1
|
Potempa M, Hart PC, Rajab IM, Potempa LA. Redefining CRP in tissue injury and repair: more than an acute pro-inflammatory mediator. Front Immunol 2025; 16:1564607. [PMID: 40093010 PMCID: PMC11906453 DOI: 10.3389/fimmu.2025.1564607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 02/13/2025] [Indexed: 03/19/2025] Open
Abstract
Most early studies investigating the role of C-reactive protein (CRP) in tissue damage determined it supported pro-hemostatic and pro-inflammatory activities. However, these findings were not universal, as other data suggested CRP inhibited these same processes. A potential explanation for these disparate observations finally emerged with the recognition that CRP undergoes context-dependent conformational changes in vivo, and each of its three isoforms - pentameric CRP (pCRP), modified pentameric CRP (pCRP*), and monomeric CRP (mCRP) - have different effects. In this review, we consider this new paradigm and re-evaluate the role of CRP and its isoforms in the tissue repair process. Indeed, a growing body of evidence points toward the involvement of CRP not just in hemostasis and inflammation, but also in the resolution of inflammation and in tissue regeneration. Additionally, we briefly discuss the shortcomings of the currently available diagnostic tests for CRP and highlight the need for change in how CRP is currently utilized in clinical practice.
Collapse
Affiliation(s)
| | - Peter C. Hart
- College of Science, Health, and Pharmacy, Roosevelt University, Schaumburg, IL, United States
| | - Ibraheem M. Rajab
- College of Science, Health, and Pharmacy, Roosevelt University, Schaumburg, IL, United States
| | - Lawrence A. Potempa
- Acphazin Inc., Deerfield, IL, United States
- College of Science, Health, and Pharmacy, Roosevelt University, Schaumburg, IL, United States
| |
Collapse
|
2
|
Noone DP, Isendoorn MME, Hamers SMWR, Keizer ME, Wulffelé J, van der Velden TT, Dijkstra DJ, Trouw LA, Filippov DV, Sharp TH. Structural basis for surface activation of the classical complement cascade by the short pentraxin C-reactive protein. Proc Natl Acad Sci U S A 2024; 121:e2404542121. [PMID: 39240968 PMCID: PMC11406272 DOI: 10.1073/pnas.2404542121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/04/2024] [Indexed: 09/08/2024] Open
Abstract
Human C-reactive protein (CRP) is a pentameric complex involved in immune defense and regulation of autoimmunity. CRP is also a therapeutic target, with both administration and depletion of serum CRP being pursued as a possible treatment for autoimmune and cardiovascular diseases, among others. CRP binds to phosphocholine (PC) moieties on membranes to activate the complement system via the C1 complex, but it is unknown how CRP, or any pentraxin, binds to C1. Here, we present a cryoelectron tomography (cryoET)-derived structure of CRP bound to PC ligands and the C1 complex. To gain control of CRP binding, a synthetic mimotope of PC was synthesized and used to decorate cell-mimetic liposome surfaces. Structure-guided mutagenesis of CRP yielded a fully active complex able to bind PC-coated liposomes that was ideal for cryoET and subtomogram averaging. In contrast to antibodies, which form Fc-mediated hexameric platforms to bind and activate the C1 complex, CRP formed rectangular platforms assembled from four laterally associated CRP pentamers that bind only four of the six available globular C1 head groups. Potential residues mediating lateral association of CRP were identified from interactions between unit cells in existing crystal structures, which rationalized previously unexplained mutagenesis data regarding CRP-mediated complement activation. The structure also enabled interpretation of existing biochemical data regarding interactions mediating C1 binding and identified additional residues for further mutagenesis studies. These structural data therefore provide a possible mechanism for regulation of complement by CRP, which limits complement progression and has consequences for how the innate immune system influences autoimmunity.
