1
|
Costa T, Peixoto M, Pineiro M, Seixas de Melo JS. Solvent-Driven Self-Organization of Meso-Substituted Porphyrins: Morphological Analysis from Fluorescence Lifetime Imaging Microscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5727-5737. [PMID: 37043283 PMCID: PMC10134502 DOI: 10.1021/acs.langmuir.2c03468] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/02/2023] [Indexed: 06/19/2023]
Abstract
A morphological analysis of different thin films of meso-tetra-p-(di-p-phenylamino)phenylporphyrin, H2T(TPA)4P, was made by fluorescence lifetime imaging microscopy (FLIM) and scanning electron microscopy (SEM). A comprehensive study of H2T(TPA)4P was undertaken through UV/vis absorption and fluorescence techniques in different solvents, solvent mixtures and in thin films. In solution, occurrence of intramolecular energy transfer from the triphenylamine (TPA) moieties to the porphyrin core, with quenching efficiencies in the order of 94-97%, is observed. The energy transfer rate constants are determined assuming Förster's dipole-dipole and Dexter's electron exchange mechanisms. In drop-cast-prepared thin films, from samples with different solvent mixtures, the photoluminescence (PL) quantum yield (ΦPL) decreases ∼1 order of magnitude compared to the solution behavior. FLIM and SEM experiments showed the self-organization and morphology of H2T(TPA)4P in thin films to be highly dependent on the solvent mixture used to prepare the film. In chloroform, the solvent's evaporation results in the formation of elongated and overlapped microrod structures. Introduction of a cosolvent, namely, a polar cosolvent, promotes changes in the morphology of the self-assembled structures, with the formation of three-dimensional spherical structures and hollow spheres. H2T(TPA)4P dispersed in a polymer matrix shows enhanced ΦPL values when compared to the drop-cast films. FLIM images showed coexistence of three different states or domains: aggregated, interface, and nonaggregated or less-aggregated states. This work highlights the importance of FLIM in the morphological characterization of heterogeneous films, together with the photophysical characterization of nano- and microdomains.
Collapse
|
2
|
Bu FZ, Yu YM, Shen YL, Wu ZY, Li YT. Cocrystallization with nutrient ferulic acid towards reducing the dissolubility behaviors of antifungal drug 5-fluorocytosine: An integrated theoretical and experimental case research. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Gradova M, Gradov O, Bychkova A, Motyakin M, Ionova I, Lobanov A. Interaction between meso-tetra-(4-hydroxyphenyl)porphyrin and SDS in aqueous solutions: Premicellar porphyrin-surfactant J-aggregate formation. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
4
|
Villari V, Gaeta M, D’Urso A, Micali N. Porphyrin/carbon nanodot supramolecular complexes and their optical properties. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Crapanzano R, Villa I, Mostoni S, D'Arienzo M, Di Credico B, Fasoli M, Lorenzi R, Scotti R, Vedda A. Photo- and radio-luminescence of porphyrin functionalized ZnO/SiO 2 nanoparticles. Phys Chem Chem Phys 2022; 24:21198-21209. [PMID: 36040124 DOI: 10.1039/d2cp00884j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of hybrid nanoscintillators is hunted for the implementation of modern detection technologies, like in high energy physics, homeland security, radioactive gas sensing, and medical imaging, as well as of the established therapies in radiation oncology, such as in X-ray activated photodynamic therapy. Engineering of the physico-chemical properties of nanoparticles (NPs) enables the manufacture of hybrids in which the conjugation of inorganic/organic components leads to increased multifunctionality and performance. However, the optimization of the properties of nanoparticles in combination with the use of ionizing radiation is not trivial: a complete knowledge on the structure, composition, physico-chemical features, and scintillation property relationships in hybrid nanomaterials is pivotal for any applications exploiting X-rays. In this paper, the design of hybrid nanoscintillators based on ZnO grown onto porous SiO2 substrates (ZnO/SiO2) has been performed in the view to create nanosystems potentially suitable in X-ray activated photodynamic therapy. Indeed, cytotoxic porphyrin dyes with increasing concentrations have been anchored on ZnO/SiO2 nanoparticles through amino-silane moieties. Chemical and structural analyses correlated with photoluminescence reveal that radiative energy transfer between ZnO and porphyrins is the principal mechanism prompting the excitation of photosensitizers. The use of soft X-ray excitation results in a further sensitization of the porphyrin emission, due to augmented energy deposition promoted by ZnO in the surroundings of the chemically bound porphyrin. This finding unveils the cruciality of the design of hybrid nanoparticles in ruling the efficacy of the interaction between ionizing radiation and inorganic/organic moieties, and thus of the final nanomaterial performances towards the foreseen application.
Collapse
Affiliation(s)
- Roberta Crapanzano
- Department of Materials Science, University of Milano - Bicocca, Via Cozzi 55, I-20125, Milano, Italy
| | - Irene Villa
- Institute of Physics of the Czech Academy of Sciences (FZU), Cukrovarnická 10/112, 162 00 Prague, Czech Republic.
| | - Silvia Mostoni
- Department of Materials Science, University of Milano - Bicocca, Via Cozzi 55, I-20125, Milano, Italy.,INSTM, University of Milano - Bicocca, Via Cozzi 55, I-20125, Milano, Italy
| | - Massimiliano D'Arienzo
- Department of Materials Science, University of Milano - Bicocca, Via Cozzi 55, I-20125, Milano, Italy.,INSTM, University of Milano - Bicocca, Via Cozzi 55, I-20125, Milano, Italy
| | - Barbara Di Credico
- Department of Materials Science, University of Milano - Bicocca, Via Cozzi 55, I-20125, Milano, Italy.,INSTM, University of Milano - Bicocca, Via Cozzi 55, I-20125, Milano, Italy
| | - Mauro Fasoli
- Department of Materials Science, University of Milano - Bicocca, Via Cozzi 55, I-20125, Milano, Italy
| | - Roberto Lorenzi
- Department of Materials Science, University of Milano - Bicocca, Via Cozzi 55, I-20125, Milano, Italy
| | - Roberto Scotti
- Department of Materials Science, University of Milano - Bicocca, Via Cozzi 55, I-20125, Milano, Italy.,INSTM, University of Milano - Bicocca, Via Cozzi 55, I-20125, Milano, Italy
| | - Anna Vedda
- Department of Materials Science, University of Milano - Bicocca, Via Cozzi 55, I-20125, Milano, Italy
| |
Collapse
|
6
|
Bu FZ, Yu YM, Shen YL, Liu L, Yan CW, Wu ZY, Li YT. Cocrystallization-driven self-assembly with vanillic acid offers a new opportunity for surmounting fast and excessive absorption issues of antifungal drug 5-fluorocytosine: a combined theoretical and experimental research. CrystEngComm 2022. [DOI: 10.1039/d2ce00114d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The cocrystal of 5-fluorocytosine (FCY) with vanillic acid (VAA) was assembled via a cocrystallization technique, giving a novel understanding for conquering the dose-limited hepatotoxicity caused by the rapid and almost complete absorption of FCY.
