with packing density ranged from 62 mg/cm3 to 230 mg/cm3 for different samples. The SEM images exhibited fine spherical morphology for these aerogel microparticles, and their statistical average particle diameter ranged from 0.8 μm to 1.5 μm. Besides, according to the analysis of N2 adsorption-desorption isotherms, the BET surface area of these aerogel microspheres was in the range of 800-960 m2/g, and a considerable volume of micropores was detected along with the abundant mesospores in these microspheres, which was further confirmed by the TEM image and SAXS curve. Based on the very limited solubility of NH3 in the reaction system, a non-emulsion formation mechanism was proposed to illustrate the formation of these aerogel microspheres.
Collapse
|
23
|
Supercritical processing of starch aerogels and aerogel-loaded poly(ε-caprolactone) scaffolds for sustained release of ketoprofen for bone regeneration. J CO2 UTIL 2017. [DOI: 10.1016/j.jcou.2017.01.028] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
24
|
Gonçalves V, Gurikov P, Poejo J, Matias A, Heinrich S, Duarte C, Smirnova I. Alginate-based hybrid aerogel microparticles for mucosal drug delivery. Eur J Pharm Biopharm 2016; 107:160-70. [DOI: 10.1016/j.ejpb.2016.07.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 05/23/2016] [Accepted: 07/01/2016] [Indexed: 01/15/2023]
|
25
|
Synthesis and biomedical applications of aerogels: Possibilities and challenges. Adv Colloid Interface Sci 2016; 236:1-27. [PMID: 27321857 DOI: 10.1016/j.cis.2016.05.011] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 05/24/2016] [Accepted: 05/25/2016] [Indexed: 02/03/2023]
Abstract
Aerogels are an exceptional group of nanoporous materials with outstanding physicochemical properties. Due to their unique physical, chemical, and mechanical properties, aerogels are recognized as promising candidates for diverse applications including, thermal insulation, catalysis, environmental cleaning up, chemical sensors, acoustic transducers, energy storage devices, metal casting molds and water repellant coatings. Here, we have provided a comprehensive overview on the synthesis, processing and drying methods of the mostly investigated types of aerogels used in the biological and biomedical contexts, including silica aerogels, silica-polymer composites, polymeric and biopolymer aerogels. In addition, the very recent challenges on these aerogels with regard to their applicability in biomedical field as well as for personalized medicine applications are considered and explained in detail.
Collapse
|
26
|
De Cicco F, Russo P, Reverchon E, García-González CA, Aquino RP, Del Gaudio P. Prilling and supercritical drying: A successful duo to produce core-shell polysaccharide aerogel beads for wound healing. Carbohydr Polym 2016; 147:482-489. [PMID: 27178955 DOI: 10.1016/j.carbpol.2016.04.031] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/11/2016] [Accepted: 04/07/2016] [Indexed: 01/15/2023]
Abstract
Bacterial infections often affect the wound, delaying healing and causing areas of necrosis. In this work, an aerogel in form of core-shell particles, able to prolong drug activity on wounds and to be easily removed was developed. Aerogel microcapsules consisted of a core made by amidated pectin hosting doxycycline, an antibiotic drug with a broad spectrum of action, and a shell consisting of high mannuronic content alginate. Particles were obtained by prilling using a coaxial nozzle for drop production and an ethanolic solution of CaCl2 as gelling promoter. The alcogels where dried using supercritical CO2. The influence of polysaccharides and drug concentrations on aerogel properties was evaluated. Spherical particles with high drug encapsulation efficiency (87%) correlated to alginate concentration in the processed liquid feeds were obtained. The release of the drug, mainly concentrated into the pectin core, was prolonged till 48h, and dependent on both drug/pectin ratio and alginate concentration.