Collapse
Affiliation(s)
- Dylan P. Noone
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RCLeiden, The Netherlands
| | - Marjolein M. E. Isendoorn
- Leiden Institute of Chemistry, Gorlaeus Laboratory, Leiden University, 2333 CCLeiden, The Netherlands
| | - Sebastiaan M. W. R. Hamers
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RCLeiden, The Netherlands
| | - Mariska E. Keizer
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RCLeiden, The Netherlands
| | - Jip Wulffelé
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RCLeiden, The Netherlands
| | - Tijn T. van der Velden
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RCLeiden, The Netherlands
| | - Douwe J. Dijkstra
- Department of Immunology, Leiden University Medical Center, 2333 ZALeiden, The Netherlands
| | - Leendert A. Trouw
- Department of Immunology, Leiden University Medical Center, 2333 ZALeiden, The Netherlands
| | - Dmitri V. Filippov
- Leiden Institute of Chemistry, Gorlaeus Laboratory, Leiden University, 2333 CCLeiden, The Netherlands
| | - Thomas H. Sharp
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RCLeiden, The Netherlands
- School of Biochemistry, University of Bristol, BristolBS8 1TD, United Kingdom
| |
Collapse
|
3
|
Chen Z, Zhu C, Yang J, Zhang M, Yuan J, Shen Y, Zhou J, Huang H, Xu D, Crommen J, Jiang Z, Wang Q. Inside-Out Oriented Choline Phosphate-Based Biomimetic Magnetic Nanomaterials for Precise Recognition and Analysis of C-Reactive Protein. Anal Chem 2023; 95:3532-3543. [PMID: 36744576 DOI: 10.1021/acs.analchem.2c05683] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Phospholipid-based materials exhibit great application potential in the fields of chemistry, biology, and pharmaceutical sciences. In this study, an inside-out oriented choline phosphate molecule, 2-{2-(methacryloyloxy)ethyldimethylammonium}ethyl n-butyl phosphate (MBP), was proposed and verified as a novel ligand of C-reactive protein (CRP) to enrich the functionality of these materials. Compared with phosphorylcholine (PC)-CRP interactions, the binding between MBP and CRP was not affected by the reverse position of phosphate and choline groups and even found more abundant binding sites. Thus, high-density MBP-grafted biomimetic magnetic nanomaterials (MBP-MNPs) were fabricated by reversible addition-fragmentation chain transfer polymerization based on thiol-ene click chemistry. The novel materials exhibited multifunctional applications for CRP including purification and ultrasensitive detection. On the one hand, higher specificity, recovery (90%), purity (95%), and static binding capacity (198.14 mg/g) for CRP were achieved on the novel materials in comparison with traditional PC-based materials, and the enriched CRP from patient serum can maintain its structural integrity and bioactivity. On the other hand, the CRP detection method combining G-quadruplex and thioflavin T developed with MBP-MNPs showed a lower detection limit (10 pM) and wider linear range (0.1-50 nM) than most PC-functionalized analytical platforms. Therefore, the inside-out oriented choline phosphate can not only precisely recognize CRP but also be combined with biomimetic nanomaterials to provide high application potential.
Collapse
Affiliation(s)
- Zhiwei Chen
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Chendi Zhu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Jiawen Yang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Mengyun Zhang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Jiaming Yuan
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Yuan Shen
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Jingwei Zhou
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Hao Huang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Dongsheng Xu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Jacques Crommen
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China.,Laboratory for the Analysis of Medicines, Department of Pharmaceutical Sciences, CIRM, University of Liege, CHU B36, B-4000 Liege, Belgium
| | - Zhengjin Jiang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Qiqin Wang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| |
Collapse
|
4
|