Collapse
Affiliation(s)
- Fan-Zhi Bu
- School of Medicine and Pharmacy and College of Marine Life Science, Ocean University of China, Qingdao, Shandong 266003, PR China
| | - Yue-Ming Yu
- School of Medicine and Pharmacy and College of Marine Life Science, Ocean University of China, Qingdao, Shandong 266003, PR China
| | - Yu-Li Shen
- School of Medicine and Pharmacy and College of Marine Life Science, Ocean University of China, Qingdao, Shandong 266003, PR China
| | - Lu Liu
- School of Medicine and Pharmacy and College of Marine Life Science, Ocean University of China, Qingdao, Shandong 266003, PR China
| | - Cui-Wei Yan
- School of Medicine and Pharmacy and College of Marine Life Science, Ocean University of China, Qingdao, Shandong 266003, PR China
| | - Zhi-Yong Wu
- School of Medicine and Pharmacy and College of Marine Life Science, Ocean University of China, Qingdao, Shandong 266003, PR China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, 266003, PR China
| | - Yan-Tuan Li
- School of Medicine and Pharmacy and College of Marine Life Science, Ocean University of China, Qingdao, Shandong 266003, PR China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, 266003, PR China
| |
Collapse
|
7
|
El-Khouly ME, Kobaisy AM, Sallam G, Yoshihisa M. Intra-supramolecular electron transfer of the light harvesting porphyrin — phthalocyanine complex in aqueous medium. J PORPHYR PHTHALOCYA 2021. [DOI: 10.1142/s1088424621501121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Report of the construction of the supramolecular light harvesting composed of zinc(II) phthalocyanine tetrasulfonic acid (ZnPcS[Formula: see text], as electron donor, and meso-tetra([Formula: see text]-methyl-4-pyridyl)porphyrin toluene sulfonate (TMPP), as electron acceptor. The steady-state absorption and fluorescence spectra of TMPP in MeOH showed the formation of monomer form ([Formula: see text] = 426 nm and [Formula: see text] = 654 and 715 nm). In water, different spectral features were recorded, suggesting the formation of aggregated forms. The formation of aggregated form in water was confirmed by recording the remarkable decrease of the fluorescence intensities of the singlet excited TMPP with increasing the concentrations of TMPP. In cationic micelle CTAB, both the absorption and fluorescence spectra were significantly decreased with increasing the concentrations of CTAB with a break at critical micelle concentration (CMC) at 6.00 × 10[Formula: see text] M. In an anionic micelle (SDS), the CMC value was found to be 1.00 × 10[Formula: see text] M. Upon interacting with ZnPcS4 in water, the steady state absorption measurement showed clear evidence for the formation of light harvesting porphyrin-phthalocyanine supramolecular complex through [Formula: see text]–[Formula: see text] and ionic interactions. The emission intensity of the singlet TMPP was found to significantly decrease in the presence of ZnPcS4 suggesting the intra-supramolecular electron transfer process from the electron donating ZnPcS4 to the electron deficient TMPP. From the fluorescence lifetime measurements, the rate and quantum yield of electron transfer were found to be 7.67 × 108 s[Formula: see text] and 0.81, respectively. The finding of the examined light-harvesting supramolecular complex ZnPcS4-TMPP shows the ability to absorb the light in a wide range of the solar spectrum (UV-vis-NIR), in addition to the efficient electron transfer process in an aqueous medium, rendering it as a simple model of the artificial photosynthetic reaction center.
Collapse
Affiliation(s)
- Mohamed E. El-Khouly
- Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology, New Borg El-Arab, Alexandria, Egypt
| | - Ahmed M. Kobaisy
- Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology, New Borg El-Arab, Alexandria, Egypt
| | - Gehan Sallam
- Department of Chemistry, Faculty of Science, Kafrelsheikh University, Egypt
| | - Matsushita Yoshihisa
- JICA Academic Advisor, Egypt-Japan University of Science and Technology, New Borg El-Arab, Alexandria, Egypt
| |
Collapse
|
8
|
Villari V, Micali N, Nicosia A, Mineo P. Water-Soluble Non-Ionic PEGylated Porphyrins: A Versatile Category of Dyes for Basic Science and Applications. Top Curr Chem (Cham) 2021; 379:35. [PMID: 34382110 DOI: 10.1007/s41061-021-00348-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/28/2021] [Indexed: 12/22/2022]
Abstract
This review arises from the need to rationalize the huge amount of information on the structural and spectroscopic properties of a peculiar class of porphyrin derivatives-the non-ionic PEGylated porphyrins-collected during almost two decades of research. The lack of charged groups in the molecular architecture of these porphyrin derivatives is the leitmotif of the work and plays an outstanding role in highlighting those interactions between porphyrins, or between porphyrins and target molecules (e.g., hydrophobic-, hydrogen bond related-, and coordination-interactions, to name just a few) that are often masked by stronger electrostatic contributions. In addition, it is exactly these weaker interactions between porphyrins that make the aggregated forms more prone to couple efficiently with external perturbative fields like weak hydrodynamic vortexes or temperature gradients. In the absence of charge, solubility in water is very often achieved by covalent functionalization of the porphyrin ring with polyethylene glycol chains. Various modifications, including of chain length or the number of chains, the presence of a metal atom in the porphyrin core, or having two or more porphyrin rings in the molecular architecture, result in a wide range of properties. These encompass self-assembly with different aggregate morphology, molecular recognition of biomolecules, and different photophysical responses, which can be translated into numerous promising applications in the sensing and biomedical field, based on turn-on/turn-off fluorescence and on photogeneration of radical species.
