1
|
Zanotti G, Palmeri F, Raglione V. Phthalocyanines Synthesis: A State-of-The-Art Review of Sustainable Approaches Through Green Chemistry Metrics. Chemistry 2024; 30:e202400908. [PMID: 38837556 DOI: 10.1002/chem.202400908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/27/2024] [Accepted: 06/04/2024] [Indexed: 06/07/2024]
Abstract
Driven by escalating environmental concerns, synthetic chemistry faces an urgent need for a green revolution. Green chemistry, with its focus on low environmental impacting chemicals and minimized waste production, emerges as a powerful tool in addressing this challenge. Metrics such as the E-factor guide the design of environmentally friendly strategies for chemical processes by quantifying the waste generated in obtaining target products, thus enabling interventions to minimize it. Phthalocyanines (Pcs), versatile molecules with exceptional physical and chemical properties, hold immense potential for technological applications. This review aims to bridge the gap between green chemistry and phthalocyanine synthesis by collecting the main examples of environmentally sustainable syntheses documented in the literature. The calculation of the E-factor of a selection of them provides insights on how crucial it is to evaluate a synthetic process in its entirety. This approach allows for a better evaluation of the actual sustainability of the phthalocyanine synthetic process and indicates possible strategies to improve it.
Collapse
Affiliation(s)
- Gloria Zanotti
- Istituto di Struttura della Materia (ISM), Consiglio Nazionale delle Ricerche (CNR), Via Salaria km 29.300, Monterotondo, 00015, Italy
| | - Federica Palmeri
- Istituto di Struttura della Materia (ISM), Consiglio Nazionale delle Ricerche (CNR), Via Salaria km 29.300, Monterotondo, 00015, Italy
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro, 5, Rome, 00185, Italy
| | - Venanzio Raglione
- Istituto di Struttura della Materia (ISM), Consiglio Nazionale delle Ricerche (CNR), Via Salaria km 29.300, Monterotondo, 00015, Italy
| |
Collapse
|
2
|
Doraghi F, Morshedsolouk MH, Zahedi NA, Larijani B, Mahdavi M. Phthalimides: developments in synthesis and functionalization. RSC Adv 2024; 14:22809-22827. [PMID: 39035712 PMCID: PMC11259108 DOI: 10.1039/d4ra03859b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 06/27/2024] [Indexed: 07/23/2024] Open
Abstract
Phthalimides, an important class of biologically active N-heterocycles, are not only found in pharmaceuticals, natural products, agrochemicals, polymers, and dyes, but also serve as building blocks in organic transformations. Many synthetic methods, including metal catalysis and metal-free systems, have been developed to prepare functionalized phthalimides. In this review, we describe the developments in the synthesis and functionalization of phthalimides over the past two decades.
Collapse
Affiliation(s)
- Fatemeh Doraghi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| | - Mohammad Hossein Morshedsolouk
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
- School of Chemistry, College of Science, University of Tehran Tehran Iran
| | - Nawrooz Ali Zahedi
- Department of Chemistry, Faculty of Education, Ghazni University Ghazni Afghanistan
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
3
|
Heterostructures Based on Cobalt Phthalocyanine Films Decorated with Gold Nanoparticles for the Detection of Low Concentrations of Ammonia and Nitric Oxide. BIOSENSORS 2022; 12:bios12070476. [PMID: 35884279 PMCID: PMC9313448 DOI: 10.3390/bios12070476] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 11/25/2022]
Abstract
This work is aimed at the development of new heterostructures based on cobalt phthalocyanines (CoPc) and gold nanoparticles (AuNPs), and the evaluation of the prospects of their use to determine low concentrations of ammonia and nitric oxide. For this purpose, CoPc films were decorated with AuNPs by gas-phase methods (MOCVD and PVD) and drop-casting (DC), and their chemiresistive sensor response to low concentrations of NO (10–50 ppb) and NH3 (1–10 ppm) was investigated. A comparative analysis of the characteristics of heterostructures depending on the preparation methods was carried out. The composition, structure, and morphology of the resulting hybrid films were studied by X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma atomic emission (ICP-AES) spectroscopy, as well as electron microscopy methods to discuss the effect of these parameters on the sensor response of hybrid films to ammonia and nitric oxide. It was shown that regardless of the fabrication method, the response of Au/CoPc heterostructures to NH3 and NO gases increased with an increase in the concentration of gold. The sensor response of Au/CoPc heterostructures to NH3 increased 2–3.3 times compared to CoPc film, whereas in the case of NO it increased up to 16 times. The detection limits of the Au/CoPc heterostructure with a gold content of ca. 2.1 µg/cm2 for NH3 and NO were 0.1 ppm and 4 ppb, respectively. It was shown that Au/CoPc heterostructures can be used for the detection of NH3 in a gas mixture simulating exhaled air (N2—74%, O2—16%, H2O—6%, CO2—4%).
