1
|
Shahrokhtash A, Sivertsen MVT, Laursen SH, Sutherland DS. Nanoscale Cellular Traction Force Quantification: CRISPR-Cas12a Supercharged DNA Tension Sensors in Nanoclustered Ligand Patterns. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 39868861 DOI: 10.1021/acsami.4c18358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
High-throughput measurement of cellular traction forces at the nanoscale remains a significant challenge in mechanobiology, limiting our understanding of how cells interact with their microenvironment. Here, we present a novel technique for fabricating protein nanopatterns in standard multiwell microplate formats (96/384-wells), enabling the high-throughput quantification of cellular forces using DNA tension gauge tethers (TGTs) amplified by CRISPR-Cas12a. Our method employs sparse colloidal lithography to create nanopatterned surfaces with feature sizes ranging from sub 100 to 800 nm on transparent, planar, and fully PEGylated substrates. These surfaces allow for the orthogonal immobilization of two different proteins or biomolecules using click-chemistry, providing precise spatial control over cellular signaling cues. We demonstrate the robustness and versatility of this platform through imaging techniques, including total internal reflection fluorescence microscopy, confocal laser scanning microscopy, and high-throughput imaging. Applying this technology, we measured the early stage mechanical forces exerted by 3T3 fibroblasts across different nanoscale features, detecting forces ranging from 12 to 56 pN. By integrating the Mechano-Cas12a Assisted Tension Sensor (MCATS) system, we achieved rapid and high-throughput quantification of cellular traction forces, analyzing over 2 million cells within minutes. Our findings reveal that nanoscale clustering of integrin ligands significantly influences the mechanical responses of cells. This platform offers a powerful tool for mechanobiology research, facilitating the study of cellular forces and mechanotransduction pathways in a high-throughput manner compatible with standard cell culture systems.
Collapse
Affiliation(s)
- Ali Shahrokhtash
- Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
- The Centre for Cellular Signal Patterns (CellPAT), Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | | | - Sara Hvidbjerg Laursen
- Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Duncan S Sutherland
- Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
- The Centre for Cellular Signal Patterns (CellPAT), Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| |
Collapse
|
2
|
Shahrokhtash A, Sutherland DS. Smart Biointerfaces via Click Chemistry-Enabled Nanopatterning of Multiple Bioligands and DNA Force Sensors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:21534-21545. [PMID: 38634566 PMCID: PMC11073048 DOI: 10.1021/acsami.4c00831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/10/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
Nanoscale biomolecular placement is crucial for advancing cellular signaling, sensor technology, and molecular interaction studies. Despite this, current methods fall short in enabling large-area nanopatterning of multiple biomolecules while minimizing nonspecific interactions. Using bioorthogonal tags at a submicron scale, we introduce a novel hole-mask colloidal lithography method for arranging up to three distinct proteins, DNA, or peptides on large, fully passivated surfaces. The surfaces are compatible with single-molecule fluorescence microscopy and microplate formats, facilitating versatile applications in cellular and single-molecule assays. We utilize fully passivated and transparent substrates devoid of metals and nanotopographical features to ensure accurate patterning and minimize nonspecific interactions. Surface patterning is achieved using bioorthogonal TCO-tetrazine (inverse electron-demand Diels-Alder, IEDDA) ligation, DBCO-azide (strain-promoted azide-alkyne cycloaddition, SPAAC) click chemistry, and biotin-avidin interactions. These are arranged on surfaces passivated with dense poly(ethylene glycol) PEG brushes crafted through the selective and stepwise removal of sacrificial metallic and polymeric layers, enabling the directed attachment of biospecific tags with nanometric precision. In a proof-of-concept experiment, DNA tension gauge tether (TGT) force sensors, conjugated to cRGD (arginylglycylaspartic acid) in nanoclusters, measured fibroblast integrin tension. This novel application enables the quantification of forces in the piconewton range, which is restricted within the nanopatterned clusters. A second demonstration of the platform to study integrin and epidermal growth factor (EGF) proximal signaling reveals clear mechanotransduction and changes in the cellular morphology. The findings illustrate the platform's potential as a powerful tool for probing complex biochemical pathways involving several molecules arranged with nanometer precision and cellular interactions at the nanoscale.
