1
|
Woo Y, Patel M, Kim H, Park JK, Jung YJ, Cha SS, Jeong B. Pralatrexate Sustainably Released from Polypeptide Thermogel Is Effective for Chondrogenic Differentiation of Mesenchymal Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3773-3783. [PMID: 35014790 DOI: 10.1021/acsami.1c20585] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Folic acid was reported to significantly improve chondrogenic differentiation of mesenchymal stem cells. In a similar mechanism of action, we investigated clinically approved antifolates by the U.S. Food and Drug Administration as chondrogenic-promoting compounds for tonsil-derived mesenchymal stem cells. A poly(ethylene glycol)-poly(l-alanine) thermogelling system was used as a three-dimensional cell culture matrix, where stem cells and antifolates could be incorporated simultaneously during a heat-induced in situ sol-to-gel transition. The antifolates could be supplied over several days by the sustained release of the drug from the thermogel. Initially, seven antifolates were prescreened based on cell viability and expression of a typical chondrogenic biomarker of type II collagen (COL II) at the mRNA level. Then, dapsone, pralatrexate, and trimethoprim were selected as candidate compounds in the second round screening, and detailed studies were carried out on the mRNA and protein expression of various chondrogenic biomarkers including COL II, SRY box transcription factor 9, and aggrecan. Three-dimensional cultures of stem cells in the thermogel in the absence of a chondrogenic promoter compound and in the presence of kartogenin (KGN) were performed as a negative control and positive control, respectively. The chondrogenic biomarkers were significantly increased in the selected antifolate-incorporating systems compared to the negative control system, without an increase in type I collagen (an osteogenic biomarker) expression. Pralatrexate was the best compound for inducing chondrogenic differentiation of the stem cells, even better than the positive control (KGN). Nuclear translocation of the core-binding factor β subunit (CBFβ) and enhanced nuclear runt-related transcription factor 1 (RUNX1) by antifolate treatment suggested that the chondrogenesis-enhancing mechanism is mediated by CBFβ and RUNX1. An in silico modeling study confirmed the mechanism by proving the high binding affinity of pralatrexate to a target protein of filamin A compared with other antifolate candidates. To conclude, pralatrexate was rediscovered as a lead compound, and the polypeptide thermogel incorporating pralatrexate and mesenchymal stem cells can be a very effective system in promoting chondrogenic differentiation of stem cells and might be used in injectable tissue engineering for cartilage repair.
Collapse
Affiliation(s)
- Yejin Woo
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Madhumita Patel
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Hyelin Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Jin Kyung Park
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Yeon-Ju Jung
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Sun-Shin Cha
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Byeongmoon Jeong
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| |
Collapse
|
2
|
Moon Y, Patel M, Um S, Lee HJ, Park S, Park SB, Cha SS, Jeong B. Folic acid pretreatment and its sustained delivery for chondrogenic differentiation of MSCs. J Control Release 2022; 343:118-130. [PMID: 35051494 DOI: 10.1016/j.jconrel.2022.01.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 10/19/2022]
Abstract
Dietary uptake of folic acid (FA) improves cartilage regeneration. In this work, we discovered that three days of FA treatment is highly effective for promoting chondrogenic differentiation of tonsil-derived mesenchymal stem cells (TMSCs). In a three-dimensional pellet culture, the levels of typical chondrogenic biomarkers, sulfated glycosaminoglycan, proteoglycan, type II collagen (COL II), SRY box transcription factor 9 (SOX 9), cartilage oligomeric matrix protein (COMP), and aggrecan (ACAN) increased significantly in proportion to FA concentration up to 30 μM. At the mRNA expression level, COL II, SOX 9, COMP, and ACAN increased 3.6-6.0-fold with FA treatment at 30 μM compared with the control system that did not receive FA treatment, and the levels with FA treatment were 1.6-2.5 times greater than those in the kartogenin-treated positive control system. FA treatment did not increase type I collagen α1 (COL I α1), an osteogenic biomarker which is a concern with most chondrogenic promoters. At the high FA concentration of 100 μM, significant decreases in chondrogenic biomarkers were observed, which might be related to DNA methylation. A thermogel system incorporating TMSCs and FA provided sustained release of FA over several days, similar to the FA treatment. The thermogel system confirmed the efficacy of FA in promoting chondrogenic promotion of TMSCs. The increased nuclear translocation of core-binding factor β subunit (CBFβ) and the runt-related transcription factor 1 (RUNX1) expression after FA treatment, together with molecular docking studies, suggest that the chondrogenic enhancement mechanism of FA is mediated by CBFβ and RUNX1.