Collapse
|
4
|
Sustainable Approaches to the Synthesis of Metallophthalocyanines in Solution. Molecules 2021; 26:molecules26061760. [PMID: 33801036 PMCID: PMC8003941 DOI: 10.3390/molecules26061760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 11/29/2022] Open
Abstract
This work aims to investigate more sustainable reaction conditions for the synthesis of metallophthalocyanines. Anisole, glycerol and their mixtures have been investigated as reaction media for the tetramerization of phthalonitriles. Acetates of three divalent first-transition metal cations, Co(II), Cu(II) and Zn(II), were used and several bases were tested, depending on the chosen substrates and reaction conditions, with a view to making the whole process more sustainable while ensuring its scalability. Unsubstituted phthalocyanines were synthesized to analyze the behavior of the different metal ions in terms of reactivity in the new reaction media, resulting in a general Cu > Co > Zn trend, while the nonpolar tetra-tert-butyl substitution was investigated to evaluate the synthesis of soluble derivatives in the new conditions. Furthermore, the potassium hydroxide (KOH)-aided statistical synthesis of the unsymmetrical 9(10), 16(17), 23(24)-tri-tert-butyl-2-iodophthalocyaninato zinc(II), starting from 4-tert-butylphthalonitrile and 4-iodophthalonitrile in a glycerol/anisole mixture, proceeded with a satisfactory 26% yield. Our results provide insights into the investigation of new reaction environments and the understanding of their strengths and weaknesses, with a view to further increasing the sustainability of the synthesis of metallomacrocycles with high added value while lowering their production cost.
Collapse
|
5
|
Delaude L. The Chemistry of Azolium‐Carboxylate Zwitterions and Related Compounds: a Survey of the Years 2009–2020. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000639] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Lionel Delaude
- Laboratory of CatalysisMolSys Research UnitInstitut de Chimie Organique (B6a)Université de Liège Allée du six Août 13 4000 Liège Belgium
| |
Collapse
|
6
|
|
7
|
Shome S, Singh SP. Reactions in Water - A Greener Approach Using Ruthenium Catalysts. CHEM REC 2018; 19:1935-1951. [PMID: 30537344 DOI: 10.1002/tcr.201800142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Indexed: 12/18/2022]
Abstract
Reactions using transition metals as catalysts have emerged as an efficient method in the recent times. However, the selection of solvent plays a crucial role in this regard. Several solvents used traditionally suffer majorly with problems of toxicity; high boiling point etc. leading to drastic reaction conditions. Water being a non-toxic, non-inflammable and environmentally benign can replace the hazardous organic solvents in laboratory as well as industry. Maintaining a minimum catalyst loading percentage we can advantageously avail high levels of selectivity. Water was found to be a good solvent medium for several metal catalysed reactions. An intramolecular deprotonation mechanism is followed by the ruthenium (II) catalysts in water; thereby, facilitating the catalytic action of the metal. These studies can help the industrial chemists to utilize water as a solvent for their reactions towards improvement of their waste management procedure. This review mainly focuses on the several recent developments in the above direction.
Collapse
Affiliation(s)
- Sanchari Shome
- Polymers and Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, 500007
- Academy of Scientific and Innovative Research (AcSIR, New Delhi
| | - Surya Prakash Singh
- Polymers and Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, 500007
- Academy of Scientific and Innovative Research (AcSIR, New Delhi
| |
Collapse
|
8
|
Di Nicola A, Arcadi A, Rossi L. BMIm HCO3: an ionic liquid with carboxylating properties. Synthesis of carbamate esters from amines. NEW J CHEM 2016. [DOI: 10.1039/c6nj02705a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BMIm HCO3 is an ionic liquid obtained by the ion-exchange method showing interesting carboxylating properties.