Potempa LA, Qiu WQ, Stefanski A, Rajab IM. Relevance of lipoproteins, membranes, and extracellular vesicles in understanding C-reactive protein biochemical structure and biological activities. Front Cardiovasc Med 2022; 9:979461. [PMID: 36158829 PMCID: PMC9493015 DOI: 10.3389/fcvm.2022.979461] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Early purification protocols for C-reactive protein (CRP) often involved co-isolation of lipoproteins, primarily very low-density lipoproteins (VLDLs). The interaction with lipid particles was initially attributed to CRP’s calcium-dependent binding affinity for its primary ligand—phosphocholine—the predominant hydrophilic head group expressed on phospholipids of most lipoprotein particles. Later, CRP was shown to additionally express binding affinity for apolipoprotein B (apo B), a predominant apolipoprotein of both VLDL and LDL particles. Apo B interaction with CRP was shown to be mediated by a cationic peptide sequence in apo B. Optimal apo B binding required CRP to be surface immobilized or aggregated, treatments now known to structurally change CRP from its serum soluble pentamer isoform (i.e., pCRP) into its poorly soluble, modified, monomeric isoform (i.e., mCRP). Other cationic ligands have been described for CRP which affect complement activation, histone bioactivities, and interactions with membranes. mCRP, but not pCRP, binds cholesterol and activates signaling pathways that activate pro-inflammatory bioactivities long associated with CRP as a biomarker. Hence, a key step to express CRP’s biofunctions is its conversion into its mCRP isoform. Conversion occurs when (1) pCRP binds to a membrane surface expressed ligand (often phosphocholine); (2) biochemical forces associated with binding cause relaxation/partial dissociation of secondary and tertiary structures into a swollen membrane bound intermediate (described as mCRPm or pCRP*); (3) further structural relaxation which leads to total, irreversible dissociation of the pentamer into mCRP and expression of a cholesterol/multi-ligand binding sequence that extends into the subunit core; (4) reduction of the CRP subunit intrachain disulfide bond which enhances CRP’s binding accessibility for various ligands and activates acute phase proinflammatory responses. Taken together, the biofunctions of CRP involve both lipid and protein interactions and a conformational rearrangement of higher order structure that affects its role as a mediator of inflammatory responses.
Collapse
Affiliation(s)
- Lawrence A. Potempa
- College of Science, Health and Pharmacy, Roosevelt University Schaumburg, Schaumburg, IL, United States
- *Correspondence: Lawrence A. Potempa,
| | - Wei Qiao Qiu
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
- Alzheimer’s Disease Center, Boston University School of Medicine, Boston, MA, United States
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, United States
| | - Ashley Stefanski
- College of Science, Health and Pharmacy, Roosevelt University Schaumburg, Schaumburg, IL, United States
| | - Ibraheem M. Rajab
- College of Science, Health and Pharmacy, Roosevelt University Schaumburg, Schaumburg, IL, United States
| |
Collapse
|
5
|
Marquart GW, Stoddard J, Kinnison K, Zhou F, Hugo R, Ryals R, Shubert S, McGill TJ, Mackiewicz MR. Increasing the Efficacy of Gold Nanorod Uptake in Stem Cell-Derived Therapeutic Cells: Implications for Stem Cell Labeling and Optical Coherence Tomography Imaging. ACS APPLIED NANO MATERIALS 2022; 5:6995-7008. [PMID: 39781112 PMCID: PMC11706712 DOI: 10.1021/acsanm.2c00958] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
The advancement of safe nanomaterials for use as optical coherence tomography (OCT) imaging and stem cell-labeling agents to longitudinally visually track therapeutic derived retinal stem cells to study their migration, survival rate, and efficacy is challenged by instability, intracellular aggregation, low uptake, and cytotoxicity. Here, we describe a series of hybrid lipid-coated gold nanorods (AuNRs) that could solve these issues. These nanomaterials were made via a layer-by-layer assembly approach, and their stability in biological media, mechanism, efficiency of uptake, and toxicity were compared with a commercially available set of AuNRs with a 5 nm mesoporous silica (mSiO2)-polymer coating. These nanomaterials can serve as stem cell labeling and OCT imaging agents because they absorb in the near-infrared (NIR) region away from biological tissues. Although both subtypes of AuNRs were taken up by retinal pigment epithelial, neural progenitor, and baby hamster kidney cells, slightly negatively charged hybrid lipid-coated AuNRs had minimal aggregation in biological media and within the cytoplasm of cells (~3000 AuNRs/cell) as well as minimal impact on cell health. Hybrid lipid-coated AuNRs modified with cell-penetrating peptides had the least toxicological impact, with >92% cell viability. In contrast, the more "sticky" AuNRs with a 5 nm mSiO2-polymer coating showed significant aggregation in biological media and within the cytoplasm with lower-than-expected uptake of AuNRs (~5400 of AuNRs/cell) given their highly positive surface charge (35+ mV). Collectively, we have demonstrated that hybrid lipid-coated AuNRs, which absorb in the NIR-II region away from biological tissues, with tuned surface chemistry can label therapeutic derived stem cells with minimal aggregation and impact on cell health as well as enhance uptake for OCT imaging applications.
