1
|
Bulygin KN, Timofeev IO, Malygin AA, Graifer DM, Meschaninova MI, Venyaminova AG, Krumkacheva OA, Fedin MV, Yu Frolova L, Karpova GG, Bagryanskaya EG. Two alternative conformations of mRNA in the human ribosome during elongation and termination of translation as revealed by EPR spectroscopy. Comput Struct Biotechnol J 2021; 19:4702-4710. [PMID: 34504663 PMCID: PMC8390954 DOI: 10.1016/j.csbj.2021.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 11/29/2022] Open
Abstract
DEER reveals the conformational variability of mRNA at the certain translation steps. Elongation and termination complexes exist in 2 conformations in dynamic equilibrium. The conformations of mRNA in 40S channel undergo no major change during termination.
The conformation of mRNA in the region of the human 80S ribosome decoding site was monitored using 11-mer mRNA analogues that bore nitroxide spin labels attached to the terminal nucleotide bases. Intramolecular spin–spin distances were measured by DEER/PELDOR spectroscopy in model complexes mimicking different states of the 80S ribosome during elongation and termination of translation. The measurements revealed that in all studied complexes, mRNA exists in two alternative conformations, whose ratios are different in post-translocation, pre-translocation and termination complexes. We found that the presence of a tRNA molecule at the ribosomal A site decreases the relative share of the more extended mRNA conformation, whereas the binding of eRF1 (alone or in a complex with eRF3) results in the opposite effect. In the termination complexes, the ratios of mRNA conformations are practically the same, indicating that a part of mRNA bound in the ribosome channel does not undergo significant structural alterations in the course of completion of the translation. Our results contribute to the understanding of mRNA molecular dynamics in the mammalian ribosome channel during translation.
Collapse
Affiliation(s)
- Konstantin N Bulygin
- Institute of Chemical Biology and Fundamental Medicine SB RAS, pr. Lavrentjeva 8, Novosibirsk 630090, Russia
| | - Ivan O Timofeev
- International Tomography Center SB RAS, Institutskaya Str. 3a, Novosibirsk 630090, Russia
| | - Alexey A Malygin
- Institute of Chemical Biology and Fundamental Medicine SB RAS, pr. Lavrentjeva 8, Novosibirsk 630090, Russia
| | - Dmitri M Graifer
- Institute of Chemical Biology and Fundamental Medicine SB RAS, pr. Lavrentjeva 8, Novosibirsk 630090, Russia
| | - Maria I Meschaninova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, pr. Lavrentjeva 8, Novosibirsk 630090, Russia
| | - Alya G Venyaminova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, pr. Lavrentjeva 8, Novosibirsk 630090, Russia
| | - Olesya A Krumkacheva
- International Tomography Center SB RAS, Institutskaya Str. 3a, Novosibirsk 630090, Russia
| | - Matvey V Fedin
- International Tomography Center SB RAS, Institutskaya Str. 3a, Novosibirsk 630090, Russia
| | - Ludmila Yu Frolova
- Engelhardt Institute of Molecular Biology RAS, Vavilova Str. 32, Moscow 119991, Russia
| | - Galina G Karpova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, pr. Lavrentjeva 8, Novosibirsk 630090, Russia
| | - Elena G Bagryanskaya
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, pr. Lavrentjeva 9, Novosibirsk 630090, Russia
| |
Collapse
|
2
|
Dégut C, Schwarz V, Ponchon L, Barraud P, Micura R, Tisné C. Design of cross-linked RNA/protein complexes for structural studies. Biochimie 2019; 164:95-98. [DOI: 10.1016/j.biochi.2019.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/28/2019] [Indexed: 10/27/2022]
|
3
|
Malygin AA, Graifer DM, Meschaninova MI, Venyaminova AG, Timofeev IO, Kuzhelev AA, Krumkacheva OA, Fedin MV, Karpova GG, Bagryanskaya EG. Structural rearrangements in mRNA upon its binding to human 80S ribosomes revealed by EPR spectroscopy. Nucleic Acids Res 2019; 46:897-904. [PMID: 29156000 PMCID: PMC5778603 DOI: 10.1093/nar/gkx1136] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/30/2017] [Indexed: 12/21/2022] Open
Abstract
The model mRNA (MR), 11-mer RNA containing two nitroxide spin labels at the 5′- and 3′-terminal nucleotides and prone to form a stable homodimer (MR)2, was used for Electron Paramagnetic Resonance study of structural rearrangements in mRNA occurring upon its binding to human 80S ribosomes. The formation of two different types of ribosomal complexes with MR was observed. First, there were stable complexes where MR was fixed in the ribosomal mRNA-binding channel by the codon-anticodon interaction(s) with cognate tRNA(s). Second, we for the first time detected complexes assembled without tRNA due to the binding of MR most likely to an exposed peptide of ribosomal protein uS3 away from the mRNA channel. The analysis of interspin distances allowed the conclusion that 80S ribosomes facilitate dissociation of the duplex (MR)2: the equilibrium between the duplex and the single-stranded MR shifts to MR due to its efficient binding with ribosomes. Furthermore, we observed a significant influence of tRNA bound at the ribosomal exit (E) and/or aminoacyl (A) sites on the stability of ribosomal complexes. Our findings showed that a part of mRNA bound in the ribosome channel, which is not involved in codon-anticodon interactions, has more degrees of freedom than that interacting with tRNAs.
