1
|
Trenerry MJ, Acosta M, Berry JF. Computational Analysis of Low Overpotential Ammonia Oxidation by Metal-Metal Bonded Ruthenium Catalysts, and Predictions for Related Osmium Catalysts. J Phys Chem A 2024; 128:4038-4051. [PMID: 38742806 DOI: 10.1021/acs.jpca.4c02490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The catalyzed electrochemical oxidation of ammonia to nitrogen (AOR) is an important fuel-cell half-reaction that underpins a future nitrogen-based energy economy. Our laboratory has reported spontaneous chemical and electrochemical oxidation of ammonia to dinitrogen via reaction of ammonia with the metal-metal bonded diruthenium complex Ru2(chp)4OTf (chp- = 2-chloro-6-hydroxypyridinate, TfO- = trifluoromethanesulfonate). This complex facilitates electrocatalytic ammonia oxidation at mild applied potentials of -255 mV vs ferrocene, which is the [Ru2(chp)4(NH3)]0/+ redox potential. We now report a comprehensive computational investigation of possible mechanisms for this reaction and electronic structure analysis of key intermediates therein. We extend this analysis to proposed second-generation electrocatalysts bearing structurally similar fhp and hmp (2-fluoro-6-hydroxypyridinate and 2-hydroxy-6-methylpyridinate, respectively) equatorial ligands, and we further expand this study from Ru2 to analogous Os2 cores. Predicted M24+/5+ redox potentials, which we expect to correlate with experimental AOR overpotential, depend strongly on the identity of the metal center, and to a lesser degree on the nature of the equatorial supporting ligand. Os2 complexes are easier to oxidize than analogous Ru2 complexes by ∼640 mV, on average. In contrast to mono-Ru catalysts, which oxidize ammonia via a rate-limiting activation of the strong N-H bond, we find lowest-energy reaction pathways for Ru2 and Os2 complexes that involve direct N-N bond formation onto electrophilic intermediates having terminal amido, imido, or nitrido groups. While transition state energies for Os2 complexes are high, those for Ru2 complexes are moderate and notably lower than those for mono-Ru complexes. We attribute these lower barriers to enhanced electrophilicity of the Ru2 intermediates, which is a consequence of their metal-metal bonded structure. Os2 intermediates are found to be, surprisingly, less electrophilic, and we suggest that Os2 complexes may require access to oxidation states higher than Os25+ in order to perform AOR at reasonable reaction rates.
Collapse
Affiliation(s)
- Michael J Trenerry
- Department of Chemistry, University of Wisconsin - Madison, Madison, Wisconsin 53706, United States
- Department of Chemistry, University of Minnesota - Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Milton Acosta
- Department of Chemistry, University of Wisconsin - Madison, Madison, Wisconsin 53706, United States
| | - John F Berry
- Department of Chemistry, University of Wisconsin - Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
2
|
Alharbi WS, Cundari TR. Mapping the Basicity of Selected 3d and 4d Metal Nitrides: A DFT Study. Inorg Chem 2022; 61:19049-19057. [DOI: 10.1021/acs.inorgchem.2c01812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Waad S. Alharbi
- Department of Chemistry, Center of Advanced Scientific Computing and Modeling (CASCaM), University of North Texas, 1155 Union Circle, #305070, Denton, Texas76203-5017, United States
- Chemistry Department, Science College, University of Jeddah, Jeddah23218, KSA
| | - Thomas R. Cundari
- Department of Chemistry, Center of Advanced Scientific Computing and Modeling (CASCaM), University of North Texas, 1155 Union Circle, #305070, Denton, Texas76203-5017, United States
| |
Collapse
|
3
|