Collapse
Affiliation(s)
- Valentina Villari
- IPCF-CNR, Istituto per i Processi Chimico-Fisici, Viale F. Stagno d'Alcontres 37, 98158, Messina, Italy.
| | - Norberto Micali
- IPCF-CNR, Istituto per i Processi Chimico-Fisici, Viale F. Stagno d'Alcontres 37, 98158, Messina, Italy
| | - Angelo Nicosia
- Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Placido Mineo
- IPCF-CNR, Istituto per i Processi Chimico-Fisici, Viale F. Stagno d'Alcontres 37, 98158, Messina, Italy
- Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| |
Collapse
|
9
|
Nicosia A, Vento F, Marletta G, Messina GML, Satriano C, Villari V, Micali N, De Martino MT, Schotman MJG, Mineo PG. Porphyrin-Based Supramolecular Flags in the Thermal Gradients' Wind: What Breaks the Symmetry, How and Why. NANOMATERIALS 2021; 11:nano11071673. [PMID: 34202150 PMCID: PMC8305271 DOI: 10.3390/nano11071673] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 01/04/2023]
Abstract
The Spontaneous Symmetry Breaking (SSB) phenomenon is a natural event in which a system changes its symmetric state, apparently reasonless, in an asymmetrical one. Nevertheless, this occurrence could be hiding unknown inductive forces. An intriguing investigation pathway uses supramolecular aggregates of suitable achiral porphyrins, useful to mimic the natural light-harvesting systems (as chlorophyll). Using as SSB probe supramolecular aggregates of 5,10,15,20-tetrakis[p(ω-methoxypolyethyleneoxy)phenyl]porphyrin (StarP), a non-ionic achiral PEGylated porphyrin, we explore here its interaction with weak asymmetric thermal gradients fields. The cross-correlation of the experimental data (circular dichroism, confocal microscopy, atomic force microscopy, and cryo-transmission electron microscopy) revealed that the used building blocks aggregate spontaneously, organizing in flag-like structures whose thermally-induced circular dichroism depends on their features. Finally, thermal gradient-induced enantioselectivity of the supramolecular flag-like aggregates has been shown and linked to their size-dependence mesoscopic deformation, which could be visualized as waving flags in the wind.
Collapse
Affiliation(s)
- Angelo Nicosia
- Department of Chemical Sciences and INSTM UdR of Catania, University of Catania, Viale A. Doria 6, I-95125 Catania, Italy; (F.V.); (G.M.); (G.M.L.M.); (C.S.)
- Correspondence: (A.N.); (P.G.M.)
| | - Fabiana Vento
- Department of Chemical Sciences and INSTM UdR of Catania, University of Catania, Viale A. Doria 6, I-95125 Catania, Italy; (F.V.); (G.M.); (G.M.L.M.); (C.S.)
| | - Giovanni Marletta
- Department of Chemical Sciences and INSTM UdR of Catania, University of Catania, Viale A. Doria 6, I-95125 Catania, Italy; (F.V.); (G.M.); (G.M.L.M.); (C.S.)
- LAMSUN-CSGI Unit of the Interuniversity Consortium for the Development of Large Interphases Systems (CSGI), Università di Catania, Viale A. Doria, 6, I-95125 Catania, Italy
| | - Grazia M. L. Messina
- Department of Chemical Sciences and INSTM UdR of Catania, University of Catania, Viale A. Doria 6, I-95125 Catania, Italy; (F.V.); (G.M.); (G.M.L.M.); (C.S.)
- LAMSUN-CSGI Unit of the Interuniversity Consortium for the Development of Large Interphases Systems (CSGI), Università di Catania, Viale A. Doria, 6, I-95125 Catania, Italy
| | - Cristina Satriano
- Department of Chemical Sciences and INSTM UdR of Catania, University of Catania, Viale A. Doria 6, I-95125 Catania, Italy; (F.V.); (G.M.); (G.M.L.M.); (C.S.)
- Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (CIRCMSB), Università Degli Studi di Bari Aldo Moro, I-70121 Bari, Italy
| | - Valentina Villari
- Institute for Chemical and Physical Processes, National Research Council (IPCF-CNR), Viale F. Stagno d’Alcontres 37, I-98158 Messina, Italy; (V.V.); (N.M.)
| | - Norberto Micali
- Institute for Chemical and Physical Processes, National Research Council (IPCF-CNR), Viale F. Stagno d’Alcontres 37, I-98158 Messina, Italy; (V.V.); (N.M.)
| | - Maria Teresa De Martino
- Department of Chemistry & Chemical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands;
- Institute for Complex Molecular Systems, Laboratory of Chemical Biology, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands;
| | - Maaike J. G. Schotman
- Institute for Complex Molecular Systems, Laboratory of Chemical Biology, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands;
| | - Placido Giuseppe Mineo
- Department of Chemical Sciences and INSTM UdR of Catania, University of Catania, Viale A. Doria 6, I-95125 Catania, Italy; (F.V.); (G.M.); (G.M.L.M.); (C.S.)
- Institute for Chemical and Physical Processes, National Research Council (IPCF-CNR), Viale F. Stagno d’Alcontres 37, I-98158 Messina, Italy; (V.V.); (N.M.)
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Via P. Gaifami 18, I-95126 Catania, Italy
- Correspondence: (A.N.); (P.G.M.)
| |
Collapse
|
10
|
Nicosia A, Abbadessa A, Vento F, Mazzaglia A, Mineo PG. Silver Nanoparticles Decorated with PEGylated Porphyrins as Potential Theranostic and Sensing Agents. MATERIALS 2021; 14:ma14112764. [PMID: 34071106 PMCID: PMC8197077 DOI: 10.3390/ma14112764] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 01/13/2023]
Abstract
Silver nanoparticles (AgNPs) stand out over other metal nanoparticles thanks to their peculiar bactericidal and spectroscopic properties. Tunability of the AgNPs chemical-physical properties could be provided through their organic covalent coating. On the other hand, PEGylated porphyrin derivatives are versatile heteromacrocycles investigated for uses in the biomedical field as cytotoxic and tracking agents, but also as sensors. In this work, an easy multi-step approach was employed to produce coated silver nanoparticles. Specifically, the AgNPs were functionalized with 5,10,15-[p-(ω-methoxy-polyethyleneoxy)phenyl]-20-(p-hydroxyphenyl)-porphyrin (P(PEG350)3), using chloropropanethiol as a coupling agent. The P(PEG350)3 was structurally characterized through MALDI-TOF mass spectrometry, NMR spectroscopy and thermal analyses. The functionalization of AgNPs was monitored step-by-step employing UV-Vis spectroscopy, dynamic light scattering and thermogravimetric techniques. HRTEM and STEM measurements were used to investigate the morphology and the composition of the resulting nanostructured system (AgNP@P(PEG350)3), observing a long-range alignment of the outer porphyrin layer. The AgNP@P(PEG350)3 combines the features of the P(PEG350)3 with those of AgNPs, producing a potential multifunctional theranostic tool. The nanosystem revealed itself suitable as a removable pH sensor in aqueous solutions and potentially feasible for biological environment applications.