Collapse
Affiliation(s)
- Yuna Moon
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Madhumita Patel
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Soyoun Um
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Hyun Jung Lee
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Sohee Park
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Soo-Bong Park
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Sun-Shin Cha
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Byeongmoon Jeong
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea.
| |
Collapse
|
3
|
Liu Y, Shah KM, Luo J. Strategies for Articular Cartilage Repair and Regeneration. Front Bioeng Biotechnol 2022; 9:770655. [PMID: 34976967 PMCID: PMC8719005 DOI: 10.3389/fbioe.2021.770655] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 12/01/2021] [Indexed: 12/19/2022] Open
Abstract
Articular cartilage is an avascular tissue, with limited ability to repair and self-renew. Defects in articular cartilage can induce debilitating degenerative joint diseases such as osteoarthritis. Currently, clinical treatments have limited ability to repair, for they often result in the formation of mechanically inferior cartilage. In this review, we discuss the factors that affect cartilage homeostasis and function, and describe the emerging regenerative approaches that are informing the future treatment options.
Collapse
Affiliation(s)
- Yanxi Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Karan M Shah
- Department of Oncology and Metabolism, The Medical School, The University of Sheffield, Sheffield, United Kingdom
| | - Jian Luo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.,Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Centre), Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Li T, Liu B, Chen K, Lou Y, Jiang Y, Zhang D. Small molecule compounds promote the proliferation of chondrocytes and chondrogenic differentiation of stem cells in cartilage tissue engineering. Biomed Pharmacother 2020; 131:110652. [PMID: 32942151 DOI: 10.1016/j.biopha.2020.110652] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 02/09/2023] Open
Abstract
The application of tissue engineering to generate cartilage is limited because of low proliferative ability and unstable phenotype of chondrocytes. The sources of cartilage seed cells are mainly chondrocytes and stem cells. A variety of methods have been used to obtain large numbers of chondrocytes, including increasing chondrocyte proliferation and stem cell chondrogenic differentiation via cytokines, genes, and proteins. Natural or synthetic small molecule compounds can provide a simple and effective method to promote chondrocyte proliferation, maintain a stable chondrocyte phenotype, and promote stem cell chondrogenic differentiation. Therefore, the study of small molecule compounds is of great importance for cartilage tissue engineering. Herein, we review a series of small molecule compounds and their mechanisms that can promote chondrocyte proliferation, maintain chondrocyte phenotype, or induce stem cell chondrogenesis. The studies in this field represent significant contributions to the research in cartilage tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Tian Li
- Department of Plastic and Reconstructive Surgery, The First Bethune Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Bingzhang Liu
- Department of Plastic and Reconstructive Surgery, The First Bethune Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Kang Chen
- Department of Plastic and Reconstructive Surgery, The First Bethune Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Yingyue Lou
- Department of Plastic and Reconstructive Surgery, The First Bethune Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Yuhan Jiang
- Department of Plastic and Reconstructive Surgery, The First Bethune Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Duo Zhang
- Department of Plastic and Reconstructive Surgery, The First Bethune Hospital of Jilin University, Changchun, Jilin, People's Republic of China.