Park SV, Corcos AR, Jambor AN, Yang T, Berry JF. Formation of the N≡N Triple Bond from Reductive Coupling of a Paramagnetic Diruthenium Nitrido Compound. J Am Chem Soc 2022; 144:3259-3268. [PMID: 35133829 DOI: 10.1021/jacs.1c13396] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Construction of nitrogen-nitrogen triple bonds via homocoupling of metal nitrides is an important fundamental reaction relevant to a potential Nitrogen Economy. Here, we report that room temperature photolysis of Ru2(chp)4N3 (chp- = 2-chloro-6-hydroxypyridinate) in CH2Cl2 produces N2 via reductive coupling of Ru2(chp)4N nitrido species. Computational analysis reveals that the nitride coupling transition state (TS) features an out-of-plane "zigzag" geometry instead of the anticipated planar zigzag TS. However, with intentional exclusion of dispersion correction, the planar zigzag TS geometry can also be found. Both the out-of-plane and planar zigzag TS geometries feature two important types of orbital interactions: (1) donor-acceptor interactions involving intermolecular donation of a nitride lone pair into an empty Ru-N π* orbital and (2) Ru-N π to Ru-N π* interactions derived from coupling of nitridyl radicals. The relative importance of these two interactions is quantified both at and after the TS. Our analysis shows that both interactions are important for the formation of the N-N σ bond, while radical coupling interactions dominate the formation of N-N π bonds. Comparison is made to isoelectronic Ru2-oxo compounds. Formation of an O-O bond via bimolecular oxo coupling is not observed experimentally and is calculated to have a much higher TS energy. The major difference between the nitrido and oxo systems stems from an extremely large driving force, ∼-500 kJ/mol, for N-N coupling vs a more modest driving force for O-O coupling, -40 to -140 kJ/mol.
Collapse
Affiliation(s)
- Sungho V Park
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Amanda R Corcos
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Alexander N Jambor
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Tzuhsiung Yang
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - John F Berry
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
4
|
Tuning catalytic activity of dimolybdenum paddlewheel complexes by ligands: mechanism study on the radical addition reaction of CCl4 to 1-hexene. Struct Chem 2021. [DOI: 10.1007/s11224-021-01790-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Deng T, Mazumdar W, Yoshinaga Y, Patel PB, Malo D, Malo T, Wink DJ, Driver TG. Rh 2(II)-Catalyzed Intermolecular N-Aryl Aziridination of Olefins Using Nonactivated N Atom Precursors. J Am Chem Soc 2021; 143:19149-19159. [PMID: 34748699 DOI: 10.1021/jacs.1c09229] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The development of the first intermolecular Rh2(II)-catalyzed aziridination of olefins using anilines as nonactivated N atom precursors and an iodine(III) reagent as the stoichiometric oxidant is reported. This reaction requires the transfer of an N-aryl nitrene fragment from the iminoiodinane intermediate to a Rh2(II) carboxylate catalyst; in the absence of a catalyst only diaryldiazene formation was observed. This N-aryl aziridination is general and can be successfully realized by using as little as 1 equiv of the olefin. Di-, tri-, and tetrasubstituted cyclic or acylic olefins can be employed as substrates, and a range of aniline and heteroarylamine N atom precursors are tolerated. The Rh2(II)-catalyzed N atom transfer to the olefin is stereospecific as well as chemo- and diastereoselective to produce the N-aryl aziridine as the only amination product. Because the chemistry of nonactivated N-aryl aziridines is underexplored, the reactivity of N-aryl aziridines was explored toward a range of nucleophiles to stereoselectively access privileged 1,2-stereodiads unavailable from epoxides, and removal of the N-2,4-dinitrophenyl group was demonstrated to show that functionalized primary amines can be constructed.