Collapse
Affiliation(s)
- Angelo Nicosia
- Department of Chemical Sciences and INSTM UdR of Catania, University of Catania, V.le A. Doria 6, 95125 Catania, Italy; (A.N.); (A.A.); (F.V.)
| | - Antonio Abbadessa
- Department of Chemical Sciences and INSTM UdR of Catania, University of Catania, V.le A. Doria 6, 95125 Catania, Italy; (A.N.); (A.A.); (F.V.)
| | - Fabiana Vento
- Department of Chemical Sciences and INSTM UdR of Catania, University of Catania, V.le A. Doria 6, 95125 Catania, Italy; (A.N.); (A.A.); (F.V.)
| | - Antonino Mazzaglia
- CNR-ISMN, Istituto per lo Studio dei Materiali Nanostrutturati, V. le F. Stagno d’Alcontres 31, 98166 Messina, Italy;
| | - Placido Giuseppe Mineo
- Department of Chemical Sciences and INSTM UdR of Catania, University of Catania, V.le A. Doria 6, 95125 Catania, Italy; (A.N.); (A.A.); (F.V.)
- Institute for Chemical and Physical Processes CNR-IPCF, Viale F. Stagno d’Alcontres 37, 98158 Messina, Italy
- Institute of Polymers, Composites and Biomaterials CNR-IPCB, Via P. Gaifami 18, 95126 Catania, Italy
- Correspondence:
| |
Collapse
|
11
|
Politi AT, Politis A, Seton L. Molecular Structure Effects on the Aggregation Motif of Porphyrins: Computational Insights. ADVANCED THEORY AND SIMULATIONS 2021. [DOI: 10.1002/adts.202100050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Antiope T. Politi
- School of Pharmacy and Biomolecular Sciences Liverpool John Moores University James Parsons Building, Byrom Street Liverpool L3 3AF Liverpool L3 3AF UK
| | - Achilleas Politis
- School of Pharmacy and Biomolecular Sciences Liverpool John Moores University James Parsons Building, Byrom Street Liverpool L3 3AF Liverpool L3 3AF UK
| | - Linda Seton
- School of Pharmacy and Biomolecular Sciences Liverpool John Moores University James Parsons Building, Byrom Street Liverpool L3 3AF Liverpool L3 3AF UK
| |
Collapse
|
12
|
Abstract
The optical purity of an enantiomeric mixture deduced from specific rotation measurements was found by Horeau to be different from its enantiomeric excess, which came to be known as the Horeau effect. This observation had important implications in the practical use of specific rotations and has led to investigations on homochiral and heterochiral aggregation processes. In this review, dedicated to the Horeau principle, the theoretical basis for the observance of the Horeau effect and a survey of the specific rotation studies investigating the Horeau effect are provided, and possible future investigations are suggested.
Collapse
|
13
|
Rotas G, Thomas MB, Canton‐Vitoria R, D'Souza F, Tagmatarchis N. Preparation, Photophysical and Electrochemical Evaluation of an Azaborondipyrromethene/Zinc Porphyrin/Graphene Supramolecular Nanoensemble. Chemistry 2020; 26:6652-6661. [DOI: 10.1002/chem.202000174] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/19/2020] [Indexed: 11/05/2022]
Affiliation(s)
- Georgios Rotas
- Theoretical and Physical Chemistry InstituteNational Hellenic Research Foundation 48 Vassileos Constantinou Avenue 11635 Athens Greece
| | - Michael B. Thomas
- Department of ChemistryUniversity of North Texas 305070 Denton TX 76203-5017 USA
| | - Ruben Canton‐Vitoria
- Theoretical and Physical Chemistry InstituteNational Hellenic Research Foundation 48 Vassileos Constantinou Avenue 11635 Athens Greece
| | - Francis D'Souza
- Department of ChemistryUniversity of North Texas 305070 Denton TX 76203-5017 USA
| | - Nikos Tagmatarchis
- Theoretical and Physical Chemistry InstituteNational Hellenic Research Foundation 48 Vassileos Constantinou Avenue 11635 Athens Greece
| |
Collapse
|
14
|
Gradova MA, Gradov OV, Zhdanova KA, Bragina NA, Lobanov AV. Self-assembly of amphiphilic meso-aryl-substituted porphyrin derivatives in the presence of surfactants. J PORPHYR PHTHALOCYA 2020. [DOI: 10.1142/s108842461950175x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Surfactant-assisted self-assembly of porphyrin molecules in aqueous solutions sometimes leads to the formation of hybrid supramolecular structures with unusual photophysical properties resulting from the dipole–dipole interactions between the neighboring aromatic systems. The macrocycle orientation and interchromophore distance in such assemblies are determined by the dye–surfactant interactions, and hence, strongly depend on the molecular structure of both surfactant and porphyrin molecules. In this paper we studied the influence of the number and position of the peripheral alkyl chains of amphiphilic meso-aryl-substituted porphyrins on their aggregation behavior and intermolecular interactions with different surfactants in aqueous solutions. The studies revealed a crucial role of the local acidity on the micellar surface in the protolytic equilibrium of the porphyrin derivatives, as well as the influence of the macrocycle hydrophilic–lipophilic balance on its solubilization site within a micellar system. These findings enable prediction of the photophysical properties of amphiphilic porphyrin derivatives in the presence of different solubilizing agents and membrane-mimetic systems, and hence, selection the most suitable drug delivery systems for the novel amphiphilic porphyrin-based photosensitizers.