Collapse
Affiliation(s)
- Alexey A Malygin
- Institute of Chemical Biology and Fundamental Medicine SB RAS, pr. Lavrentjeva 8, Novosibirsk 630090, Russia.,Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russia
| | - Dmitri M Graifer
- Institute of Chemical Biology and Fundamental Medicine SB RAS, pr. Lavrentjeva 8, Novosibirsk 630090, Russia.,Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russia
| | - Maria I Meschaninova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, pr. Lavrentjeva 8, Novosibirsk 630090, Russia
| | - Alya G Venyaminova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, pr. Lavrentjeva 8, Novosibirsk 630090, Russia
| | - Ivan O Timofeev
- Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russia.,International Tomography Center SB RAS, Institutskaya str. 3a, Novosibirsk 630090, Russia.,N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, pr. Lavrentjeva 9, Novosibirsk 630090, Russia
| | - Andrey A Kuzhelev
- Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russia.,International Tomography Center SB RAS, Institutskaya str. 3a, Novosibirsk 630090, Russia.,N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, pr. Lavrentjeva 9, Novosibirsk 630090, Russia
| | - Olesya A Krumkacheva
- Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russia.,International Tomography Center SB RAS, Institutskaya str. 3a, Novosibirsk 630090, Russia.,N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, pr. Lavrentjeva 9, Novosibirsk 630090, Russia
| | - Matvey V Fedin
- Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russia.,International Tomography Center SB RAS, Institutskaya str. 3a, Novosibirsk 630090, Russia
| | - Galina G Karpova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, pr. Lavrentjeva 8, Novosibirsk 630090, Russia.,Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russia
| | - Elena G Bagryanskaya
- Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russia.,N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, pr. Lavrentjeva 9, Novosibirsk 630090, Russia
| |
Collapse
|
4
|
Ochkasova AS, Meschaninova MI, Venyaminova AG, Ivanov AV, Graifer DM, Karpova GG. The human ribosome can interact with the abasic site in mRNA via a specific peptide of the uS3 protein located near the mRNA entry channel. Biochimie 2018; 158:117-125. [PMID: 30594661 DOI: 10.1016/j.biochi.2018.12.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 12/25/2018] [Indexed: 12/12/2022]
Abstract
The small subunit ribosomal protein uS3 is a critically important player in the ribosome-mRNA interactions during translation and has numerous functions not directly related to protein synthesis in eukaryotes. A peculiar feature of the human uS3 protein is the ability of its fragment 55-64 exposed on the 40S subunit surface near the mRNA entry channel to form cross-links with 3'-terminal dialdehyde derivatives of various unstructured RNAs and with abasic sites in single-stranded DNAs. Here we showed that the ability of the above uS3 fragment to cross-link to abasic sites in DNAs is inherent only in mature cytoplasmic 40S subunits, but not nuclear pre-40S particles, which implies that it may be relevant to the ribosome-mRNA interplay. To clarify this issue, we investigated interactions of human ribosomes with synthetic mRNA analogues bearing an abasic site protected by a photocleavable group at the 3'-termini. We found that these mRNA analogues can form specific complexes with 80S ribosomes and 40S subunits, where the undamaged upstream part of the analogue is fixed in the mRNA binding channel by interaction with the P-site tRNA, and the downstream part located outside the ribosome is cross-linked to the uS3 fragment 55-64. The yield of cross-links of the mRNA analogues was rather high when their undamaged parts were bound to the mRNA channel prior to deprotection of the abasic site enabling its covalent attachment to the 40S subunit via the uS3 protein, but not vice versa. Based on our findings, one can assume that abasic sites, which can occur in mRNAs due to oxidative stress and ageing, are able to interact directly with the uS3 fragment exposed on the 40S subunit surface near the mRNA entry channel during translation. Consequently, the 40S subunit can be considered as a potential mRNA quality controller.