Collapse
Affiliation(s)
- Grant W Marquart
- Department of Chemistry, Portland State University, Portland, Oregon 97207, United States
| | - Jonathan Stoddard
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Karen Kinnison
- Department of Chemistry, Portland State University, Portland, Oregon 97207, United States
| | - Felicia Zhou
- Department of Chemistry, Portland State University, Portland, Oregon 97207, United States
| | - Richard Hugo
- Department of Chemistry, Portland State University, Portland, Oregon 97207, United States
| | - Renee Ryals
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Scott Shubert
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Trevor J McGill
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Marilyn R Mackiewicz
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
6
|
Biochemically prepared C-reactive protein conformational states differentially affect C1q binding. BBA ADVANCES 2022; 2:100058. [PMID: 37082597 PMCID: PMC10074840 DOI: 10.1016/j.bbadva.2022.100058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/19/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022] Open
Abstract
C-reactive protein (CRP) is commonly measured as an inflammatory marker in patient studies for coronary heart disease, autoimmune disease and recent acute infections. Due to a correlation of CRP to a vast number of disease states, CRP is a well-studied protein in medical literature with over 16000 references in PubMed [1]. However, the biochemical and structural variations of CRP are not well understood in regards to their binding of complement immune response proteins. Conformations of CRP are thought to affect disease states differently, with a modified form showing neoepitopes and activating the complement immune response through C1q binding. In this work, we compare the unfolding of CRP using chemical denaturants and identify which states of CRP bind a downstream complement immune response binding partner (C1q). We used guanidine HCl (GndHCl), urea/EDTA, and 0.01% SDS with heat to perturb the pentameric state. All treatments give rise to a monomeric state in non-denaturing polyacrylamide gel electrophoresis experiments, but only treatment with certain concentrations of denaturant or dilute SDS with heat maintains CRP function with a key downstream binding partner, C1q, as measured by enzyme-linked immunosorbent assays. The results suggest that the final form of modified CRP and its ability to mimic biological binding is dependent on the preparation method.
Collapse
|
7
|
Ramos AP, Sebinelli HG, Ciancaglini P, Rosato N, Mebarek S, Buchet R, Millán JL, Bottini M. The functional role of soluble proteins acquired by extracellular vesicles. JOURNAL OF EXTRACELLULAR BIOLOGY 2022; 1:e34. [PMID: 38938684 PMCID: PMC11080634 DOI: 10.1002/jex2.34] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 06/29/2024]
Abstract
Extracellular vesicles (EVs) are lipid bilayer-enclosed nanosized particles released by all cell types during physiological as well as pathophysiological processes to carry out diverse biological functions, including acting as sources of cellular dumping, signalosomes and mineralisation nanoreactors. The ability of EVs to perform specific biological functions is due to their biochemical machinery. Among the components of the EVs' biochemical machinery, surface proteins are of critical functional significance as they mediate the interactions of EVs with components of the extracellular milieu, the extracellular matrix and neighbouring cells. Surface proteins are thought to be native, that is, pre-assembled on the EVs' surface by the parent cells before the vesicles are released. However, numerous pieces of evidence have suggested that soluble proteins are acquired by the EVs' surface from the extracellular milieu and further modulate the biological functions of EVs during innate and adaptive immune responses, autoimmune disorders, complement activation, coagulation, viral infection and biomineralisation. Herein, we will describe the methods currently used to identify the EVs' surface proteins and discuss recent knowledge on the functional relevance of the soluble proteins acquired by EVs.