Collapse
Affiliation(s)
- Margaret A. Gradova
- N.N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, Kosygin Street 4, Moscow, 119991, Russia
| | - Oleg V. Gradov
- N.N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, Kosygin Street 4, Moscow, 119991, Russia
| | - Kseniya A. Zhdanova
- MIREA — Russian Technological University, Vernadsky Prospect 86, Moscow, 119571, Russia
| | - Natalya A. Bragina
- MIREA — Russian Technological University, Vernadsky Prospect 86, Moscow, 119571, Russia
| | - Anton V. Lobanov
- N.N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, Kosygin Street 4, Moscow, 119991, Russia
| |
Collapse
|
15
|
Majumder R, Roy S, Okamoto K, Nagao S, Matsuo T, Parui PP. Porphyrin-Based Probe for Simultaneous Detection of Interface Acidity and Polarity during Lipid-Phase Transition of Vesicles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:426-434. [PMID: 31820997 DOI: 10.1021/acs.langmuir.9b02781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Biochemical activities at a membrane interface are affected by local pH/polarity related to membrane lipid properties including lipid dynamics. pH and polarity at the interface are two highly interdependent parameters, depending on various locations from the water-exposed outer surface to the less polar inner surface. The optical response of common pH or polarity probes is affected by both the local pH and polarity; therefore, estimation of these values using two separate probes localized at different interface depths can be erroneous. To estimate interface pH and polarity at an identical interface depth, we synthesized a glucose-pendant porphyrin (GPP) molecule for simultaneous pH and polarity detection by a single optical probe. pH-induced protonation equilibrium and polarity-dependent π-π stacking aggregation for GPP are exploited to measure pH and polarity changes at the 1,2-dimyristoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DMPG) membrane interface during DMPG phase transition. An NMR study confirmed that GPP is located at the interface Stern layer of DMPG large unilamellar vesicle (LUV). Using UV-vis absorption studies with an adapted analysis protocol, we estimated interface pH, or its deviation from the bulk phase value (ΔpH), and the interface polarity simultaneously using the same spectra for sodium dodecyl sulfate micelle and DMPG LUV. During temperature-dependent gel to liquid-crystalline phase transition of DMPG, there was ∼0.5 unit increase in ΔpH from approximately -0.6 to -1.1, with a small increase in the interface dielectric constant from ∼60 to 63. A series of spectroscopic data indicate the utility of GPP for evaluation of local pH/polarity change during lipid phase transition of vesicles.
Collapse
Affiliation(s)
- Rini Majumder
- Department of Chemistry , Jadavpur University , Kolkata 700032 , India
| | - Snigdha Roy
- Department of Chemistry , Jadavpur University , Kolkata 700032 , India
| | - Kentaro Okamoto
- Division of Materials Science, Graduate School of Science and Technology , Nara Institute of Science and Technology (NAIST) , 8916-5 Takayama-cho , Ikoma , Nara 630-0192 , Japan
| | - Satoshi Nagao
- Division of Materials Science, Graduate School of Science and Technology , Nara Institute of Science and Technology (NAIST) , 8916-5 Takayama-cho , Ikoma , Nara 630-0192 , Japan
| | - Takashi Matsuo
- Division of Materials Science, Graduate School of Science and Technology , Nara Institute of Science and Technology (NAIST) , 8916-5 Takayama-cho , Ikoma , Nara 630-0192 , Japan
| | | |
Collapse
|
16
|
Solvent Effects in Highly Efficient Light-Induced Molecular Aggregation. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9245381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
It has been reported that when irradiated with laser light non-resonant with the main absorption peaks, porphyrin molecules (4-[10,15,20-tris(4-sulfophenyl)-21,24-dihydroporphyrin-5-yl]benzenesulfonic acid, TPPS) in an aqueous solution become 10,000 to 100,000 times more efficient in light-induced molecular aggregation than expected from the ratio of gradient force potential to the thermal energy of molecules at room temperature. To determine the mechanism of this phenomenon, experiments on the light-induced aggregation of TPPS in alcohol solutions (methanol, ethanol, and butanol) were performed. In these alcohol solutions, the absorbance change was orders of magnitude smaller than in the aqueous solution. Furthermore, it was found that the absorbance change in the aqueous solution tended to be saturated with the increase of the irradiation intensity, but in the ethanol solution, the absorbance change increased linearly. These results can be qualitatively explained by the model in which intermolecular light-induced interactions between molecules within a close distance among randomly distributed molecules in the laser irradiation volume are highly relevant to the signal intensity. However, conventional dipole–dipole interactions, such as the Keesom interaction, are not quantitatively consistent with the results.
Collapse
|
17
|
Gjuroski I, Girousi E, Meyer C, Hertig D, Stojkov D, Fux M, Schnidrig N, Bucher J, Pfister S, Sauser L, Simon HU, Vermathen P, Furrer J, Vermathen M. Evaluation of polyvinylpyrrolidone and block copolymer micelle encapsulation of serine chlorin e6 and chlorin e4 on their reactivity towards albumin and transferrin and their cell uptake. J Control Release 2019; 316:150-167. [PMID: 31689463 DOI: 10.1016/j.jconrel.2019.10.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 09/02/2019] [Accepted: 10/02/2019] [Indexed: 01/10/2023]
Abstract
Encapsulation of porphyrinic photosensitizers (PSs) into polymeric carriers plays an important role in enhancing their efficiency as drugs in photodynamic therapy (PDT). Porphyrin aggregation and low solubility as well as the preservation of the advantageous photophysical properties pose a challenge on the design of efficient PS-carrier systems. Block copolymer micelles (BCMs) and polyvinylpyrrolidone (PVP) are promising drug delivery vehicles for physical entrapment of PSs. BCMs exhibit enhanced dynamics as compared to the less flexible PVP network. In the current work the question is addressed how these different dynamics affect PS encapsulation, release from the carrier, reaction with serum proteins, and cellular uptake. The porphyrinic compounds serine-amide of chlorin e6 (SerCE) and chlorin e4 (CE4) were used as model PSs with different lipophilicity and aggregation properties. 1H NMR and fluorescence spectroscopy were applied to study their interactions with PVP and BCMs consisting of Kolliphor P188 (KP). Both chlorins were well encapsulated by the carriers and had improved photophysical properties. Compared to SerCE, the more lipophilic CE4 exhibited stronger hydrophobic interactions with the BCM core, stabilizing the system and preventing exchange with the surrounding medium as was shown by NMR NOESY and DOSY experiments. PVP and BCMs protected the encapsulated chlorins against interaction with human transferrin (Tf). However, SerCE and CE4 were released from BCMs in favor of binding to human serum albumin (HSA) while PVP prevented interaction with HSA. Fluorescence spectroscopic studies revealed that HSA binds to the surface of PVP forming a protein corona. PVP and BCMs reduced cellular uptake of the chlorins. However, encapsulation into BCMs resulted in more efficient cell internalization for CE4 than for SerCE. HSA significantly lowered both, free and carrier-mediated cell uptake for CE4 and SerCE. In conclusion, PVP appears as the more universal delivery system covering a broad range of host molecules with respect to polarity, whereas BCMs require a higher drug-carrier compatibility. Poorly soluble hydrophobic PSs benefit stronger from BCM-type carriers due to enhanced bioavailability through disaggregation and solubilization allowing for more efficient cell uptake. In addition, increased PS-carrier hydrophobic interactions have a stabilizing effect. For more hydrophilic PSs, the main advantage of polymeric carriers like PVP or poloxamer micelles lies in their protection during the transport through the bloodstream. HSA binding plays an important role for drug release and cell uptake in carrier-mediated delivery to the target tissue.