Collapse
Affiliation(s)
- Anastasia S Ochkasova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, 630090, Russia
| | - Maria I Meschaninova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, 630090, Russia
| | - Aliya G Venyaminova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, 630090, Russia
| | - Anton V Ivanov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, 630090, Russia
| | - Dmitri M Graifer
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, 630090, Russia; Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Galina G Karpova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, 630090, Russia; Novosibirsk State University, Novosibirsk, 630090, Russia.
| |
Collapse
|
5
|
Wang X, Feng M, Xiao L, Tong A, Xiang Y. Postsynthetic Modification of DNA Phosphodiester Backbone for Photocaged DNAzyme. ACS Chem Biol 2016; 11:444-51. [PMID: 26669486 DOI: 10.1021/acschembio.5b00867] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photocaged (photoactivatable) biomolecules are powerful tools for noninvasive control of biochemical activities by light irradiation. DNAzymes (deoxyribozymes) are single-stranded oligonucleotides with a broad range of enzymatic activities. In this work, to construct photocaged DNAzymes, we developed a facile and mild postsynthetic method to incorporate an interesting photolabile modification (thioether-enol phosphate, phenol substituted, TEEP-OH) into readily available phosphorothioate DNA. Upon light irradiation, TEEP-OH transformed into a native DNA phosphodiester, and accordingly the DNAzymes with RNA-cleaving activities were turned "on" from its inactive and caged form. Activation of the TEEP-OH-caged DNAzyme by light was also successful inside live cells.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Department of Chemistry,
Beijing Key Laboratory for Microanalytical Methods and Instrumentation,
Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology
(Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Mengli Feng
- Department of Chemistry,
Beijing Key Laboratory for Microanalytical Methods and Instrumentation,
Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology
(Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Lu Xiao
- Department of Chemistry,
Beijing Key Laboratory for Microanalytical Methods and Instrumentation,
Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology
(Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Aijun Tong
- Department of Chemistry,
Beijing Key Laboratory for Microanalytical Methods and Instrumentation,
Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology
(Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Yu Xiang
- Department of Chemistry,
Beijing Key Laboratory for Microanalytical Methods and Instrumentation,
Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology
(Ministry of Education), Tsinghua University, Beijing 100084, China
| |
Collapse
|
6
|
Malygin AA, Graifer DM, Meschaninova MI, Venyaminova AG, Krumkacheva OA, Fedin MV, Karpova GG, Bagryanskaya EG. Doubly Spin-Labeled RNA as an EPR Reporter for Studying Multicomponent Supramolecular Assemblies. Biophys J 2015; 109:2637-2643. [PMID: 26682820 PMCID: PMC4699879 DOI: 10.1016/j.bpj.2015.10.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 10/21/2015] [Accepted: 10/30/2015] [Indexed: 02/06/2023] Open
Abstract
mRNAs are involved in complicated supramolecular complexes with human 40S and 80S ribosomes responsible for the protein synthesis. In this work, a derivative of nonaribonucleotide pUUCGUAAAA with nitroxide spin labels attached to the 5'-phosphate and to the C8 atom of the adenosine in sixth position (mRNA analog) was used for studying such complexes using double electron-electron resonance/pulsed electron-electron double resonance spectroscopy. The complexes were assembled with participation of tRNA(Phe), which targeted triplet UUC of the derivative to the ribosomal peptidyl site and predetermined location of the adjacent GUA triplet coding for Val at the aminoacyl (A) site. The interspin distances were measured between the two labels of mRNA analog attached to the first nucleotide of the peptidyl site bound codon and to the third nucleotide of the A site bound codon, in the absence/presence of second tRNA bound at the A site. The values of the obtained interspin distances agree with those calculated for available near-atomic structures of similar complexes of 40S and 80S ribosomes, showing that neither 60S subunit nor tRNA at the A site have a noticeable effect on arrangement of mRNA at the codon-anticodon interaction area. In addition, the shapes of distance distributions in four studied ribosomal complexes allowed conclusions on conformational flexibility of mRNA in these complexes. Overall, the results of this study are the first, to our knowledge, demonstration of double electron-electron resonance/pulsed electron-electron double resonance application for measurements of intramolecular distances in multicomponent supramolecular complexes involving intricate cellular machineries and for evaluating dynamic properties of ligands bound to these machineries.