| |
Collapse
|
5
|
A Novel High-Throughput Screening Platform Identifies Itaconate Derivatives from Marine Penicillium antarcticum as Inhibitors of Mesenchymal Stem Cell Differentiation. Mar Drugs 2020; 18:md18040192. [PMID: 32260516 PMCID: PMC7230868 DOI: 10.3390/md18040192] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 01/14/2023] Open
Abstract
Worldwide diffused diseases such as osteoarthritis, atherosclerosis or chronic kidney disease are associated with a tissue calcification process which may involve unexpected local stem cell differentiation. Current pharmacological treatments for such musculoskeletal conditions are weakly effective, sometimes extremely expensive and often absent. The potential to develop new therapies is represented by the discovery of small molecules modulating resident progenitor cell differentiation to prevent aberrant tissue calcification. The marine environment is a rich reserve of compounds with pharmaceutical potential and many novel molecules are isolated from macro and microorganisms annually. The potential of small molecules synthetized by marine filamentous fungi to influence the osteogenic and chondrogenic differentiation of human mesenchymal stem/stromal cells (hMSCs) was investigated using a novel, high-throughput automated screening platform. Metabolites synthetized by the marine-derived fungus Penicillium antarcticum were evaluated on the platform. Itaconic acid derivatives were identified as inhibitors of calcium elaboration into the matrix of osteogenically differentiated hMSCs and also inhibited hMSC chondrogenic differentiation, highlighting their capacity to impair ectopic calcification. Bioactive small molecule discovery is critical to address ectopic tissue calcification and the use of biologically relevant assays to identify naturally occurring metabolites from marine sources represents a strategy that can contribute to this effort.
Collapse
|
6
|
Brønsted acid-catalyzed facile synthesis of α-substituted N-arylaminoacetals and their downstream conversions to functionalized pyrroles. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2019.02.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Choi Y, Kim H, Park SB. A divergent synthetic pathway for pyrimidine-embedded medium-sized azacycles through an N-quaternizing strategy. Chem Sci 2018; 10:569-575. [PMID: 30746098 PMCID: PMC6335630 DOI: 10.1039/c8sc04061c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 10/18/2018] [Indexed: 11/21/2022] Open
Abstract
A new divergent synthetic pathway for skeletally distinct pyrimidine-containing medium-sized azacycles was developed. Diversity-generating reactions via selective bond cleavages or migrations from N-quaternized intermediates were designed, and 14 discrete core skeletons were synthesized in an efficient manner. The skeletal diversity of the resulting molecular frameworks was confirmed by chemoinformatic analysis.
Medium-sized heterocycles have recently received significant attention because of their potential roles as modulators of protein–protein interactions, but their molecular diversity and synthetic availability are still inadequate to meet the demand. To address these issues, we developed a new divergent synthetic pathway for skeletally distinct pyrimidine-containing medium-sized azacycles. We introduced N-quaternized pyrimidine-containing polyheterocycles as novel key intermediates for diversity-generating reactions via selective bond cleavages or migrations and prepared 14 discrete core skeletons in an efficient manner. The skeletal diversity of the resulting molecular frameworks was confirmed by chemoinformatic analysis.
Collapse
Affiliation(s)
- Yoona Choi
- CRI Center for Chemical Proteomics , Department of Chemistry , Seoul National University , 1 Gwanak-ro, Gwanak-gu , Seoul 08826 , Korea .
| | - Heejun Kim
- CRI Center for Chemical Proteomics , Department of Chemistry , Seoul National University , 1 Gwanak-ro, Gwanak-gu , Seoul 08826 , Korea .
| | - Seung Bum Park
- CRI Center for Chemical Proteomics , Department of Chemistry , Seoul National University , 1 Gwanak-ro, Gwanak-gu , Seoul 08826 , Korea .