Collapse
Affiliation(s)
- Ali Shahrokhtash
- Interdisciplinary
Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, 8000Aarhus C, Denmark
- The
Centre for Cellular Signal Patterns (CellPAT), Gustav Wieds Vej 14, 8000 Aarhus C ,Denmark
| | - Duncan S. Sutherland
- Interdisciplinary
Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, 8000Aarhus C, Denmark
- The
Centre for Cellular Signal Patterns (CellPAT), Gustav Wieds Vej 14, 8000 Aarhus C ,Denmark
| |
Collapse
|
3
|
La-Venia A, Dzijak R, Rampmaier R, Vrabel M. An Optimized Protocol for the Synthesis of Peptides Containing trans-Cyclooctene and Bicyclononyne Dienophiles as Useful Multifunctional Bioorthogonal Probes. Chemistry 2021; 27:13632-13641. [PMID: 34241924 DOI: 10.1002/chem.202102042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Indexed: 11/06/2022]
Abstract
Despite the great advances in solid-phase peptide synthesis (SPPS), the incorporation of certain functional groups into peptide sequences is restricted by the compatibility of the building blocks with conditions used during SPPS. In particular, the introduction of highly reactive groups used in modern bioorthogonal reactions into peptides remains elusive. Here, we present an optimized synthetic protocol enabling installation of two strained dienophiles, trans-cyclooctene (TCO) and bicyclononyne (BCN), into different peptide sequences. The two groups enable fast and modular post-synthetic functionalization of peptides, as we demonstrate in preparation of peptide-peptide and peptide-drug conjugates. Due to the excellent biocompatibility, the click-functionalization of the peptides can be performed directly in live cells. We further show that the introduction of both clickable groups into peptides enables construction of smart, multifunctional probes that can streamline complex chemical biology experiments such as visualization and pull-down of metabolically labeled glycoconjugates. The presented strategy will find utility in construction of peptides for diverse applications, where high reactivity, efficiency and biocompatibility of the modification step is critical.
Collapse
Affiliation(s)
- Agustina La-Venia
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16000, Prague, Czech Republic.,Current address: Instituto de Química Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario-CONICET, Suipacha 531, S2002LRK, Rosario, Argentina
| | - Rastislav Dzijak
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16000, Prague, Czech Republic
| | - Robert Rampmaier
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16000, Prague, Czech Republic
| | - Milan Vrabel
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16000, Prague, Czech Republic
| |
Collapse
|
4
|
The impact of antifouling layers in fabricating bioactive surfaces. Acta Biomater 2021; 126:45-62. [PMID: 33727195 DOI: 10.1016/j.actbio.2021.03.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/18/2021] [Accepted: 03/09/2021] [Indexed: 12/18/2022]
Abstract
Bioactive surfaces modified with functional peptides are critical for both fundamental research and practical application of implant materials and tissue repair. However, when bioactive molecules are tethered on biomaterial surfaces, their functions can be compromised due to unwanted fouling (mainly nonspecific protein adsorption and cell adhesion). In recent years, researchers have continuously studied antifouling strategies to obtain low background noise and effectively present the function of bioactive molecules. In this review, we describe several commonly used antifouling strategies and analyzed their advantages and drawbacks. Among these strategies, antifouling molecules are widely used to construct the antifouling layer of various bioactive surfaces. Subsequently, we summarize various structures of antifouling molecules and their surface grafting methods and characteristics. Application of these functionalized surfaces in microarray, biosensors, and implants are also introduced. Finally, we discuss the primary challenges associated with antifouling layers in fabricating bioactive surfaces and provide prospects for the future development of this field. STATEMENT OF SIGNIFICANCE: The nonspecific protein adsorption and cell adhesion will cause unwanted background "noise" on the surface of biological materials and detecting devices and compromise the performance of functional molecules and, therefore, impair the performance of materials and the sensitivity of devices. In addition, the selection of antifouling surfaces with proper chain length and high grafting density is also of great importance and requires further studies. Otherwise, the surface-tethered bioactive molecules may not function in their optimal status or even fail to display their functions. Based on these two critical issues, we summarize antifouling molecules with different structures, variable grafting methods, and diverse applications in biomaterials and biomedical devices reported in literature. Overall, we expect to shed some light on choosing the appropriate antifouling molecules in fabricating bioactive surfaces.