Collapse
Affiliation(s)
- Alexey A Malygin
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia; Novosibirsk State University, Novosibirsk, Russia
| | - Dmitri M Graifer
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia; Novosibirsk State University, Novosibirsk, Russia
| | - Maria I Meschaninova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | - Aliya G Venyaminova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | - Olesya A Krumkacheva
- International Tomography Center SB RAS, Novosibirsk, Russia; Novosibirsk State University, Novosibirsk, Russia
| | - Matvey V Fedin
- International Tomography Center SB RAS, Novosibirsk, Russia; Novosibirsk State University, Novosibirsk, Russia.
| | - Galina G Karpova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia; Novosibirsk State University, Novosibirsk, Russia.
| | - Elena G Bagryanskaya
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Novosibirsk, Russia; Novosibirsk State University, Novosibirsk, Russia.
| |
Collapse
|
7
|
Sharifulin DE, Grosheva AS, Bartuli YS, Malygin AA, Meschaninova MI, Ven'yaminova AG, Stahl J, Graifer DM, Karpova GG. Molecular contacts of ribose-phosphate backbone of mRNA with human ribosome. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:930-9. [PMID: 26066980 DOI: 10.1016/j.bbagrm.2015.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/02/2015] [Accepted: 06/04/2015] [Indexed: 02/05/2023]
Abstract
In this work, intimate contacts of riboses of mRNA stretch from nucleotides in positions +3 to +12 with respect to the first nucleotide of the P site codon were studied using cross-linking of short mRNA analogs with oxidized 3'-terminal riboses bound to human ribosomes in the complexes stabilized by codon-anticodon interactions and in the binary complexes. It was shown that in all types of complexes cross-links of the mRNA analogs to ribosomal protein (rp) uS3 occur and the yield of these cross-links does not depend on the presence of tRNA and on sequences of the mRNA analogs. Site of the mRNA analogs cross-linking in rp uS3 was mapped to the peptide in positions 55-64 that is located away from the mRNA binding site. Additionally, in complexes with P site-bound tRNA, riboses of mRNA nucleotides in positions +4 to +7 cross-linked to the C-terminal tail of rp uS19 displaying a contact specific to the decoding site of the mammalian ribosome, and tRNA bound at the A site completely blocked this cross-linking. Remarkably, rps uS3 and uS19 were also able to cross-link to the fragment of HCV IRES containing unstructured 3'-terminal part restricted by the AUGC tetraplet with oxidized 3'-terminal ribose. However, no cross-linking to rp uS3 was observed in the 48S preinitiation complex assembled in reticulocyte lysate with this HCV IRES derivative. The results obtained show an ability of rp uS3 to interact with single-stranded RNAs. Possible roles of rp uS3 region 55-64 in the functioning of ribosomes are discussed.