Collapse
Affiliation(s)
- Ana Paula Ramos
- Departamento de QuímicaFaculdade de FilosofiaCiências e Letras de Ribeirão PretoUniversidade de São Paulo (FFCLRP‐USP)Ribeirão PretoSão PauloBrazil
| | - Heitor Gobbi Sebinelli
- Departamento de QuímicaFaculdade de FilosofiaCiências e Letras de Ribeirão PretoUniversidade de São Paulo (FFCLRP‐USP)Ribeirão PretoSão PauloBrazil
| | - Pietro Ciancaglini
- Departamento de QuímicaFaculdade de FilosofiaCiências e Letras de Ribeirão PretoUniversidade de São Paulo (FFCLRP‐USP)Ribeirão PretoSão PauloBrazil
| | - Nicola Rosato
- Dipartimento di Medicina SperimentaleUniversita’ di Roma “Tor Vergata”RomeItaly
| | - Saida Mebarek
- ICBMS UMR CNRS 5246UFR BiosciencesUniversité Lyon 1Villeurbanne CedexFrance
| | - Rene Buchet
- ICBMS UMR CNRS 5246UFR BiosciencesUniversité Lyon 1Villeurbanne CedexFrance
| | | | - Massimo Bottini
- Departamento de QuímicaFaculdade de FilosofiaCiências e Letras de Ribeirão PretoUniversidade de São Paulo (FFCLRP‐USP)Ribeirão PretoSão PauloBrazil
- Sanford Burnham PrebysLa JollaCaliforniaUSA
| |
Collapse
|
8
|
Cunningham B, Engstrom AM, Harper BJ, Harper SL, Mackiewicz MR. Silver Nanoparticles Stable to Oxidation and Silver Ion Release Show Size-Dependent Toxicity In Vivo. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1516. [PMID: 34201075 PMCID: PMC8230025 DOI: 10.3390/nano11061516] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 02/06/2023]
Abstract
Silver nanoparticles (AgNPs) are widely used in commerce, however, the effect of their physicochemical properties on toxicity remains debatable because of the confounding presence of Ag+ ions. Thus, we designed a series of AgNPs that are stable to surface oxidation and Ag+ ion release. AgNPs were coated with a hybrid lipid membrane comprised of L-phosphatidylcholine (PC), sodium oleate (SOA), and a stoichiometric amount of hexanethiol (HT) to produce oxidant-resistant AgNPs, Ag-SOA-PC-HT. The stability of 7-month aged, 20-100 nm Ag-SOA-PC-HT NPs were assessed using UV-Vis, dynamic light scattering (DLS), and inductively coupled plasma mass spectrometry (ICP-MS), while the toxicity of the nanomaterials was assessed using a well-established, 5-day embryonic zebrafish assay at concentrations ranging from 0-12 mg/L. There was no change in the size of the AgNPs from freshly made samples or 7-month aged samples and minimal Ag+ ion release (<0.2%) in fishwater (FW) up to seven days. Toxicity studies revealed AgNP size- and concentration-dependent effects. Increased mortality and sublethal morphological abnormalities were observed at higher concentrations with smaller nanoparticle sizes. This study, for the first time, determined the effect of AgNP size on toxicity in the absence of Ag+ ions as a confounding variable.
Collapse
Affiliation(s)
- Brittany Cunningham
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA; (B.C.); (B.J.H.); (S.L.H.)
| | - Arek M. Engstrom
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR 97331, USA;
| | - Bryan J. Harper
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA; (B.C.); (B.J.H.); (S.L.H.)
| | - Stacey L. Harper
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA; (B.C.); (B.J.H.); (S.L.H.)