Collapse
Affiliation(s)
- Felicetta De Cicco
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132 I-84084 Fisciano SA, Italy
| | - Paola Russo
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132 I-84084 Fisciano SA, Italy
| | - Ernesto Reverchon
- Department of Industrial Engineering, University of Salerno, via Giovanni Paolo II, 132 I-84084 Fisciano SA, Italy
| | - Carlos A García-González
- Department of Pharmacy and Pharmaceutical Technology, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Rita Patrizia Aquino
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132 I-84084 Fisciano SA, Italy
| | - Pasquale Del Gaudio
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132 I-84084 Fisciano SA, Italy.
| |
Collapse
|
27
|
Fast production of high-methoxyl pectin aerogels for enhancing the bioavailability of low-soluble drugs. J Supercrit Fluids 2015. [DOI: 10.1016/j.supflu.2015.06.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
Mesoporic material from microcrystalline cellulose with gold nanoparticles: A new approach to metal-carrying polysaccharides. MENDELEEV COMMUNICATIONS 2015. [DOI: 10.1016/j.mencom.2015.09.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Ardao I, Magnin D, Agathos SN. Bioinspired production of magnetic laccase-biotitania particles for the removal of endocrine disrupting chemicals. Biotechnol Bioeng 2015; 112:1986-96. [PMID: 26058804 DOI: 10.1002/bit.25612] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 03/30/2015] [Indexed: 01/25/2023]
Abstract
Microbial laccases are powerful enzymes capable of degrading lignin and other recalcitrant compounds including endocrine disrupting chemicals (EDCs). Efficient EDC removal on an industrial scale requires robust, stable, easy to handle and cost-effective immobilized biocatalysts. In this direction, magnetic biocatalysts are attractive due to their easy separation through an external magnetic field. Recently, a bioinspired immobilization technique that mimics the natural biomineralization reactions in diatoms has emerged as a fast and versatile tool for generating robust, cheap, and highly stable (nano) biocatalysts. In this work, bioinspired formation of a biotitania matrix is triggered on the surface of magnetic particles in the presence of laccase in order to produce laccase-biotitania (lac-bioTiO2 ) biocatalysts suitable for environmental applications using a novel, fast and versatile enzyme entrapment technique. Highly active lac-bioTiO2 particles have been produced and the effect of different parameters (enzyme loading, titania precursor concentration, pH, duration of the biotitania formation, and laccase adsorption steps) on the apparent activity yield of these biocatalysts were evaluated, the concentration of the titania precursor being the most influential. The lac-bioTiO2 particles were able to catalyze the removal of bisphenol A, 17α-ethinylestradiol and diclofenac in a mixture of six model EDCs and retained 90% of activity after five reaction cycles and 60% after 10 cycles.
Collapse
Affiliation(s)
- Inés Ardao
- Earth & Life Institute-Laboratory of Bioengineering, Université Catholique de Louvain, Place Croix du Sud 2-L7.05.19, 1348, Louvain-la-Neuve, Belgium.
| | - Delphine Magnin
- Institute of Condensed Matter and Nanosciences-Bio and soft matter group, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Spiros N Agathos
- Earth & Life Institute-Laboratory of Bioengineering, Université Catholique de Louvain, Place Croix du Sud 2-L7.05.19, 1348, Louvain-la-Neuve, Belgium
| |
Collapse
|
30
|
Demilecamps A, Beauger C, Hildenbrand C, Rigacci A, Budtova T. Cellulose–silica aerogels. Carbohydr Polym 2015; 122:293-300. [DOI: 10.1016/j.carbpol.2015.01.022] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 01/06/2015] [Accepted: 01/08/2015] [Indexed: 10/24/2022]
|
31
|
García-González C, Jin M, Gerth J, Alvarez-Lorenzo C, Smirnova I. Polysaccharide-based aerogel microspheres for oral drug delivery. Carbohydr Polym 2015; 117:797-806. [DOI: 10.1016/j.carbpol.2014.10.045] [Citation(s) in RCA: 178] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 10/15/2014] [Accepted: 10/16/2014] [Indexed: 10/24/2022]
|
32
|
Budarin VL, Shuttleworth PS, White RJ, Clark JH. From Polysaccharides to Starbons®. POROUS CARBON MATERIALS FROM SUSTAINABLE PRECURSORS 2015. [DOI: 10.1039/9781782622277-00053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Many commercially employed carbon materials are typically hydrophobic, chemically inert and microporous. Therefore, with an eye to the future, there is a need to develop new, carbon-based porous materials, the properties of which can be easily tuned to address the catalytic and separation challenges of future energy and chemical provision schemes (e.g. the Methanol Economy or Biorefinery schemes). In this regard, the synthesis of such materials must be conducted in as sustainable a manner as possible, ideally providing a flexible platform upon which to tailor properties such as functionality, porosity at different length scales (e.g. micro-, meso-, and macroporosity), hydrophilic character and macrophology (e.g. monoliths, particulates, etc.) amongst others. This chapter therefore aims to introduce one top-down synthetic approach to this end, the Starbon® materials concept. An accompanying material development history will be provided followed by a review of the variety of interesting functionally rich, highly mesoporous, high surface area (e.g. > 0.5 cm3 g–1; > 200 m2 g–1) carbonaceous materials that are accessible via the development of porous polysaccharide-derived materials and their subsequent carbonaceous derivatives. The chapter intends to provide the reader with an overview of the exciting opportunities that are open to the carbon materials chemist based on the discussed synthetic approach.