Collapse
Affiliation(s)
- Tianning Deng
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, MC 111, Chicago, Illinois 60607, United States
| | - Wrickban Mazumdar
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, MC 111, Chicago, Illinois 60607, United States
| | - Yuki Yoshinaga
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, MC 111, Chicago, Illinois 60607, United States
| | - Pooja B Patel
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, MC 111, Chicago, Illinois 60607, United States
| | - Dana Malo
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, MC 111, Chicago, Illinois 60607, United States.,Hinsdale South High School, 7401 Clarendon Hills Road, Darien, Illinois 60561, United States
| | - Tala Malo
- Hinsdale South High School, 7401 Clarendon Hills Road, Darien, Illinois 60561, United States
| | - Donald J Wink
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, MC 111, Chicago, Illinois 60607, United States
| | - Tom G Driver
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, MC 111, Chicago, Illinois 60607, United States
| |
Collapse
|
6
|
Affiliation(s)
- Anuvab Das
- Department of Chemistry, Texas A&M University, College Station, Texas, USA
| | | | - David C. Powers
- Department of Chemistry, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
7
|
Density functional benchmark studies on structure and energetics of 3d transition metal mononitrides. J CHEM SCI 2018. [DOI: 10.1007/s12039-018-1564-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
8
|
Wang CH, Das A, Gao WY, Powers DC. Probing Substrate Diffusion in Interstitial MOF Chemistry with Kinetic Isotope Effects. Angew Chem Int Ed Engl 2018; 57:3676-3681. [DOI: 10.1002/anie.201713244] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 02/08/2018] [Indexed: 11/12/2022]
Affiliation(s)
- Chen-Hao Wang
- Department of Chemistry; Texas A&M University; 3255 TAMU College Station TX USA
| | - Anuvab Das
- Department of Chemistry; Texas A&M University; 3255 TAMU College Station TX USA
| | - Wen-Yang Gao
- Department of Chemistry; Texas A&M University; 3255 TAMU College Station TX USA
| | - David C. Powers
- Department of Chemistry; Texas A&M University; 3255 TAMU College Station TX USA
| |
Collapse
|
9
|
Wang CH, Das A, Gao WY, Powers DC. Probing Substrate Diffusion in Interstitial MOF Chemistry with Kinetic Isotope Effects. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201713244] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Chen-Hao Wang
- Department of Chemistry; Texas A&M University; 3255 TAMU College Station TX USA
| | - Anuvab Das
- Department of Chemistry; Texas A&M University; 3255 TAMU College Station TX USA
| | - Wen-Yang Gao
- Department of Chemistry; Texas A&M University; 3255 TAMU College Station TX USA
| | - David C. Powers
- Department of Chemistry; Texas A&M University; 3255 TAMU College Station TX USA
| |
Collapse
|
10
|
Cui P, Wang Q, McCollom SP, Manor BC, Carroll PJ, Tomson NC. Ring-Size-Modulated Reactivity of Putative Dicobalt-Bridging Nitrides: C−H Activation versus Phosphinimide Formation. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201708966] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Peng Cui
- P. Roy and Diana T. Vagelos Laboratories; Department of Chemistry; University of Pennsylvania; 231 South 34th Street Philadelphia PA 19104 USA
| | - Qiuran Wang
- P. Roy and Diana T. Vagelos Laboratories; Department of Chemistry; University of Pennsylvania; 231 South 34th Street Philadelphia PA 19104 USA
| | - Samuel P. McCollom
- P. Roy and Diana T. Vagelos Laboratories; Department of Chemistry; University of Pennsylvania; 231 South 34th Street Philadelphia PA 19104 USA
| | - Brian C. Manor
- P. Roy and Diana T. Vagelos Laboratories; Department of Chemistry; University of Pennsylvania; 231 South 34th Street Philadelphia PA 19104 USA
| | - Patrick J. Carroll
- P. Roy and Diana T. Vagelos Laboratories; Department of Chemistry; University of Pennsylvania; 231 South 34th Street Philadelphia PA 19104 USA
| | - Neil C. Tomson
- P. Roy and Diana T. Vagelos Laboratories; Department of Chemistry; University of Pennsylvania; 231 South 34th Street Philadelphia PA 19104 USA
| |
Collapse
|
11
|
Cui P, Wang Q, McCollom SP, Manor BC, Carroll PJ, Tomson NC. Ring-Size-Modulated Reactivity of Putative Dicobalt-Bridging Nitrides: C-H Activation versus Phosphinimide Formation. Angew Chem Int Ed Engl 2017; 56:15979-15983. [PMID: 29086476 DOI: 10.1002/anie.201708966] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/19/2017] [Indexed: 11/10/2022]
Abstract
Dicobalt complexes supported by flexible macrocyclic ligands were used to target the generation of the bridging nitrido species [(n PDI2 )Co2 (μ-N)(PMe3 )2 ]3+ (PDI=2,6-pyridyldiimine; n=2, 3, corresponding to the number of catenated methylene units between imino nitrogen atoms). Depending on the size of the macrocycle and the reaction conditions (solution versus solid-state), the thermolysis of azide precursors yielded bridging phosphinimido [(2 PDI2 )Co2 (μ-NPMe3 )(PMe3 )2 ]3+ , amido [(n PDI2 )Co2 (μ-NH2 )(PMe3 )2 ]3+ (n=2, 3), and C-H amination [(3 PDI2 *-μ-NH)Co2 (PMe3 )2 ]3+ products. All results are consistent with the initial formation of [(n PDI2 )Co2 (μ-N)(PMe3 )2 ]3+ , followed by 1) PMe3 attack on the nitride, 2) net hydrogen-atom transfer to form N-H bonds, or 3) C-H amination of the alkyl linker of the n PDI2 ligand.