Collapse
Affiliation(s)
- Ilche Gjuroski
- University of Bern, Department of Chemistry and Biochemistry, Freiestrasse 3, CH-3012, Bern, Switzerland.
| | - Eleftheria Girousi
- University of Bern, Department of Chemistry and Biochemistry, Freiestrasse 3, CH-3012, Bern, Switzerland
| | - Christoph Meyer
- University of Bern, Department of Chemistry and Biochemistry, Freiestrasse 3, CH-3012, Bern, Switzerland
| | - Damian Hertig
- Department of BioMedical Research and Radiology, University of Bern and Inselspital, sitem-insel AG, Freiburgstrasse 3, CH-3010, Bern, Switzerland; Institute of Clinical Chemistry, University of Bern and Inselspital, CH-3010, Bern, Switzerland
| | - Darko Stojkov
- Institute of Pharmacology, University of Bern and Inselspital, CH-3010, Bern, Switzerland
| | - Michaela Fux
- Institute of Clinical Chemistry, University of Bern and Inselspital, CH-3010, Bern, Switzerland
| | - Nicolas Schnidrig
- University of Bern, Department of Chemistry and Biochemistry, Freiestrasse 3, CH-3012, Bern, Switzerland
| | - Jan Bucher
- University of Bern, Department of Chemistry and Biochemistry, Freiestrasse 3, CH-3012, Bern, Switzerland
| | - Sara Pfister
- University of Bern, Department of Chemistry and Biochemistry, Freiestrasse 3, CH-3012, Bern, Switzerland
| | - Luca Sauser
- University of Bern, Department of Chemistry and Biochemistry, Freiestrasse 3, CH-3012, Bern, Switzerland
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern and Inselspital, CH-3010, Bern, Switzerland
| | - Peter Vermathen
- Department of BioMedical Research and Radiology, University of Bern and Inselspital, sitem-insel AG, Freiburgstrasse 3, CH-3010, Bern, Switzerland
| | - Julien Furrer
- University of Bern, Department of Chemistry and Biochemistry, Freiestrasse 3, CH-3012, Bern, Switzerland
| | - Martina Vermathen
- University of Bern, Department of Chemistry and Biochemistry, Freiestrasse 3, CH-3012, Bern, Switzerland.
| |
Collapse
|
18
|
Procházková L, Pelikánová IT, Mihóková E, Dědic R, Čuba V. Novel scintillating nanocomposite for X-ray induced photodynamic therapy. RADIAT MEAS 2019. [DOI: 10.1016/j.radmeas.2018.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
19
|
Kielmann M, Senge MO. Molecular Engineering of Free-Base Porphyrins as Ligands-The N-H⋅⋅⋅X Binding Motif in Tetrapyrroles. Angew Chem Int Ed Engl 2019; 58:418-441. [PMID: 30067890 PMCID: PMC6391963 DOI: 10.1002/anie.201806281] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Indexed: 12/15/2022]
Abstract
The core N-H units of planar porphyrins are often inaccessible to forming hydrogen-bonding complexes with acceptor molecules. This is due to the fact that the amine moieties are "shielded" by the macrocyclic system, impeding the formation of intermolecular H-bonds. However, methods exist to modulate the tetrapyrrole conformations and to reshape the vector of N-H orientation outwards, thus increasing their availability and reactivity. Strategies include the use of porpho(di)methenes and phlorins (calixphyrins), as well as saddle-distorted porphyrins. The former form cavities due to interruption of the aromatic system. The latter are highly basic systems and capable of binding anions and neutral molecules via N-H⋅⋅⋅X-type H-bonds. This Review discusses the role of porphyrin(oid) ligands in various coordination-type complexes, means to access the core for hydrogen bonding, the concept of conformational control, and emerging applications, such as organocatalysis and sensors.
Collapse
Affiliation(s)
- Marc Kielmann
- School of ChemistrySFI Tetrapyrrole LaboratoryTrinity Biomedical Sciences InstituteTrinity College DublinThe University of Dublin152–160 Pearse StreetDublin 2Ireland
| | - Mathias O. Senge
- School of ChemistrySFI Tetrapyrrole LaboratoryTrinity Biomedical Sciences InstituteTrinity College DublinThe University of Dublin152–160 Pearse StreetDublin 2Ireland
| |
Collapse
|
20
|
Kielmann M, Senge MO. Molekulares Engineering freier Porphyrinbasen als Liganden - das N-H⋅⋅⋅X-Bindungsmotiv in Tetrapyrrolen. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201806281] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Marc Kielmann
- School of Chemistry; SFI Tetrapyrrole Laboratory; Trinity Biomedical Sciences Institute; Trinity College Dublin; The University of Dublin; 152-160 Pearse Street Dublin 2 Irland
| | - Mathias O. Senge
- School of Chemistry; SFI Tetrapyrrole Laboratory; Trinity Biomedical Sciences Institute; Trinity College Dublin; The University of Dublin; 152-160 Pearse Street Dublin 2 Irland
| |
Collapse
|
21
|
Cariello M, Abdalhadi SM, Yadav P, Decoppet JD, Zakeeruddin SM, Grätzel M, Hagfeldt A, Cooke G. An investigation of the roles furan versus thiophene π-bridges play in donor-π-acceptor porphyrin based DSSCs. Dalton Trans 2018; 47:6549-6556. [PMID: 29697124 DOI: 10.1039/c8dt00413g] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dye-sensitized solar cells (DSSCs) continue to attract interest due to their lower cost production compared to silicon based solar cells and their improving power conversion efficiencies. Porphyrin-based sensitizers have become an important sub-class due to their strong absorption characteristics in the visible region, convenient modulation of properties through synthetic manipulation and class-leading power conversion efficiencies. In this article, we report the synthesis and characterization of two porphyrin-based dyes and their application as sensitizers in DSSCs. A thiophene and a furan moiety have been incorporated into the push-pull architecture as a π-bridge, allowing the systematic investigation of how these moieties influence the physical properties of the dyes and the performance of their resulting DSSCs. A significant difference in PCEs has been observed, with the furan containing dye (PorF, PCE = 4.5%) being more efficient than the thiophene-based analogue (PorT, PCE = 3.6%) in conjunction with the iodide/triiodide redox electrolyte.