| |
Collapse
|
8
|
Lee SS, Choi GE, Lee HJ, Kim Y, Choy JH, Jeong B. Layered Double Hydroxide and Polypeptide Thermogel Nanocomposite System for Chondrogenic Differentiation of Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2017; 9:42668-42675. [PMID: 29165981 DOI: 10.1021/acsami.7b17173] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Stem cell therapy for damaged cartilage suffers from low rates of retention, survival, and differentiation into chondrocytes at the target site. To solve these problems, here we propose a two-dimensional/three-dimensional (2D/3D) nanocomposite system. As a new two-dimensional (2D) material, hexagonal layered double hydroxides (LDHs) with a uniform lateral length of 2-3 μm were prepared by a hydrothermal process. Then, tonsil-derived mesenchymal stem cells (TMSCs), arginylglycylaspartic acid-coated LDHs, and kartogenin (KGN) were incorporated into the gel through the thermal-energy-driven gelation of the system. The cells exhibited a tendency to aggregate in the nanocomposite system. In particular, chondrogenic biomarkers of type II collagen and transcription factor SOX 9 significantly increased at both the mRNA and protein levels in the nanocomposite system, compared to the pure thermogel systems. The inorganic 2D materials increased the rigidity of the matrix, slowed down the release of a soluble factor (KGN), and improved cell-material interactions in the gel. The current 2D/3D nanocomposite system of bioactive LDH/thermogel can be a new platform material overcoming drawbacks of hydrogel-based 3D cell culture systems and is eventually expected to be applied as an injectable stem cell therapy.
Collapse
Affiliation(s)
- Seon Sook Lee
- Department of Chemistry and Nanoscience, Ewha Womans University , 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Go Eun Choi
- Department of Chemistry and Nanoscience, Ewha Womans University , 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Hyun Jung Lee
- Department of Chemistry and Nanoscience, Ewha Womans University , 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Yelin Kim
- Department of Chemistry and Nanoscience, Ewha Womans University , 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Jin-Ho Choy
- Department of Chemistry and Nanoscience, Ewha Womans University , 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Byeongmoon Jeong
- Department of Chemistry and Nanoscience, Ewha Womans University , 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| |
Collapse
|
9
|
Choi E, Lee J, Lee S, Song BW, Seo HH, Cha MJ, Lim S, Lee C, Song SW, Han G, Hwang KC. Potential therapeutic application of small molecule with sulfonamide for chondrogenic differentiation and articular cartilage repair. Bioorg Med Chem Lett 2016; 26:5098-5102. [DOI: 10.1016/j.bmcl.2016.08.069] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/18/2016] [Accepted: 08/20/2016] [Indexed: 01/13/2023]
|
10
|
Kim C, Jeon OH, Kim DH, Chae JJ, Shores L, Bernstein N, Bhattacharya R, Coburn JM, Yarema KJ, Elisseeff JH. Local delivery of a carbohydrate analog for reducing arthritic inflammation and rebuilding cartilage. Biomaterials 2015; 83:93-101. [PMID: 26773662 DOI: 10.1016/j.biomaterials.2015.12.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 12/15/2015] [Accepted: 12/28/2015] [Indexed: 11/28/2022]
Abstract
Osteoarthritis (OA) is a degenerative joint disease characterized by articular cartilage degradation. Because OA has a multifactorial nature and complex interrelationship of the individual elements of a whole joint, there is a need for comprehensive therapeutic approaches for cartilage tissue engineering, which simultaneously address multiple aspects of disease etiology. In this work, we investigated a multifunctional carbohydrate-based drug candidate, tri-butanoylated N-acetyl-D-galactosamine analog (3,4,6-O-Bu3GalNAc) that induced cartilage tissue production by human mesenchymal stem cells (hMSCs) and human OA chondrocytes by modulating Wnt/β-catenin signaling activity. The dual effects promoted chondrogenesis of human MSC and reduced inflammation of human OA chondrocytes in in vitro cultures. Translating these findings in vivo, we evaluated therapeutic effect of 3,4,6-O-Bu3GalNAc on the rat model of posttraumatic OA when delivered via local intra-articular sustained-release delivery using microparticles and found this method to be efficacious in preventing OA progression. These results show that 3,4,6-O-Bu3GalNAc, a disease modifying OA drug candidate, has promising therapeutic potential for articular cartilage repair.