Collapse
Affiliation(s)
- Dmitri E Sharifulin
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
| | - Anastasia S Grosheva
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia; Novosibirsk State University, Novosibirsk 630090, Russia
| | - Yulia S Bartuli
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
| | - Alexey A Malygin
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia; Novosibirsk State University, Novosibirsk 630090, Russia
| | - Maria I Meschaninova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
| | - Aliya G Ven'yaminova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
| | - Joachim Stahl
- Max-Delbrück-Center for Molecular Medicine, D-13092 Berlin, Germany
| | - Dmitri M Graifer
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia; Novosibirsk State University, Novosibirsk 630090, Russia
| | - Galina G Karpova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia; Novosibirsk State University, Novosibirsk 630090, Russia.
| |
Collapse
|
8
|
Babaylova ES, Ivanov AV, Malygin AA, Vorobjeva MA, Venyaminova AG, Polienko YF, Kirilyuk IA, Krumkacheva OA, Fedin MV, Karpova GG, Bagryanskaya EG. A versatile approach for site-directed spin labeling and structural EPR studies of RNAs. Org Biomol Chem 2015; 12:3129-36. [PMID: 24714823 DOI: 10.1039/c3ob42154f] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Site-directed spin labeling (SDSL) is widely applied for structural studies of biopolymers by electron paramagnetic resonance (EPR). However, SDSL of long RNA sequences still remains a challenging task. Here, we propose a novel SDSL approach potentially suitable for long natural RNAs, which is based on the attachment of a linker containing an aliphatic amino group to the target nucleotide residue followed by selective coupling of a spin label to this amino group. Such a linker can be attached to the desired RNA residue via a sequence-specific reaction with the derivatives of oligodeoxyribonucleotides. To verify this approach, we applied it to model RNA duplex with known structure and expected distance between corresponding residues. A new 2,5-bis(spirocyclohexane)-substituted spin label with advanced stability and relaxation properties has been used, and the distance distribution measured using Q-band (34 GHz) pulsed double electron-electron resonance corresponds well to the expected one. We have additionally validated the obtained results by studying a similar RNA duplex, where the linker with the aliphatic amino group was introduced via solid-phase synthesis. Although this novel SDSL approach does not provide an advantage in precision of molecular distance measurements, we believe that its applicability to long RNAs is a crucial benefit for future structural studies using pulse EPR.
Collapse
Affiliation(s)
- Elena S Babaylova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, pr. Lavrentjeva 8, Novosibirsk, 630090, Russia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Graifer D, Karpova G. Interaction of tRNA with eukaryotic ribosome. Int J Mol Sci 2015; 16:7173-94. [PMID: 25830484 PMCID: PMC4425011 DOI: 10.3390/ijms16047173] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/20/2015] [Accepted: 03/23/2015] [Indexed: 11/16/2022] Open
Abstract
This paper is a review of currently available data concerning interactions of tRNAs with the eukaryotic ribosome at various stages of translation. These data include the results obtained by means of cryo-electron microscopy and X-ray crystallography applied to various model ribosomal complexes, site-directed cross-linking with the use of tRNA derivatives bearing chemically or photochemically reactive groups in the CCA-terminal fragment and chemical probing of 28S rRNA in the region of the peptidyl transferase center. Similarities and differences in the interactions of tRNAs with prokaryotic and eukaryotic ribosomes are discussed with concomitant consideration of the extent of resemblance between molecular mechanisms of translation in eukaryotes and bacteria.
Collapse
Affiliation(s)
- Dmitri Graifer
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, pr. Lavrentieva, 8, 630090 Novosibirsk, Russia.
- Department of Natural Sciences, Novosibirsk State University, ul. Pirogova, 2, 630090 Novosibirsk, Russia.
| | - Galina Karpova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, pr. Lavrentieva, 8, 630090 Novosibirsk, Russia.