Collapse
Affiliation(s)
- Peng Cui
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA
| | - Qiuran Wang
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA
| | - Samuel P McCollom
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA
| | - Brian C Manor
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA
| | - Patrick J Carroll
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA
| | - Neil C Tomson
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA
| |
Collapse
|
12
|
Park SV, Berry JF. Synthesis, characterization and solution behavior of a systematic series of pentapyridyl-supported Ru II complexes: comparison to bimetallic analogs. Dalton Trans 2017; 46:9118-9125. [PMID: 28664959 PMCID: PMC6774635 DOI: 10.1039/c7dt01847a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of RuII complexes stabilized with the pentapyridyl ligand Py5Me2 (Py5Me2 = 2,6-bis(1,1-bis(2-pyridyl)ethyl)pyridine) and with an axial X ligand (X = Cl-, H2O, N3-, MeCN) were prepared and characterized in the solid state and in non-aqueous solution. The cyclic voltammograms of these complexes in MeCN reflect a reversible substitution of the axial X ligand with MeCN. Irreversible ligand substitution of [(Py5Me2)RuN3]+ is also observed in propylene carbonate, but only at oxidizing potentials that decompose the azide ligand. The monometallic chloride and azide species are compared with analogous Ru2 metal-metal bonded complexes, which have been reported to undergo irreversible chloride dissociation upon reduction.
Collapse
Affiliation(s)
- Sungho V Park
- Department of Chemistry, University of Wisconsin - Madison, 1101 University Avenue, Madison, Wisconsin 53706, USA.
| | | |
Collapse
|
13
|
Kwon DH, Proctor M, Mendoza S, Uyeda C, Ess DH. Catalytic Dinuclear Nickel Spin Crossover Mechanism and Selectivity for Alkyne Cyclotrimerization. ACS Catal 2017. [DOI: 10.1021/acscatal.7b00978] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Doo-Hyun Kwon
- Department
of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Matthew Proctor
- Department
of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Sergio Mendoza
- Department
of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Christopher Uyeda
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Daniel H. Ess
- Department
of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| |
Collapse
|
14
|
Dutta I, Sarbajna A, Pandey P, Rahaman SMW, Singh K, Bera JK. Acceptorless Dehydrogenation of Alcohols on a Diruthenium(II,II) Platform. Organometallics 2016. [DOI: 10.1021/acs.organomet.6b00085] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Indranil Dutta
- Department of Chemistry and
Center for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Abir Sarbajna
- Department of Chemistry and
Center for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Pragati Pandey
- Department of Chemistry and
Center for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - S. M. Wahidur Rahaman
- Department of Chemistry and
Center for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Kuldeep Singh
- Department of Chemistry and
Center for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Jitendra K. Bera
- Department of Chemistry and
Center for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
15
|
Ring S, Meijer AJ, Patmore NJ. Structural, spectroscopic and theoretical studies of a diruthenium(II,II) tetraformamidinate that reversibly binds dioxygen. Polyhedron 2016. [DOI: 10.1016/j.poly.2015.09.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Reactivity and Catalysis at Sites Trans to the [Ru–Ru] Bond. TOP ORGANOMETAL CHEM 2015. [DOI: 10.1007/3418_2015_162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
17
|
Brogden DW, Berry JF. Not all density functionals are created equal: the case of the missing electron in the oxidized [W-W≡O](7+) core. Chem Commun (Camb) 2015; 51:9153-6. [PMID: 25947092 DOI: 10.1039/c5cc02917a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The location of the unpaired electron in the new mixed-valent (W2)(IV,V) trication [W2O(dpa)4](3+) presents a challenge for DFT methods. EPR spectroscopy confirms the unpaired electron to be in the W(V)-oxo unit, in agreement with the predictions of hybrid functionals B3LYP and TPSSh, but contrary to the predictions of non-hybrid functionals.