Collapse
Affiliation(s)
- Vitaliy L. Budarin
- Green Chemistry Centre of Excellence, University of York, Department of Chemistry Heslington York YO10 5DD UK
| | - Peter S. Shuttleworth
- Departamento de Física de Polímeros, Elastómeros y Aplicaciones Energéticas, Instituto de Ciencia y Tecnología de Polímeros CSIC, c/ Juan de la Cierva, 3 28006 Madrid Spain
| | - Robin J. White
- Universität Freiburg, FMF - Freiburger Materialforschungszentrum, Stefan-Meier-Straße 21, 79104 Freiburg im Breisgau, Institut für Anorganische und Analytische Chemie Albertstrasse 21 79104 Freiburg Germany
| | - James H. Clark
- Green Chemistry Centre of Excellence, University of York, Department of Chemistry Heslington York YO10 5DD UK
| |
Collapse
|
33
|
García-González CA, Concheiro A, Alvarez-Lorenzo C. Processing of Materials for Regenerative Medicine Using Supercritical Fluid Technology. Bioconjug Chem 2015; 26:1159-71. [DOI: 10.1021/bc5005922] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Carlos A. García-González
- Departamento de Farmacia
y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Santiago de Compostela, E-15782-Santiago
de Compostela, Spain
| | - Angel Concheiro
- Departamento de Farmacia
y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Santiago de Compostela, E-15782-Santiago
de Compostela, Spain
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacia
y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Santiago de Compostela, E-15782-Santiago
de Compostela, Spain
| |
Collapse
|
34
|
Abstract
High surface area and low thermal conductivity were observed for polysaccharide aerogels prepared by ethanol induced gelation.
Collapse
Affiliation(s)
- Gabrijela Tkalec
- University of Maribor
- Faculty of Chemistry and Chemical Engineering
- Maribor
- Slovenia
| | - Željko Knez
- University of Maribor
- Faculty of Chemistry and Chemical Engineering
- Maribor
- Slovenia
| | - Zoran Novak
- University of Maribor
- Faculty of Chemistry and Chemical Engineering
- Maribor
- Slovenia
| |
Collapse
|
35
|
Titirici MM, White RJ, Brun N, Budarin VL, Su DS, del Monte F, Clark JH, MacLachlan MJ. Sustainable carbon materials. Chem Soc Rev 2015; 44:250-90. [DOI: 10.1039/c4cs00232f] [Citation(s) in RCA: 860] [Impact Index Per Article: 95.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Carbon-based structures are the most versatile materials used in the modern nanotechnology. Therefore there is a need to develop increasingly more sustainable variants of carbon materials.