- Department of Natural Sciences, Novosibirsk State University, ul. Pirogova, 2, 630090 Novosibirsk, Russia.
| |
Collapse
|
10
|
Hwang K, Wu P, Kim T, Lei L, Tian S, Wang Y, Lu Y. Photocaged DNAzymes as a general method for sensing metal ions in living cells. Angew Chem Int Ed Engl 2014; 53:13798-802. [PMID: 25314680 PMCID: PMC4297208 DOI: 10.1002/anie.201408333] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Indexed: 12/29/2022]
Abstract
DNAzymes, which are sequences of DNA with catalytic activity, have been demonstrated as a potential platform for sensing a wide range of metal ions. Despite their significant promise, cellular sensing using DNAzymes has however been difficult, mainly because of the "always-on" mode of first-generation DNAzyme sensors. To overcome this limitation, a photoactivatable (or photocaged) DNAzyme was designed and synthesized, and its application in sensing Zn(II) in living cells was demonstrated. In this design, the adenosine ribonucleotide at the scissile position of the 8-17 DNAzyme was replaced by 2'-O-nitrobenzyl adenosine, rendering the DNAzyme inactive and thus allowing its delivery into cells intact, protected from nonspecific degradation within cells. Irradiation at 365 nm restored DNAzyme activity, thus allowing the temporal control over the sensing activity of the DNAzyme for metal ions. The same strategy was also applied to the GR-5 DNAzyme for the detection of Pb(II), thus demonstrating the possible scope of the method.
Collapse
Affiliation(s)
- Kevin Hwang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Peiwen Wu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Taejin Kim
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Lei Lei
- Department of Bioengineering and Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California, 92093, USA
| | - Shiliang Tian
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yingxiao Wang
- Department of Bioengineering and Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California, 92093, USA
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA. Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
11
|
Hwang K, Wu P, Kim T, Lei L, Tian S, Wang Y, Lu Y. Photocaged DNAzymes as a General Method for Sensing Metal Ions in Living Cells. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201408333] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Kevin Hwang
- Department of Chemistry, University of Illinois at Urbana‐Champaign, Urbana, IL, 61801 (USA)
| | - Peiwen Wu
- Department of Biochemistry, University of Illinois at Urbana‐Champaign, Urbana, IL, 61801 (USA)
| | - Taejin Kim
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana‐Champaign, Urbana, IL, 61801 (USA)
| | - Lei Lei
- Department of Bioengineering and Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, 92093 (USA)
| | - Shiliang Tian
- Department of Chemistry, University of Illinois at Urbana‐Champaign, Urbana, IL, 61801 (USA)
| | - Yingxiao Wang
- Department of Bioengineering and Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, 92093 (USA)
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana‐Champaign, Urbana, IL, 61801 (USA)
- Department of Biochemistry, University of Illinois at Urbana‐Champaign, Urbana, IL, 61801 (USA)
| |
Collapse
|
12
|
Graifer D, Karpova G. General approach for introduction of various chemical labels in specific RNA locations based on insertion of amino linkers. Molecules 2013; 18:14455-69. [PMID: 24287984 PMCID: PMC6269657 DOI: 10.3390/molecules181214455] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 11/12/2013] [Accepted: 11/18/2013] [Indexed: 01/06/2023] Open
Abstract
Introduction of reporter groups at designed RNA sites is a widely accepted approach to gain information about the molecular environment of RNAs in their complexes with other biopolymers formed during various cellular processes. A general approach to obtain RNAs bearing diverse reporter groups at designed locations is based on site-specific insertion of groups containing primary aliphatic amine functions (amino linkers) with their subsequent selective derivatization by appropriate chemicals. This article is a brief review on methods for site-specific introduction of amino linkers in different RNAs. These methods comprise: (i) incorporation of a nucleoside carrying an amino-linker or a function that can be substituted with it into oligoribonucleotides in the course of their chemical synthesis; (ii) assembly of amino linker-containing RNAs from short synthetic fragments via their ligation; (iii) synthesis of amino linker-modified RNAs using T7 RNA polymerase; (iv) insertion of amino linkers into unmodified RNAs at functional groups of a certain type such as the 5'-phosphates and N7 of guanosine residues and (v) introduction of an amino linker into long highly structured RNAs exploiting an approach based on sequence-specific modification of nucleic acids. Particular reporter groups used for derivatization of amino linker-containing RNAs together with types of RNA derivatives obtained and fields of their application are presented.
Collapse
Affiliation(s)
- Dmitri Graifer
- Laboratory of Ribosome Structure and Functions, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Prospect Lavrentieva 8, Novosibirsk 630090, Russia.
| | | |
Collapse
|