Collapse
Affiliation(s)
- David W Brogden
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, WI, USA.
| | | |
Collapse
|
18
|
Tsurugi H, Hayakawa A, Kando S, Sugino Y, Mashima K. Mixed-ligand complexes of paddlewheel dinuclear molybdenum as hydrodehalogenation catalysts for polyhaloalkanes. Chem Sci 2015; 6:3434-3439. [PMID: 29511508 PMCID: PMC5659211 DOI: 10.1039/c5sc00721f] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 03/31/2015] [Indexed: 11/25/2022] Open
Abstract
A mixed-ligated dimolybdenum complex Mo2(OAc)2[CH(NAr)2]2 in combination with 1-methyl-3,6-bis(trimethylsilyl)-1,4-cyclohexadiene and nBu4NCl exhibited high catalytic activity for hydrodehalogenation reactions.
We developed a hydrodehalogenation reaction of polyhaloalkanes catalyzed by paddlewheel dimolybdenum complexes in combination with 1-methyl-3,6-bis(trimethylsilyl)-1,4-cyclohexadiene (MBTCD) as a non-toxic H-atom source as well as a salt-free reductant. A mixed-ligated dimolybdenum complex Mo2(OAc)2[CH(NAr)2]2 (3a, Ar = 4-MeOC6H4) having two acetates and two amidinates exhibited high catalytic activity in the presence of nBu4NCl, in which [nBu4N]2[Mo2{CH(NAr)2}2Cl4] (9a), derived by treating 3a with ClSiMe3 and nBu4NCl, was generated as a catalytically-active species in the hydrodehalogenation. All reaction processes, oxidation and reduction of the dimolybdenum complex, were clarified by control experiments, and the oxidized product, [nBu4N][Mo2{CH(NAr)2}2Cl4] (10a), was characterized by EPR and X-ray diffraction studies. Kinetic analysis of the hydrodehalogenation reaction as well as a deuterium-labelling experiment using MBTCD-d8 suggested that the H-abstraction was the rate-determining step for the catalytic reaction.
Collapse
Affiliation(s)
- Hayato Tsurugi
- Department of Chemistry , Graduate School of Engineering Science , Osaka University , CREST , Toyonaka , Osaka 560-8531 , Japan . ;
| | - Akio Hayakawa
- Department of Chemistry , Graduate School of Engineering Science , Osaka University , CREST , Toyonaka , Osaka 560-8531 , Japan . ;
| | - Shun Kando
- Department of Chemistry , Graduate School of Engineering Science , Osaka University , CREST , Toyonaka , Osaka 560-8531 , Japan . ;
| | - Yoshitaka Sugino
- Department of Chemistry , Graduate School of Engineering Science , Osaka University , CREST , Toyonaka , Osaka 560-8531 , Japan . ;
| | - Kazushi Mashima
- Department of Chemistry , Graduate School of Engineering Science , Osaka University , CREST , Toyonaka , Osaka 560-8531 , Japan . ;
| |
Collapse
|
19
|
|
20
|
Dolinar BS, Berry JF. Electronic tuning of Mo2(thioamidate)4 complexes through π-system substituents and cis/trans isomerism. Dalton Trans 2014; 43:6165-76. [PMID: 24590395 DOI: 10.1039/c4dt00297k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report an exploration of the coordination chemistry of a systematic series of cyclic thioamidate ligands with the quadruply-bonded Mo2(4+) core. In addition to the S and N donor atoms that bind to Mo, the ligands utilized in this study have an additional O or S atom in conjugation with the thioamidate π system. The preparation of four new Mo2 complexes is described, and these compounds are characterized by X-ray crystallography, NMR and UV-vis spectroscopy, electrochemistry, and DFT calculations. These complexes provide a means to interrogate the electronics of Mo2(thioamidate)4 systems. Notably, we describe the first two examples of Mo2(thioamidate)4 complexes in their cis-2,2-regioisomer. By varying the π-system substituent and regioisomerism of these compounds, the electronics of the dimolybdenum core is shown to be altered with varying degrees of effect. Cyclic voltammetry results show that changing the π-system substituent from O to S results in an increase in the Mo2(4+/5+) oxidation potential by 170 mV. Changing the arrangement of ligands around the dimolybdenum core from trans-2,2 to cis-2,2 slightly weakens the metal-ligand bonds, raising the oxidation potential by a more modest 30-100 mV. MO diagrams of each compound derived from DFT calculations support these conclusions as well; the identity of the π-system substituent alters the δ-δ* (HOMO-LUMO) gap by up to 0.4 eV, whereas regioisomerism yields smaller changes in the electronic structure.