Collapse
Affiliation(s)
- Chaekyu Kim
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21231, USA
| | - Ok Hee Jeon
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21231, USA
| | - Do Hun Kim
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21231, USA
| | - J Jeremy Chae
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21231, USA
| | - Lucas Shores
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21231, USA
| | - Nicholas Bernstein
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21231, USA
| | - Rahul Bhattacharya
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21231, USA
| | - Jeannine M Coburn
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21231, USA
| | - Kevin J Yarema
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21231, USA
| | - Jennifer H Elisseeff
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21231, USA.
| |
Collapse
|
11
|
Wang Y, Zhu G, Li N, Song J, Wang L, Shi X. Small molecules and their controlled release that induce the osteogenic/chondrogenic commitment of stem cells. Biotechnol Adv 2015; 33:1626-40. [PMID: 26341834 DOI: 10.1016/j.biotechadv.2015.08.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/21/2015] [Accepted: 08/23/2015] [Indexed: 12/17/2022]
Abstract
Stem cell-based tissue engineering plays a significant role in skeletal system repair and regenerative therapies. However, stem cells must be differentiated into specific mature cells prior to implantation (direct implantation may lead to tumour formation). Natural or chemically synthesised small molecules provide an efficient, accurate, reversible, and cost-effective way to differentiate stem cells compared with bioactive growth factors and gene-related methods. Thus, investigating the influences of small molecules on the differentiation of stem cells is of great significance. Here, we review a series of small molecules that can induce or/and promote the osteogenic/chondrogenic commitment of stem cells. The controlled release of these small molecules from various vehicles for stem cell-based therapies and tissue engineering applications is also discussed. The extensive studies in this field represent significant contributions to stem cell-based tissue engineering research and regenerative medicine.
Collapse
Affiliation(s)
- Yingjun Wang
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510640, PR China; School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Guanglin Zhu
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510640, PR China; School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Nanying Li
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510640, PR China; School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Juqing Song
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510640, PR China; School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Lin Wang
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510640, PR China; School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Xuetao Shi
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510640, PR China; School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, PR China.
| |
Collapse
|
12
|
Choi Y, Kim H, Shin YH, Park SB. Diverse display of non-covalent interacting elements using pyrimidine-embedded polyheterocycles. Chem Commun (Camb) 2015; 51:13040-3. [PMID: 26185802 DOI: 10.1039/c5cc04335b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A series of pyrimidine-embedded polyheterocycles was synthesized using a pDOS strategy in a facile manner. The resulting poly-heterocyclic core skeletons containing a unique aza-tricyclic framework allowed for diverse display of non-covalent interacting elements, which probably serve as essentials for perturbing specific non-covalent interactions between various biopolymers.
Collapse
Affiliation(s)
- Yoona Choi
- Department of Chemistry, Seoul National University, Seoul 151-747, Korea.
| | | | | | | |
Collapse
|
13
|
Ham O, Lee CY, Kim R, Lee J, Oh S, Lee MY, Kim J, Hwang KC, Maeng LS, Chang W. Therapeutic Potential of Differentiated Mesenchymal Stem Cells for Treatment of Osteoarthritis. Int J Mol Sci 2015; 16:14961-78. [PMID: 26147426 PMCID: PMC4519882 DOI: 10.3390/ijms160714961] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/24/2015] [Accepted: 06/26/2015] [Indexed: 02/06/2023] Open
Abstract
Osteoarthritis (OA) is a chronic, progressive, and irreversible degenerative joint disease. Conventional OA treatments often result in complications such as pain and limited activity. However, transplantation of mesenchymal stem cells (MSCs) has several beneficial effects such as paracrine effects, anti-inflammatory activity, and immunomodulatory capacity. In addition, MSCs can be differentiated into several cell types, including chondrocytes, osteocytes, endothelia, and adipocytes. Thus, transplantation of MSCs is a suggested therapeutic tool for treatment of OA. However, transplanted naïve MSCs can cause problems such as heterogeneous populations including differentiated MSCs and undifferentiated cells. To overcome this problem, new strategies for inducing differentiation of MSCs are needed. One possibility is the application of microRNA (miRNA) and small molecules, which regulate multiple molecular pathways and cellular processes such as differentiation. Here, we provide insight into possible strategies for cartilage regeneration by transplantation of differentiated MSCs to treat OA patients.