Collapse
Affiliation(s)
- A. Di Nicola
- Department of Physical and Chemical Sciences
- University of L'Aquila
- L'Aquila
- Italy
| | - A. Arcadi
- Department of Physical and Chemical Sciences
- University of L'Aquila
- L'Aquila
- Italy
| | - L. Rossi
- Department of Physical and Chemical Sciences
- University of L'Aquila
- L'Aquila
- Italy
| |
Collapse
|
9
|
Zheng W, Wang BB, Li CH, Zhang JX, Wan CZ, Huang JH, Liu J, Shen Z, You XZ. Asymmetric Donor-π-Acceptor-Type Benzo-Fused Aza-BODIPYs: Facile Synthesis and Colorimetric Properties. Angew Chem Int Ed Engl 2015; 54:9070-4. [DOI: 10.1002/anie.201501984] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 05/09/2015] [Indexed: 01/23/2023]
|
10
|
Zheng W, Wang BB, Li CH, Zhang JX, Wan CZ, Huang JH, Liu J, Shen Z, You XZ. Asymmetric Donor-π-Acceptor-Type Benzo-Fused Aza-BODIPYs: Facile Synthesis and Colorimetric Properties. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201501984] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
11
|
Bala M, Verma PK, Sharma D, Kumar N, Singh B. Highly efficient water-mediated approach to access benzazoles: metal catalyst and base-free synthesis of 2-substituted benzimidazoles, benzoxazoles, and benzothiazoles. Mol Divers 2015; 19:263-72. [DOI: 10.1007/s11030-015-9572-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 02/22/2015] [Indexed: 11/29/2022]
|
12
|
Schmid TE, Gómez-Herrera A, Songis O, Sneddon D, Révolte A, Nahra F, Cazin CSJ. Selective NaOH-catalysed hydration of aromatic nitriles to amides. Catal Sci Technol 2015. [DOI: 10.1039/c5cy00313j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The selective synthesis of aromatic and heteroaromatic amides through base-catalysed hydration of nitriles was achieved using inexpensive and commercially available NaOH as the only catalyst.
Collapse
Affiliation(s)
| | | | - Olivier Songis
- EaStCHEM School of Chemistry
- University of St Andrews
- St Andrews
- UK
| | - Deborah Sneddon
- EaStCHEM School of Chemistry
- University of St Andrews
- St Andrews
- UK
| | - Antoine Révolte
- EaStCHEM School of Chemistry
- University of St Andrews
- St Andrews
- UK
| | - Fady Nahra
- EaStCHEM School of Chemistry
- University of St Andrews
- St Andrews
- UK
| | | |
Collapse
|
13
|
Byrne C, Houlihan KM, Devi P, Jensen P, Rutledge PJ. Bio-inspired nitrile hydration by peptidic ligands based on L-cysteine, L-methionine or L-penicillamine and pyridine-2,6-dicarboxylic acid. Molecules 2014; 19:20751-67. [PMID: 25514220 PMCID: PMC6271992 DOI: 10.3390/molecules191220751] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 11/06/2014] [Accepted: 11/16/2014] [Indexed: 11/16/2022] Open
Abstract
Nitrile hydratase (NHase, EC 4.2.1.84) is a metalloenzyme which catalyses the conversion of nitriles to amides. The high efficiency and broad substrate range of NHase have led to the successful application of this enzyme as a biocatalyst in the industrial syntheses of acrylamide and nicotinamide and in the bioremediation of nitrile waste. Crystal structures of both cobalt(III)- and iron(III)-dependent NHases reveal an unusual metal binding motif made up from six sequential amino acids and comprising two amide nitrogens from the peptide backbone and three cysteine-derived sulfur ligands, each at a different oxidation state (thiolate, sulfenate and sulfinate). Based on the active site geometry revealed by these crystal structures, we have designed a series of small-molecule ligands which integrate essential features of the NHase metal binding motif into a readily accessible peptide environment. We report the synthesis of ligands based on a pyridine-2,6-dicarboxylic acid scaffold and L-cysteine, L-S-methylcysteine, L-methionine or L-penicillamine. These ligands have been combined with cobalt(III) and iron(III) and tested as catalysts for biomimetic nitrile hydration. The highest levels of activity are observed with the L-penicillamine ligand which, in combination with cobalt(III), converts acetonitrile to acetamide at 1.25 turnovers and benzonitrile to benzamide at 1.20 turnovers.
Collapse
Affiliation(s)
- Cillian Byrne
- School of Chemistry F11, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Kate M Houlihan
- School of Chemistry F11, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Prarthana Devi
- School of Chemistry F11, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Paul Jensen
- School of Chemistry F11, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Peter J Rutledge
- School of Chemistry F11, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
14
|
Iron and Palladium(II) Phthalocyanines as Recyclable Catalysts for Reduction of Nitroarenes. Catal Letters 2014. [DOI: 10.1007/s10562-014-1269-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
García-Álvarez R, Díaz-Álvarez AE, Crochet P, Cadierno V. Ruthenium-catalyzed one-pot synthesis of primary amides from aldehydes in water. RSC Adv 2013. [DOI: 10.1039/c3ra23195j] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|