Collapse
|
5
|
Hespel L, Dupré de Baubigny J, Lalanne P, de Beco S, Coppey M, Villard C, Humblot V, Marie E, Tribet C. Redox-Triggered Control of Cell Adhesion and Deadhesion on Poly(lysine)- g-poly(ethylene oxide) Adlayers. ACS APPLIED BIO MATERIALS 2019; 2:4367-4376. [DOI: 10.1021/acsabm.9b00601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Louise Hespel
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Julien Dupré de Baubigny
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Pierre Lalanne
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Simon de Beco
- Laboratoire Physico Chimie, Institut Curie, PSL Université, Sorbonne Université, CNRS UMR168, F-75005 Paris, France
| | - Mathieu Coppey
- Laboratoire Physico Chimie, Institut Curie, PSL Université, Sorbonne Université, CNRS UMR168, F-75005 Paris, France
| | - Catherine Villard
- Laboratoire Physico Chimie, Institut Curie, PSL Université, Sorbonne Université, CNRS UMR168, F-75005 Paris, France
| | - Vincent Humblot
- Laboratoire Réactivité de Surface, Sorbonne Université, CNRS UMR 7197, 4 Place Jussieu, F-75005 Paris, France
| | - Emmanuelle Marie
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Christophe Tribet
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| |
Collapse
|
6
|
A Cu-free clickable surface with controllable surface density. Colloid Polym Sci 2019. [DOI: 10.1007/s00396-019-04515-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
7
|
Dalier F, Dubacheva GV, Coniel M, Zanchi D, Galtayries A, Piel M, Marie E, Tribet C. Mixed Copolymer Adlayers Allowing Reversible Thermal Control of Single Cell Aspect Ratio. ACS APPLIED MATERIALS & INTERFACES 2018; 10:2253-2258. [PMID: 29314825 DOI: 10.1021/acsami.7b18513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Dynamic guidance of living cells is achieved by fine-tuning and spatiotemporal modulation on artificial polymer layers enabling reversible peptide display. Adjustment of surface composition and interactions is obtained by coadsorption of mixed poly(lysine) derivatives, grafted with either repellent PEG, RGD adhesion peptides, or T-responsive poly(N-isopropylacrylamide) strands. Deposition of mixed adlayers provides a straightforward mean to optimize complex substrates, which is here implemented to achieve (1) thermal control of ligand accessibility and (2) adjustment of relative adhesiveness between adjacent micropatterns, while preserving cell attachment during thermal cycles. The reversible polarization of HeLa cells along orthogonal stripes mimics guidance along natural matrices.
Collapse
Affiliation(s)
- F Dalier
- PASTEUR, Département Chimie, Ecole Normale Supérieure, PSL Research University, Sorbonne Universités, UPMC Université Paris 06, CNRS , 75005 Paris, France
| | - G V Dubacheva
- PASTEUR, Département Chimie, Ecole Normale Supérieure, PSL Research University, Sorbonne Universités, UPMC Université Paris 06, CNRS , 75005 Paris, France
| | - M Coniel
- PASTEUR, Département Chimie, Ecole Normale Supérieure, PSL Research University, Sorbonne Universités, UPMC Université Paris 06, CNRS , 75005 Paris, France
| | - D Zanchi
- PASTEUR, Département Chimie, Ecole Normale Supérieure, PSL Research University, Sorbonne Universités, UPMC Université Paris 06, CNRS , 75005 Paris, France
- Université de Paris 7 Denis Diderot , 5 rue Thomas Mann, 75013 Paris, France
| | | | | | - E Marie
- PASTEUR, Département Chimie, Ecole Normale Supérieure, PSL Research University, Sorbonne Universités, UPMC Université Paris 06, CNRS , 75005 Paris, France
| | - C Tribet
- PASTEUR, Département Chimie, Ecole Normale Supérieure, PSL Research University, Sorbonne Universités, UPMC Université Paris 06, CNRS , 75005 Paris, France
| |
Collapse
|
8
|
Gurkov A, Sadovoy A, Shchapova E, Teh C, Meglinski I, Timofeyev M. Microencapsulated fluorescent pH probe as implantable sensor for monitoring the physiological state of fish embryos. PLoS One 2017; 12:e0186548. [PMID: 29045437 PMCID: PMC5646854 DOI: 10.1371/journal.pone.0186548] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/03/2017] [Indexed: 11/29/2022] Open
Abstract
In vivo physiological measurement is a major challenge in modern science and technology, as is environment conservation at the global scale. Proper toxicological testing of widely produced mixtures of chemicals is a necessary step in the development of new products, allowing us to minimize the human impact on aquatic ecosystems. However, currently available bioassay-based techniques utilizing small aquatic organisms such as fish embryos for toxicity testing do not allow assessing in time the changes in physiological parameters in the same individual. In this study, we introduce microencapsulated fluorescent probes as a promising tool for in vivo monitoring of internal pH variation in zebrafish embryos. The pH alteration identified under stress conditions demonstrates the applicability of the microencapsulated fluorescent probes for the repeated analysis of the embryo’s physiological state. The proposed approach has strong potential to simultaneously measure a range of physiological characteristics using a set of specific fluorescent probes and to finally bring toxicological bioassays and related research fields to a new level of effectiveness and sensitivity.