Collapse
Affiliation(s)
- Onju Ham
- Catholic Kwandong University International St. Mary's Hospital, Incheon 404-834, Korea.
| | - Chang Youn Lee
- Department of Integrated Omics for Biomedical Sciences, Yonsei University, 50 Yonsei-ro, Seodamun-gu, Seoul 120-759, Korea.
| | - Ran Kim
- Department of Biology Education, College of Education, Pusan National University, Busan 609-735, Korea.
| | - Jihyun Lee
- Department of Biology Education, College of Education, Pusan National University, Busan 609-735, Korea.
| | - Sekyung Oh
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Min Young Lee
- Department of Molecular Physiology, College of Pharmacy, Kyungpook National University, Daegu 702-701, Korea.
| | - Jongmin Kim
- Department of Life Systems, Sookmyung Women's University, Seoul 140-742, Korea.
| | - Ki-Chul Hwang
- Catholic Kwandong University International St. Mary's Hospital, Incheon 404-834, Korea.
| | - Lee-So Maeng
- Institute of Catholic Integrative Medicine, Incheon St. Mary's Hospital, the Catholic University of Korea, College of Medicine, Incheon 403-720, Korea.
| | - Woochul Chang
- Department of Biology Education, College of Education, Pusan National University, Busan 609-735, Korea.
| |
Collapse
|
14
|
Kim J, Kim H, Park SB. Privileged Structures: Efficient Chemical “Navigators” toward Unexplored Biologically Relevant Chemical Spaces. J Am Chem Soc 2014; 136:14629-38. [DOI: 10.1021/ja508343a] [Citation(s) in RCA: 204] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jonghoon Kim
- Department
of Chemistry, Seoul National University, Seoul 151-747, South Korea
| | - Heejun Kim
- Department
of Chemistry, Seoul National University, Seoul 151-747, South Korea
| | - Seung Bum Park
- Department
of Chemistry, Seoul National University, Seoul 151-747, South Korea
- Department
of Biophysics and Chemical Biology/N-Bio Institute, Seoul National University, Seoul 151-747, South Korea
| |
Collapse
|
15
|
Kim J, Lee WS, Koo J, Lee J, Park SB. Synthesis and library construction of privileged tetra-substituted Δ5-2-oxopiperazine as β-turn structure mimetics. ACS COMBINATORIAL SCIENCE 2014; 16:24-32. [PMID: 24215277 DOI: 10.1021/co400128a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In this study, we developed an efficient and practical procedure for the synthesis of tetra-substituted Δ5-2-oxopiperazine that mimics the bioactive β-turn structural motif of proteins. This synthetic route is robust and modular enough to accommodate four different substituents to obtain a high level of molecular diversity without any deterioration in stereochemical enrichment of the natural and unnatural amino acids. Through the in silico studies, including a distance calculation of side chains and a conformational overlapping of our model compound with a native β-turn structure, we successfully demonstrated the conformational similarity of tetra-substituted Δ5-2-oxopiperazine to the β-turn motif. For the library construction in a high-throughput manner, the fluorous tag technology was adopted with the use of a solution-phase parallel synthesis platform. A 140-membered pilot library of tetra-substituted Δ5-2-oxopiperazines was achieved with an average purity of 90% without further purification.