Collapse
Affiliation(s)
- Brian S Dolinar
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53704, USA.
| | | |
Collapse
|
21
|
Sieh D, Burger P. Formation of a Stannyl Amido Complex by the Reaction of a Terminal Iridium Nitrido Complex with a Stannane. Z Anorg Allg Chem 2014. [DOI: 10.1002/zaac.201400235] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
22
|
|
23
|
Kornecki KP, Berry JF, Powers DC, Ritter T. MetalMetal Bond-Containing Complexes as Catalysts for CH Functionalization. PROGRESS IN INORGANIC CHEMISTRY 2014. [DOI: 10.1002/9781118792797.ch04] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Corcos AR, Long AKM, Guzei IA, Berry JF. A Synthetic Cycle for Nitrogen Atom Transfer Featuring a Diruthenium Nitride Intermediate. Eur J Inorg Chem 2013. [DOI: 10.1002/ejic.201300180] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
25
|
Abstract
We report here the syntheses, X-ray crystal structures, electrochemistry, and density functional theory (DFT) single-point calculations of three new complexes: tetrakis(monothiosuccinimidato)dimolybdenum(II) [Mo2(SNO5)4, 1a], tetrakis(6-thioxo-2-piperidinonato)dimolybdenum(II) [Mo2(SNO6)4, 1b], and chlorotetrakis(monothiosuccinimidato)pyridinelithiumdimolybdenum(II) [pyLiMo2(SNO5)4Cl, 2-py]. X-ray crystallography shows unusually short axial Mo2-Cl bond lengths in 2-py, 2.6533(6) Å, and dimeric 2-dim, 2.644(1) Å, which we propose result from an increased Lewis acidity of the Mo2 unit in the presence of the proximal Li(+) ion. When 2-py is dissolved in MeCN, the lithium reversibly dissociates, forming an equilibrium mixture of (MeCNLiMo2(SNO5)4Cl) (2-MeCN) and [Li(MeCN)4](+)[Mo2(SNO5)4Cl](-) (3). Cyclic voltammetry was used to determine the equilibrium lithium binding constant (room temperature, K(eq) = 95 ± 1). From analysis of the temperature dependence of the equilibrium constant, thermodynamic parameters for the formation of 2-MeCN from 3 (ΔH° = -6.96 ± 0.93 kJ mol(-1) and ΔS° = 13.9 ± 3.5 J mol(-1) K(-1)) were extracted. DFT calculations indicate that Li(+) affects the Mo-Cl bond length through polarization of metal-metal bonding/antibonding molecular orbitals when lithium and chloride are added to the dimolybdenum core.
Collapse
Affiliation(s)
- Brian S Dolinar
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | | |
Collapse
|
26
|
Sieh D, Burger P. Si–H Activation in an Iridium Nitrido Complex—A Mechanistic and Theoretical Study. J Am Chem Soc 2013; 135:3971-82. [DOI: 10.1021/ja311905h] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Daniel Sieh
- Institut für Anorganische und Angewandte Chemie,
Fachbereich Chemie, Universität Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Peter Burger
- Institut für Anorganische und Angewandte Chemie,
Fachbereich Chemie, Universität Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| |
Collapse
|