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR 97331, USA;
- Oregon Nanoscience and Microtechnologies Institute, Corvallis, OR 97339, USA
| | | |
Collapse
|
9
|
Miesen TJ, Engstrom AM, Frost DC, Ajjarapu R, Ajjarapu R, Lira CN, Mackiewicz MR. A hybrid lipid membrane coating "shape-locks" silver nanoparticles to prevent surface oxidation and silver ion dissolution. RSC Adv 2020; 10:15677-15693. [PMID: 35493639 PMCID: PMC9052474 DOI: 10.1039/d0ra01727b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 04/14/2020] [Indexed: 11/21/2022] Open
Abstract
The controlled synthesis of stable silver nanoparticles (AgNPs), that do not undergo surface oxidation and Ag+ ion dissolution, continues to be a major challenge. Here the synthesis of robust hybrid lipid-coated AgNPs, comprised of l-α-phosphatidylcholine (PC) membranes anchored by a stoichiometric amount of long-chained hydrophobic thiols and sodium oleate (SOA) as hydrophobic binding partners, that do not undergo surface oxidation and Ag+ ion dissolution, is described. UV-Visible (UV-Vis) spectroscopy, transmission electron microscopy (TEM), and inductively coupled plasma mass spectrometry (ICP-MS) demonstrate that in the presence of strong oxidants, such as potassium cyanide (KCN), the hybrid lipid-coated AgNPs are stable and do not undergo surface oxidation even in the presence of membrane destabilizing surfactants. UV-Vis studies show that the stability of hybrid lipid-coated AgNPs of various sizes and shapes is dependent on the length of the thiol hydrocarbon chain and can be ranked in the order of increasing stability as follows: propanethiol (PT) < hexanethiol (HT) ≤ decanethiol (DT). UV-Vis and ICP-MS studies show that the hybrid lipid-coated AgNPs do not change in size or shape confirming that the AgNPs do not undergo surface oxidation and Ag+ ion dissolution when placed in the presence of strong oxidants, chlorides, thiols, and low pH. Long-term stability studies, over 21 days, show that the hybrid lipid-coated AgNPs do not release Ag+ ions and are more stable. Overall, these studies demonstrate hybrid membrane encapsulation of nanomaterials is a viable method for stabilizing AgNPs in a "shape-locked" form that is unable to undergo surface oxidation, Ag+ ion release, aging, or shape conversion. More importantly, this design strategy is a simple approach to the synthesis and stabilization of AgNPs for a variety of biomedical and commercial applications where Ag+ ion release and toxicity is a concern. With robust and shielded AgNPs, investigators can now evaluate and correlate how the physical features of AgNPs influence toxicity without the confounding factor of Ag+ ions present in samples. This design strategy also provides an opportunity where the membrane composition can be tuned to control the release rate of Ag+ ions for optimizing antimicrobial activity.
Collapse
Affiliation(s)
- Thomas J Miesen
- Department of Chemistry, Portland State University Portland OR 97207 USA
| | - Arek M Engstrom
- Department of Chemistry, Portland State University Portland OR 97207 USA
| | - Dane C Frost
- Department of Chemistry, Portland State University Portland OR 97207 USA
| | - Ramya Ajjarapu
- Department of Chemistry, Portland State University Portland OR 97207 USA
| | - Rohan Ajjarapu
- Department of Chemistry, Portland State University Portland OR 97207 USA
| | | | | |
Collapse
|
10
|
C-reactive protein (CRP) recognizes uric acid crystals and recruits proteases C1 and MASP1. Sci Rep 2020; 10:6391. [PMID: 32286427 PMCID: PMC7156728 DOI: 10.1038/s41598-020-63318-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/30/2020] [Indexed: 11/08/2022] Open
Abstract
Gout is caused by crystallization of uric acid in the form of monosodium urate (MSU) crystals, which induce a sterile inflammatory response that is hardly distinguishable from microbe-induced inflammatory responses. It is unclear, if MSU crystals (like microbes) are recognized by specific pattern recognition receptors. To identify possible soluble pattern recognition molecules for MSU crystals, we purified MSU-binding proteins from human body fluids. We identified C-reactive protein (CRP) as a major MSU-binding protein. Binding of CRP was strong enough to specifically deplete CRP from human serum. We found that CRP was required for fixation of complement components C1q, C1r, C1s and MASP1. Thus, we have identified a pattern recognition molecule for MSU crystals that links to the activation of complement. Notably, CRP does not show an even binding to the complete surface of the crystals. It rather binds to edges or distinct faces of the crystals.