Collapse
Affiliation(s)
- Jonghoon Kim
- Department of Chemistry and ‡Department of Biophysics and Chemical
Biology, Seoul National University, Seoul 151−747, Korea
| | - Won Seok Lee
- Department of Chemistry and ‡Department of Biophysics and Chemical
Biology, Seoul National University, Seoul 151−747, Korea
| | - Jaeyoung Koo
- Department of Chemistry and ‡Department of Biophysics and Chemical
Biology, Seoul National University, Seoul 151−747, Korea
| | - Jeongae Lee
- Department of Chemistry and ‡Department of Biophysics and Chemical
Biology, Seoul National University, Seoul 151−747, Korea
| | - Seung Bum Park
- Department of Chemistry and ‡Department of Biophysics and Chemical
Biology, Seoul National University, Seoul 151−747, Korea
| |
Collapse
|
16
|
Wang FW, Zhao F, Qian XY, Yu ZZ, Zhao J, Su L, Zhang Y, Zhang SL, Zhao BX, Miao JY. Identification of a small molecule preventing BMSC senescence in vitro by improving intracellular homeostasis via ANXA7 and Hmbox1. RSC Adv 2014. [DOI: 10.1039/c4ra10404h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ABO was discovered to be a novel anti-aging chemical in cultured BMSCs by improving intracellular homeostasis.
Collapse
Affiliation(s)
- Fang-Wu Wang
- Institute of Developmental Biology
- School of Life Science
- Shandong University
- Jinan 250100, P.R. China
| | - Fei Zhao
- Institute of Developmental Biology
- School of Life Science
- Shandong University
- Jinan 250100, P.R. China
| | - Xing-Yang Qian
- Institute of Developmental Biology
- School of Life Science
- Shandong University
- Jinan 250100, P.R. China
| | - Zhe-Zhen Yu
- Institute of Developmental Biology
- School of Life Science
- Shandong University
- Jinan 250100, P.R. China
| | - Jing Zhao
- Institute of Developmental Biology
- School of Life Science
- Shandong University
- Jinan 250100, P.R. China
| | - Le Su
- Institute of Developmental Biology
- School of Life Science
- Shandong University
- Jinan 250100, P.R. China
| | - Yun Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research
- Chinese Ministry of Education and Chinese Ministry of Health
- Shandong University Qilu Hospital
- Jinan, P.R. China
| | - Shang-Li Zhang
- Institute of Developmental Biology
- School of Life Science
- Shandong University
- Jinan 250100, P.R. China
| | - Bao-Xiang Zhao
- Institute of Organic Chemistry
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100, P.R. China
| | - Jun-Ying Miao
- Institute of Developmental Biology
- School of Life Science
- Shandong University
- Jinan 250100, P.R. China
- The Key Laboratory of Cardiovascular Remodeling and Function Research
| |
Collapse
|
17
|
Ryu YJ, Cho TJ, Lee DS, Choi JY, Cho J. Phenotypic characterization and in vivo localization of human adipose-derived mesenchymal stem cells. Mol Cells 2013; 35:557-64. [PMID: 23677376 PMCID: PMC3887876 DOI: 10.1007/s10059-013-0112-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 04/18/2013] [Accepted: 04/19/2013] [Indexed: 12/31/2022] Open
Abstract
Human adipose-derived mesenchymal stem cells (hADMSCs) are a potential cell source for autologous cell therapy due to their regenerative ability. However, detailed cytological or phenotypic characteristics of these cells are still unclear. Therefore, we determined and compared cell size, morphology, ultrastructure, and immunohistochemical (IHC) expression profiles of isolated hADMSCs and cells located in human adipose tissues. We also characterized the localization of these cells in vivo. Light microscopy examination at low power revealed that hADMSCs acquired a spindle-shaped morphology after four passages. Additionally, high power views showed that these cells had various sizes, nuclear contours, and cytoplasmic textures. To further evaluate cell morphology, transmission electron microscopy was performed. hADMSCs typically had ultrastructural characteristics similar to those of primitive mesenchymal cells including a relatively high nuclear/cytosol ratio, prominent nucleoli, immature cytoplasmic organelles, and numerous filipodia. Some cells contained various numbers of lamellar bodies and lipid droplets. IHC staining demonstrated that PDGFR and CD10 were constitutively expressed in most hADMSCs regardless of passage number but expression levels of α-SMA, CD68, Oct4 and c-kit varied. IHC staining of adipose tissue showed that cells with immunophenotypic characteristics identical to those of hADMSCs were located mainly in the perivascular adventitia not in smooth muscle area. In summary, hADMSCs were found to represent a heterogeneous cell population with primitive mesenchymal cells that were mainly found in the perivascular adventitia. Furthermore, the cell surface markers would be CD10/PDGFR. To obtain defined cell populations for therapeutic purposes, further studies will be required to establish more specific isolation methods.