Collapse
Affiliation(s)
- Anton Gurkov
- Institute of Biology, Irkutsk State University, Irkutsk, Russia
- Baikal Research Centre, Irkutsk, Russia
| | - Anton Sadovoy
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, Singapore
- * E-mail: (MT); (IM); (AS)
| | | | - Cathleen Teh
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | - Igor Meglinski
- Institute of Biology, Irkutsk State University, Irkutsk, Russia
- Optoelectronics and Measurement Techniques Laboratory, University of Oulu, Oulu, Finland
- * E-mail: (MT); (IM); (AS)
| | - Maxim Timofeyev
- Institute of Biology, Irkutsk State University, Irkutsk, Russia
- * E-mail: (MT); (IM); (AS)
| |
Collapse
|
9
|
Polomska A, Gauthier MA, Leroux JC. In Vitro and In Vivo Evaluation of PEGylated Layer-by-Layer Polyelectrolyte-Coated Paclitaxel Nanocrystals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1602066. [PMID: 27748999 DOI: 10.1002/smll.201602066] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/16/2016] [Indexed: 06/06/2023]
Abstract
Drug nanocrystals (NCs) are colloidal dispersions composed almost entirely of drug. As such, there is substantial interest in targeting them to diseased tissues, where they can locally deliver high doses of the therapeutic. However, because of their uncontrolled dissolution characteristics in vivo and uptake by the monomolecular phagocyte system, achieving tumor accumulation is challenging. To address these issues, a layer-by-layer approach is adopted to coat paclitaxel NCs with alternating layers of oppositely charged polyelectrolytes, using a PEGylated copolymer as the top layer. The coating successfully slows down dissolution in comparison to the noncoated NCs and to Abraxane (an approved paclitaxel nanoformulation), provides colloidal stability in physiologically relevant media, and has no intrinsic effect on cell viability at the concentrations tested. Nevertheless, their pharmacokinetic and biodistribution profile indicates that the NCs are rapidly cleared from the bloodstream followed by accumulation in the mononuclear phagocyte system organs (i.e., liver and spleen). This is hypothesized to be a consequence of the shedding of the PEGylated polyelectrolyte from the NCs' surface. While therapeutic efficacy was not investigated (due to poor tumor accumulation), overall, this work questions whether approaches that rely solely on electrostatic interactions for retaining coatings on the surfaces of NCs are appropriate for use in vivo.