Collapse
|
11
|
Yao Z, Zhang Y, Wu H. Regulation of C-reactive protein conformation in inflammation. Inflamm Res 2019; 68:815-823. [PMID: 31312858 DOI: 10.1007/s00011-019-01269-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/02/2019] [Accepted: 07/09/2019] [Indexed: 12/19/2022] Open
Abstract
C-reactive protein (CRP) is a non-specific diagnostic marker of inflammation and an evolutionarily conserved protein with roles in innate immune signaling. Natural CRP is composed of five identical globular subunits that form a pentamer, but the role of pentameric CRP (pCRP) during inflammatory pathogenesis remains controversial. Emerging evidence suggests that pCRP can be dissociated into monomeric CRP (mCRP) that has major roles in host defenses and inflammation. Here, we discuss our current knowledge of the dissociation mechanisms of pCRP and summarize the stepwise conformational transition model to mCRP to elucidate how CRP dissociation contributes to proinflammatory activity. These discussions will evoke new understanding of this ancient protein.
Collapse
Affiliation(s)
- ZhenYu Yao
- Children's Research Institute, Xi'an Key Laboratory of Children's Health and Diseases, Affiliated Children Hospital, Xi'an Jiaotong University, 69# Xijuyuan Lane, Lianhu District, Xi'an, 710003, Shaanxi, China
| | - Yanmin Zhang
- Children's Research Institute, Xi'an Key Laboratory of Children's Health and Diseases, Affiliated Children Hospital, Xi'an Jiaotong University, 69# Xijuyuan Lane, Lianhu District, Xi'an, 710003, Shaanxi, China
| | - HaiBin Wu
- Children's Research Institute, Xi'an Key Laboratory of Children's Health and Diseases, Affiliated Children Hospital, Xi'an Jiaotong University, 69# Xijuyuan Lane, Lianhu District, Xi'an, 710003, Shaanxi, China.
| |
Collapse
|
12
|
Wang Q, Jin H, Xia D, Shao H, Peng K, Liu X, Huang H, Zhang Q, Guo J, Wang Y, Crommen J, Gan N, Jiang Z. Biomimetic Polymer-Based Method for Selective Capture of C-Reactive Protein in Biological Fluids. ACS APPLIED MATERIALS & INTERFACES 2018; 10:41999-42008. [PMID: 30412376 DOI: 10.1021/acsami.8b15581] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Selective capturing and purification of C-reactive protein (CRP) from complex biological fluids plays a pivotal role in studying biological activities of CRP in various diseases. However, obvious nonspecific adsorption of proteins was observed on current affinity sorbents, and thus additional purification steps are often required, which could compromise the recovery of the target protein and/or introduce new impurities. In this study, inspired by the highly specific interaction between CRP and the cell membrane, an excellent anti-biofouling compound 2-(methacryloyloxy)ethyl phosphorylcholine and a highly hydrophilic crosslinker N, N'-methylenebisacrylamide were employed to fabricate a novel cell membrane biomimetic polymer for selective capture of CRP in the presence of calcium ions. Based on the polymer described above, a facile enrichment approach was established after systematic optimization of the washing and elution conditions. With its favorable properties, such as good porosity, weak electrostatic interaction, high hydrophilicity, and biocompatibility, the novel biomimetic polymer exhibits good specificity, selectivity, recovery (near 100%), purity (95%), and a lower nonspecific protein adsorption for CRP in comparison with commercial immobilized p-aminophenyl phosphoryl choline gel and other purification materials. Furthermore, the structural integrity and functionality of CRP in the elution fraction were well preserved and confirmed by circular dichroism spectroscopy, fluorescence spectroscopy, and immunoturbidimetric assay. Finally, the biomimetic polymer was successfully applied to the selective enrichment of CRP from sera of patients with inflammation and rats. The proposed novel enrichment approach based on the versatile biomimetic polymer can be used for effective CRP purification, which will benefit the in-depth study of its biological roles.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Qiaoxuan Zhang
- Department of Laboratory Medicine , The Second Affiliated Hospital of Guangzhou University of Chinese Medicine , Guangzhou 510120 , China
| | | | | | - Jacques Crommen
- Laboratory of Analytical Pharmaceutical Chemistry, Department of Pharmaceutical Sciences , CIRM, University of Liege, CHU B36 , B-4000 Liege , Belgium
| | - Ning Gan
- Faculty of Materials Science and Chemical Engineering , Ningbo University , Ningbo 315211 , China
| | | |
Collapse
|
13
|