Collapse
Affiliation(s)
- Michele Cariello
- WestCHEM, School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Gjuroski I, Furrer J, Vermathen M. How Does the Encapsulation of Porphyrinic Photosensitizers into Polymer Matrices Affect Their Self-Association and Dynamic Properties? Chemphyschem 2018; 19:1089-1102. [PMID: 29384257 DOI: 10.1002/cphc.201701318] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/26/2018] [Indexed: 12/20/2022]
Abstract
Photodynamic therapy (PDT) with porphyrinic photosensitizers largely relies on efficient drug formulations to prevent porphyrin aggregation and to enhance water solubility and stability in physiologic environments. In this study, we compare two polymeric carrier systems, polyvinylpyrrolidone (PVP) and block copolymer micelles (BCMs) formed by the poloxamer Kolliphor P188 (KP), for their encapsulation efficiencies of porphyrin (xPP) and chlorin e6 (xCE) derivatives. Monomerization, loading efficiency, and dynamic properties were examined by 1 H NMR spectroscopy chemical shift titration, DOSY, and T2 relaxation time measurements. Binding affinity was determined by UV/Vis spectroscopy. Both PVP and KP-BCMs were well suited to disaggregate and encapsulate amphiphilic xCE, whereas they were less efficient for the xPP compounds. PVP exhibited higher monomerization efficiency than KP-BCMs. Significant differences were found in the dynamic behavior of the carriers. PVP formed rather stable complexes with the porphyrinic compounds, whereas a dynamic equilibrium between free and bound porphyrins was found to exist in the presence of KP-BCMs. This may have a considerable impact on the pharmacokinetic properties of the corresponding delivery systems.
Collapse
Affiliation(s)
- Ilche Gjuroski
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Julien Furrer
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Martina Vermathen
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| |
Collapse
|
23
|
Villari V, Tosto R, Di Natale G, Sinopoli A, Tomasello MF, Lazzaro S, Micali N, Pappalardo G. A Metalloporphyrin-Peptide Conjugate as an Effective Inhibitor of Amyloid-β Peptide Fibrillation and Cytotoxicity. ChemistrySelect 2017. [DOI: 10.1002/slct.201701148] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Valentina Villari
- CNR-IPCF Istituto per i Processi Chimico-Fisici; V.le F. Stagno d'Alcontres 37 98158 Messina Italy
| | - Rita Tosto
- CNR-IBB Istituto di Biostrutture e Bioimmagini; Via Paolo Gaifami 18 95126 Catania Italy
| | - Giuseppe Di Natale
- CNR-IBB Istituto di Biostrutture e Bioimmagini; Via Paolo Gaifami 18 95126 Catania Italy
| | - Alessandro Sinopoli
- PhD Program in Translational Biomedicine, Università di Catania; Viale A. Doria 6 95125 Catania Italy
| | - Marianna F. Tomasello
- CNR-IBB Istituto di Biostrutture e Bioimmagini; Via Paolo Gaifami 18 95126 Catania Italy
| | - Serena Lazzaro
- Marie Curie action Incipit-Cofund project; PhD Program in Chemical Sciences, CNR-IBB Istituto di Biostrutture e Bioimmagini Via Paolo Gaifami 18; 95126 Catania Italy
| | - Norberto Micali
- CNR-IPCF Istituto per i Processi Chimico-Fisici; V.le F. Stagno d'Alcontres 37 98158 Messina Italy
| | - Giuseppe Pappalardo
- CNR-IBB Istituto di Biostrutture e Bioimmagini; Via Paolo Gaifami 18 95126 Catania Italy
| |
Collapse
|
24
|
A Preliminary Study of the Effects of pH upon Fluorescence in Suspensions of Prevotella intermedia. PLoS One 2016; 11:e0158835. [PMID: 27441707 PMCID: PMC4956196 DOI: 10.1371/journal.pone.0158835] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/22/2016] [Indexed: 01/03/2023] Open
Abstract
The quantification of fluorescence in dental plaque is currently being developed as a diagnostic tool to help inform and improve oral health. The oral anaerobe Prevotella intermedia exhibits red fluorescence due to the accumulation of porphyrins. pH affects the fluorescence of abiotic preparations of porphyrins caused by changes in speciation between monomers, higher aggregates and dimers, but this phenomenon has not been demonstrated in bacteria. Fluorescence spectra were obtained from suspensions of P. intermedia that were adjusted to pHs commensurate with the range found within dental plaque. Two fluorescent motifs were identified; 410 nm excitation / 634 nm emission (peak A) and 398 nm excitation / 622 nm emission (peak B). A transition in the fluorescence spectra was observed from peak A to peak B with increasing pH which was also evident as culture age increased from 24 hours to 96 hours. In addition to these 'blue-shifts', the intensity of peak A increased with pH whilst decreasing with culture age from 24 to 96 hours. A bacterium's relationship with the local physiochemical environment at the time of image capture may therefore affect the quantification of dental plaque fluorescence.
Collapse
|
25
|
Tuccitto N, Sfrazzetto GT, Gangemi CMA, Ballistreri FP, Toscano RM, Tomaselli GA, Pappalardo A, Marletta G. The memory-driven order–disorder transition of a 3D-supramolecular architecture based on calix[5]arene and porphyrin derivatives. Chem Commun (Camb) 2016; 52:11681-11684. [DOI: 10.1039/c6cc06675e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A 3D-supramolecular structure, “pre-formed” in solution, collapses when transferred to a solid matrix: a short thermal shock partially restore the original 3D-architecture.
Collapse
Affiliation(s)
- Nunzio Tuccitto
- Laboratory for Molecular Surfaces and Nanotechnology (LAMSUN)
- Department of Chemical Sciences
- University of Catania and CSGI
- Italy
| | | | | | | | | | | | - Andrea Pappalardo
- Department of Chemical Sciences
- University of Catania
- Catania
- Italy
- INSTM Udr of Catania
| | - Giovanni Marletta
- Laboratory for Molecular Surfaces and Nanotechnology (LAMSUN)
- Department of Chemical Sciences
- University of Catania and CSGI
- Italy
| |
Collapse
|
26
|
Mineo P, Villari V, Scamporrino E, Micali N. New Evidence about the Spontaneous Symmetry Breaking: Action of an Asymmetric Weak Heat Source. J Phys Chem B 2015; 119:12345-53. [PMID: 26315854 DOI: 10.1021/acs.jpcb.5b07199] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In the present study, we show how, in a stagnant water solution of uncharged aggregated achiral porphyrin-based molecules, a mirror-symmetry breaking (SB) can be induced and controlled by means of a weak asymmetric thermal gradient. In particular, it is shown that the optical activity of the aggregate porphyrin solution can be generated and reversed, in sign, only acting on the thermal ramp direction (heating or cooling). In order to avoid data misinterpretation, the aggregate structure modifications with the temperature change and the linear dichroism contribution to circular dichroism spectra were evaluated. A model simulation, using a finite element analysis approach describing the thermal flows, shows that small thermal gradients are able to give rise to asymmetric heat flow. The results reported here can be considered new evidence about the spontaneous symmetry breaking phenomenon induced by very weak forces having an important role in the natural chiral selective processes.