Collapse
Affiliation(s)
- Anna Polomska
- Swiss Federal Institute of Technology Zurich (ETHZ), Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, Vladimir-Prelog Weg 1-5/10, 8093, Zurich, Switzerland
| | - Marc A Gauthier
- Institut National de la Recherche Scientifique, 1650 boul. Lionel-Boulet, Varennes, Quebec, J3X 1S2, Canada
| | - Jean-Christophe Leroux
- Swiss Federal Institute of Technology Zurich (ETHZ), Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, Vladimir-Prelog Weg 1-5/10, 8093, Zurich, Switzerland
| |
Collapse
|
10
|
Dalier F, Eghiaian F, Scheuring S, Marie E, Tribet C. Temperature-Switchable Control of Ligand Display on Adlayers of Mixed Poly(lysine)-g-(PEO) and Poly(lysine)-g-(ligand-modified poly-N-isopropylacrylamide). Biomacromolecules 2016; 17:1727-36. [DOI: 10.1021/acs.biomac.6b00136] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- F. Dalier
- Ecole Normale
Supérieure-PSL Research University, Dpt Chimie, Sorbonne Universités
- UPMC Univ. Paris 06, CNRS UMR 8640, 24 rue Lhomond, 75005 Paris, France
| | - F. Eghiaian
- U1006 INSERM,
Aix-Marseille Université, Parc Scientifique et Technologique
de Luminy, 163 av. de Luminy, 13009 Marseille, France
| | - S. Scheuring
- U1006 INSERM,
Aix-Marseille Université, Parc Scientifique et Technologique
de Luminy, 163 av. de Luminy, 13009 Marseille, France
| | - E. Marie
- Ecole Normale
Supérieure-PSL Research University, Dpt Chimie, Sorbonne Universités
- UPMC Univ. Paris 06, CNRS UMR 8640, 24 rue Lhomond, 75005 Paris, France
| | - C. Tribet
- Ecole Normale
Supérieure-PSL Research University, Dpt Chimie, Sorbonne Universités
- UPMC Univ. Paris 06, CNRS UMR 8640, 24 rue Lhomond, 75005 Paris, France
| |
Collapse
|
11
|
Malinge J, Mousseau F, Zanchi D, Brun G, Tribet C, Marie E. Tailored stimuli-responsive interaction between particles adjusted by straightforward adsorption of mixed layers of Poly(lysine)-g-PEG and Poly(lysine)-g-PNIPAM on anionic beads. J Colloid Interface Sci 2016; 461:50-55. [DOI: 10.1016/j.jcis.2015.09.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/01/2015] [Accepted: 09/06/2015] [Indexed: 11/17/2022]
|
12
|
Li W, Wang J, Ren J, Qu X. Endogenous signalling control of cell adhesion by using aptamer functionalized biocompatible hydrogel. Chem Sci 2015; 6:6762-6768. [PMID: 28757967 PMCID: PMC5508704 DOI: 10.1039/c5sc02565f] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 08/26/2015] [Indexed: 11/28/2022] Open
Abstract
Design of biological signal-responsive biomaterials is essential for controlling cell-cell and cell-matrix interactions. Herein, we developed a dynamic hydrogel to control cell adhesion with biological signals in a cellular microenvironment. The basic principle was based on using nucleic acid aptamer to recognize cell signalling and control the display of bioligands on the hydrogel. Not only exogenous signalling but also endogenous signalling secreted by surrounding cells could activate the dynamic scaffold and tune the cell adhesion state. Since diverse aptamers have been developed, our design can be extended to multiple biological inputs. The biochemical signal-responsive system will greatly enhance the understanding of complex biological processes as well as the ability to manipulate cellular behaviors.
Collapse
Affiliation(s)
- Wen Li
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , Jilin 130022 , P. R. China .
- University of Chinese Academy of Sciences , Beijing , 100039 , P. R. China
| | - Jiasi Wang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , Jilin 130022 , P. R. China .
- University of Chinese Academy of Sciences , Beijing , 100039 , P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , Jilin 130022 , P. R. China .
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , Jilin 130022 , P. R. China .
| |
Collapse
|
13
|
A Reagent-Based Dynamic Trigger for Cell Adhesion, Shape Change, or Cocultures. Methods Cell Biol 2014. [DOI: 10.1016/b978-0-12-417136-7.00011-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
14
|
van Dongen SFM, Maiuri P, Marie E, Tribet C, Piel M. Triggering cell adhesion, migration or shape change with a dynamic surface coating. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:1687-1691. [PMID: 23355329 DOI: 10.1002/adma.201204474] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 11/30/2012] [Indexed: 06/01/2023]
Abstract
There's an APP for that: cell-repellent APP (azido-[polylysine-g-PEG]) is used to create substrates for spatially controlled dynamic cell adhesion. The simple addition of a functional peptide to the culture medium rapidly triggers cell adhesion. This highly accessible yet powerful technique allows diverse applications, demonstrated through tissue motility assays, patterned coculturing and triggered cell shape change.
Collapse
Affiliation(s)
- Stijn F M van Dongen
- École Normale Supérieure, Department of chemistry, UMR 8640 CNRS-ENS-UPMC, Paris, France.
| | | | | | | | | |
Collapse
|