Collapse
Affiliation(s)
| | - Robin J. White
- Institute for Advanced Sustainability Studies
- D-14467 Potsdam
- Germany
| | - Nicolas Brun
- Institut Charles Gerhardt de Montpellier
- UMR 5253
- CNRS-ENSCM-UM2-UM1
- Université Montpellier 2
- 34095 Montpellier
| | - Vitaliy L. Budarin
- Green Chemistry Centre of Excellence
- University of York
- Department of Chemistry
- York
- UK
| | - Dang Sheng Su
- Shenyang National Laboratory for Materials Science
- Institute of Metal Research
- Chinese Academy of Science
- Shenyang 110016
- China
| | | | - James H. Clark
- Green Chemistry Centre of Excellence
- University of York
- Department of Chemistry
- York
- UK
| | - Mark J. MacLachlan
- The University of British Columbia
- Department of Chemistry
- Vancouver
- Canada
| |
Collapse
|
36
|
Veronovski A, Tkalec G, Knez Ž, Novak Z. Characterisation of biodegradable pectin aerogels and their potential use as drug carriers. Carbohydr Polym 2014; 113:272-8. [DOI: 10.1016/j.carbpol.2014.06.054] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 06/18/2014] [Accepted: 06/23/2014] [Indexed: 11/26/2022]
|
37
|
Rudaz C, Courson R, Bonnet L, Calas-Etienne S, Sallée H, Budtova T. Aeropectin: Fully Biomass-Based Mechanically Strong and Thermal Superinsulating Aerogel. Biomacromolecules 2014; 15:2188-95. [DOI: 10.1021/bm500345u] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Cyrielle Rudaz
- Mines ParisTech, Centre for Materials
Forming (CEMEF), UMR CNRS 7635, CS 10207, 06904 Sophia-Antipolis Cedex, France
| | - Rémi Courson
- Laboratoire Charles
Coulomb (L2C) CC 074 - UMR 5221 CNRS-UM2, Université Montpellier 2, Place E. Bataillon, 34095 Montpellier
Cedex 5, France
| | - Laurent Bonnet
- Laboratoire Charles
Coulomb (L2C) CC 074 - UMR 5221 CNRS-UM2, Université Montpellier 2, Place E. Bataillon, 34095 Montpellier
Cedex 5, France
| | - Sylvie Calas-Etienne
- Laboratoire Charles
Coulomb (L2C) CC 074 - UMR 5221 CNRS-UM2, Université Montpellier 2, Place E. Bataillon, 34095 Montpellier
Cedex 5, France
| | - Hébert Sallée
- Centre Scientifique
et Technique des Bâtiments, 24 rue Joseph Fourier, 38400 Saint Martin d’Hères, France
| | - Tatiana Budtova
- Mines ParisTech, Centre for Materials
Forming (CEMEF), UMR CNRS 7635, CS 10207, 06904 Sophia-Antipolis Cedex, France
| |
Collapse
|
38
|
Synthesis of an organic conductive porous material using starch aerogels as template for chronic invasive electrodes. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 37:177-83. [DOI: 10.1016/j.msec.2013.12.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 12/10/2013] [Accepted: 12/24/2013] [Indexed: 11/23/2022]
|
39
|
White RJ, Brun N, Budarin VL, Clark JH, Titirici MM. Always look on the "light" side of life: sustainable carbon aerogels. CHEMSUSCHEM 2014; 7:670-689. [PMID: 24420578 DOI: 10.1002/cssc.201300961] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Indexed: 06/03/2023]
Abstract
The production of carbon aerogels based on the conversion of inexpensive and abundant precursors using environmentally friendly processes is a highly attractive subject in materials chemistry today. This article reviews the latest developments regarding the rapidly developing field of carbonaceous aerogels prepared from biomass and biomass-derived precursors, highlighting exciting and innovative approaches to green, sustainable nanomaterial synthesis. A review of the state-of-the-art technologies will be provided with a specific focus on two complimentary synthetic approaches developed upon the principles of green chemistry. These carbonaceous aerogel synthesis strategies, namely the Starbon and carbogel approaches, can be regarded as "top-down" and "bottom-up" strategies, respectively. The structural properties can be easily tailored by controlling synthetic parameters such as the precursor selection and concentration, the drying technique employed and post-synthesis temperature annealing. In addition to these parameters, the behavior of these sustainable carbon aerogel platforms in a variety of environmental and energy-related applications will also be discussed, including water remediation and fuel cell chemistry (i.e., the oxygen reduction reaction). This Review reveals the fascinating variety of highly porous, versatile, nanostructured, and functional carbon-based aerogels accessible through the highlighted sustainable synthetic platforms.
Collapse
Affiliation(s)
- Robin J White
- E3-Earth, Energy and Environment, Institute for Advanced Sustainability Studies e.V. Berliner Str. 130, 14467 Potsdam (Germany).
| | | | | | | | | |
Collapse
|