Collapse
Affiliation(s)
- Placido Mineo
- Dipartimento di Scienze Chimiche and I.N.S.T.M. UdR of Catania, Università di Catania , Viale Andrea Doria 6, I-95125 Catania, Italy.,CNR-IPCF Istituto per i Processi Chimico-Fisici , Viale F. Stagno d'Alcontres 37, I-98158 Messina, Italy
| | - Valentina Villari
- CNR-IPCF Istituto per i Processi Chimico-Fisici , Viale F. Stagno d'Alcontres 37, I-98158 Messina, Italy
| | - Emilio Scamporrino
- Dipartimento di Scienze Chimiche and I.N.S.T.M. UdR of Catania, Università di Catania , Viale Andrea Doria 6, I-95125 Catania, Italy
| | - Norberto Micali
- CNR-IPCF Istituto per i Processi Chimico-Fisici , Viale F. Stagno d'Alcontres 37, I-98158 Messina, Italy
| |
Collapse
|
27
|
Gospodinova N, Tomšík E, Omelchenko O. J-Like Liquid-Crystalline and Crystalline States of Polyaniline Revealed by Thin, Highly Crystalline, and Strongly Oriented Films. J Phys Chem B 2014; 118:8901-4. [DOI: 10.1021/jp505150j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Natalia Gospodinova
- Institute of Macromolecular Chemistry AS CR, 162 06 Prague 6, Czech Republic
| | - Elena Tomšík
- Institute of Macromolecular Chemistry AS CR, 162 06 Prague 6, Czech Republic
| | - Olga Omelchenko
- Institute of Macromolecular Chemistry AS CR, 162 06 Prague 6, Czech Republic
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry RAS, 199071 Moscow, Russian Federation
| |
Collapse
|
28
|
Mineo P. A porphyrin/β-cyclodextrin conjugated nano-system having a pan-lid molecular structure for smart drug carrier applications. Org Biomol Chem 2014; 12:3663-70. [PMID: 24763523 DOI: 10.1039/c4ob00393d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In this study, 5,10,15-tri[p(9-methoxy-triethyleneoxy)phenyl]-20-[p-phenylisophthalate-β-cyclodextrin]porphyrin, a compound containing a porphyrin and a β-cyclodextrin unit covalently linked by means of an isophthalic bridge, was synthesized and characterized by NMR, MALDI-TOF mass spectrometry and UV-vis and circular dichroism spectroscopies. This porphyrin/β-cyclodextrin system, with the porphyrin unit connected to the lower rim (OH-2) of the cyclodextrin structure, is water-soluble and no evidence of a self-assembly arrangement between the porphyrin and cyclodextrin units appears. In this way, the β-cyclodextrin cavities remain free, retaining their potential ability of drug-delivery, with the spectroscopic advantage induced by the high absorbance of the porphyrin unit. Furthermore, the porphyrin unit, interacting with the guest and acting as a lid, could have a role in the controlled release process of the drug.
Collapse
Affiliation(s)
- Placido Mineo
- Dipartimento di Scienze Chimiche and I.N.S.T.M. UdR of Catania, Università di Catania, Viale A. Doria, 6, 95125 Catania, Italy.
| |
Collapse
|
29
|
Mineo P, Villari V, Scamporrino E, Micali N. Supramolecular chirality induced by a weak thermal force. SOFT MATTER 2014; 10:44-47. [PMID: 24651848 DOI: 10.1039/c3sm52322e] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We show that the unexpected chirality of aggregated structures based on an uncharged achiral porphyrin system originates from small temperature gradients that act as an asymmetrical physical perturbation; the consequent thermal force gives rise to the thermophoretic motion of the aggregates. We establish that the induced optical activity can be controlled, and even vanished, by minimizing the thermal force.
Collapse
Affiliation(s)
- Placido Mineo
- Dipartimento di Scienze Chimiche and I.N.S.T.M. UdR of Catania, University of Catania, Viale Andrea Doria 6, I-95125 Catania, Italy.
| | | | | | | |
Collapse
|
30
|
Mineo P, Faggio C, Micali N, Scamporrino E, Villari V. A star polymer based on a polyethylene glycol with a porphyrinic core as a photosensitizing agent for application in photodynamic therapy: tests in vitro on human erythrocytes. RSC Adv 2014. [DOI: 10.1039/c3ra47913g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
31
|
Omelchenko O, Tomšík E, Zhigunov A, Guskova O, Gribkova O, Gospodinova N. J-Like Supramolecular Assemblies of Polyaniline in Water. MACROMOL CHEM PHYS 2013. [DOI: 10.1002/macp.201300429] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Olga Omelchenko
- Institute of Macromolecular Chemistry AS CR; Heyrovsky Sq. 2, 162 06 Prague 6 Czech Republic
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry RAS; 31 Leninsky Prospect 199071 Moscow Russian Federation
| | - Elena Tomšík
- Institute of Macromolecular Chemistry AS CR; Heyrovsky Sq. 2, 162 06 Prague 6 Czech Republic
| | - Alexander Zhigunov
- Institute of Macromolecular Chemistry AS CR; Heyrovsky Sq. 2, 162 06 Prague 6 Czech Republic
| | - Olga Guskova
- Leibniz Institute of Polymer Research; HoheStrasse 6 D-01069 Dresden Germany
| | - Oxana Gribkova
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry RAS; 31 Leninsky Prospect 199071 Moscow Russian Federation
| | - Natalia Gospodinova
- Institute of Macromolecular Chemistry AS CR; Heyrovsky Sq. 2, 162 06 Prague 6 Czech Republic
| |
Collapse
|
32
|
Mineo P, Spitaleri F, Scamporrino E. A water soluble macromolecular nanobox having porphyrinic walls as a large host for giant guests. ACTA ACUST UNITED AC 2013. [DOI: 10.1002/pola.26515] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
33
|
Venkatramaiah N, Ramakrishna B, Venkatesan R, Almeida Paz FA, Tomé JPC. Facile synthesis of highly stable BF3-induced meso-tetrakis (4-sulfonato phenyl) porphyrin (TPPS4)-J-aggregates: structure, photophysical and electrochemical properties. NEW J CHEM 2013. [DOI: 10.1039/c3nj00482a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|