Collapse
Affiliation(s)
- Young-Joon Ryu
- Department of Pathology, College of medicine, Kangwon National University, Chuncheon 200-701,
Korea
| | - Tae-Jun Cho
- Department of Dental Regenerative Biotechnology, Seoul National University, Seoul 110-749,
Korea
- Dental Research Institute, School of Dentistry, Seoul National University, Seoul 110-749,
Korea
| | - Dong-Sup Lee
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 110-799,
Korea
| | - Jin-Young Choi
- Dental Research Institute, School of Dentistry, Seoul National University, Seoul 110-749,
Korea
- Department of Oral and Maxillofacial Surgery, Seoul National University Dental Hospital, Seoul 110-768,
Korea
| | - Jaejin Cho
- Department of Dental Regenerative Biotechnology, Seoul National University, Seoul 110-749,
Korea
- Dental Research Institute, School of Dentistry, Seoul National University, Seoul 110-749,
Korea
| |
Collapse
|
18
|
Choi S, Cho TJ, Kwon SK, Lee G, Cho J. Chondrogenesis of periodontal ligament stem cells by transforming growth factor-β3 and bone morphogenetic protein-6 in a normal healthy impacted third molar. Int J Oral Sci 2013; 5:7-13. [PMID: 23579467 PMCID: PMC3632767 DOI: 10.1038/ijos.2013.19] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The periodontal ligament-derived mesenchymal stem cell is regarded as a source of adult stem cells due to its multipotency. However, the proof of chondrogenic potential of the cells is scarce. Therefore, we investigated the chondrogenic differentiation capacity of periodontal ligament derived mesenchymal stem cells induced by transforming growth factor (TGF)-β3 and bone morphogenetic protein (BMP)-6. After isolation of periodontal ligament stem cells (PDLSCs) from human periodontal ligament, the cells were cultured in Dulbecco's modified Eagle's medium (DMEM) with 20% fetal bovine serum (FBS). A mechanical force initiated chondrogenic differentiation of the cells. For chondrogenic differentiation, 10 µg·L⁻¹ TGF-β3 or 100 µg∙L⁻¹ BMP-6 and the combination treating group for synergistic effect of the growth factors. We analyzed the PDLSCs by fluorescence-activated cell sorting and chondrogenesis were evaluated by glycosaminoglycans assay, histology, immunohistochemistry and genetic analysis. PDLSCs showed mesenchymal stem cell properties proved by FACS analysis. Glycosaminoglycans contents were increased 217% by TGF-β3 and 220% by BMP-6. The synergetic effect of TGF-β3 and BMP-6 were shown up to 281% compared to control. The combination treatment increased Sox9, aggrecan and collagen II expression compared with not only controls, but also TGF-β3 or BMP-6 single treatment dramatically. The histological analysis also indicated the chondrogenic differentiation of PDLSCs in our conditions. The results of the present study demonstrate the potential of the dental stem cell as a valuable cell source for chondrogenesis, which may be applicable for regeneration of cartilage and bone fracture in the field of cell therapy.
Collapse
Affiliation(s)
- Sunyoung Choi
- Laboratory of Developmental Biology and Stem Cell Differentiation/Transplantation, Department of Dental Regenerative Biotechnology, School of Dentistry, Seoul National University, Seoul, Korea
| | | | | | | | | |
Collapse
|
19
|
Lim D, Park SB. Synthesis of Molecular Frameworks Containing Two Distinct Heterocycles Connected in a Single Molecule with Enhanced Three-Dimensional Shape Diversity. Chemistry 2013; 19:7100-8. [DOI: 10.1002/chem.201204293] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 02/13/2013] [Indexed: 12/12/2022]
|