Kumpulainen T, Panman MR, Bakker BH, Hilbers M, Woutersen S, Brouwer AM. Accelerating the Shuttling in Hydrogen-Bonded Rotaxanes: Active Role of the Axle and the End Station.
J Am Chem Soc 2019;
141:19118-19129. [PMID:
31697078 PMCID:
PMC6923795 DOI:
10.1021/jacs.9b10005]
[Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
The relation between the chemical structure and the mechanical
behavior of molecular machines is of paramount importance for a rational
design of superior nanomachines. Here, we report on a mechanistic
study of a nanometer scale translational movement in two bistable
rotaxanes. Both rotaxanes consist of a tetra-amide macrocycle interlocked
onto a polyether axle. The macrocycle can shuttle between an initial
succinamide station and a 3,6-dihydroxy- or 3,6-di-tert-butyl-1,8-naphthalimide end stations. Translocation of the macrocycle
is controlled by a hydrogen-bonding equilibrium between the stations.
The equilibrium can be perturbed photochemically by either intermolecular
proton or electron transfer depending on the system. To the best of
our knowledge, utilization of proton transfer from a conventional
photoacid for the operation of a molecular machine is demonstrated
for the first time. The shuttling dynamics are monitored by means
of UV–vis and IR transient absorption spectroscopies. The polyether
axle accelerates the shuttling by ∼70% compared to a structurally
similar rotaxane with an all-alkane thread of the same length. The
acceleration is attributed to a decrease in activation energy due
to an early transition state where the macrocycle partially hydrogen
bonds to the ether group of the axle. The dihydroxyrotaxane exhibits
the fastest shuttling speed over a nanometer distance (τshuttling ≈ 30 ns) reported to date. The shuttling in
this case is proposed to take place via a so-called harpooning mechanism
where the transition state involves a folded conformation due to the
hydrogen-bonding interactions with the hydroxyl groups of the end
station.
Collapse