Schenk NA, Dahl PJ, Hanna MG, Audhya A, Tall GG, Knight JD, Anantharam A. A simple supported tubulated bilayer system for evaluating protein-mediated membrane remodeling. Chem Phys Lipids 2018; 215:18-28. [PMID: 30012406 DOI: 10.1016/j.chemphyslip.2018.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 06/29/2018] [Indexed: 01/31/2023]
Abstract
Fusion and fission of cellular membranes involve dramatic, protein-mediated changes in membrane curvature. Many of the experimental methods useful for investigating curvature sensing or generation require specialized equipment. We have developed a system based on supported lipid bilayers (SLBs) in which lipid tubules are simple to produce and several types of membrane remodeling events can be readily imaged using widely available instrumentation (e.g., tubule fission and/or membrane budding). Briefly, high ionic strength during lipid bilayer deposition results in incorporation of excess lipids in the SLB. After sequentially washing with water and physiological ionic strength buffer solutions, lipid tubules form spontaneously. We find that tubule formation results from solution-dependent spreading of the SLB; washing from water into physiological ionic strength buffer solution leads to expansion of the bilayer and formation of tubules. Conversely, washing from physiological buffer into water results in contraction of the membrane and loss of tubules. We demonstrate the utility of these supported tubulated bilayers, termed "STuBs," with an investigation of Sar1B, a small Ras family G-protein known to influence membrane curvature. The addition of Sar1B to STuBs results in dramatic changes in tubule topology and eventual tubule fission. Overall, STuBs are a simple experimental system, useful for monitoring protein-mediated effects on membrane topology in real time, under physiologically relevant conditions.
Collapse
Affiliation(s)
- Noah A Schenk
- Department of Pharmacology, University of Michigan, United States
| | - Peter J Dahl
- Department of Pharmacology, University of Michigan, United States
| | - Michael G Hanna
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, United States
| | - Anjon Audhya
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, United States
| | - Gregory G Tall
- Department of Pharmacology, University of Michigan, United States
| | | | - Arun Anantharam
- Department of Pharmacology, University of Michigan, United States.
| |
Collapse
|
14
|
Zhang L, Li HY, Li W, Shen ZY, Wang YD, Ji SR, Wu Y. An ELISA Assay for Quantifying Monomeric C-Reactive Protein in Plasma. Front Immunol 2018; 9:511. [PMID: 29593741 PMCID: PMC5857914 DOI: 10.3389/fimmu.2018.00511] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 02/27/2018] [Indexed: 11/13/2022] Open
Abstract
Native C-reactive protein (nCRP) is a non-specific marker of inflammation being claimed as a bystander in several chronic disorders. Accumulating evidence indicates that nCRP dissociates to and acts primarily as the monomeric conformation (mCRP) at inflammatory loci. This suggests that mCRP may be a superior disease marker with improved specificity and clear causality to the underlying pathogenesis. However, the lack of a feasible assay to quantify mCRP in clinical samples precludes the assessment of that suggestion. Here we report the development of a sandwich ELISA assay for quantification of plasma mCRP using commercially available reagents. Our assay is reproducible and highly conformation-specific showing a reliable detection limit of 1 ng/mL. We further show that mCRP appears to be a better marker than nCRP in several skin-related autoimmune disorders. This assay thus provides a useful tool to examine the clinical significance and utility of mCRP.
Collapse
Affiliation(s)
- Lin Zhang
- MOE Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Hai-Yun Li
- MOE Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Wei Li
- MOE Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Zhi-Yuan Shen
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yin-Di Wang
- Ultrasound Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Shang-Rong Ji
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yi Wu
- MOE Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
15
|
Jia ZK, Li HY, Liang YL, Potempa LA, Ji SR, Wu Y. Monomeric C-Reactive Protein Binds and Neutralizes Receptor Activator of NF-κB Ligand-Induced Osteoclast Differentiation. Front Immunol 2018. [PMID: 29520264 PMCID: PMC5827540 DOI: 10.3389/fimmu.2018.00234] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
C-reactive protein (CRP) is an established marker of rheumatoid arthritis (RA) but with ill-defined actions in the pathogenesis. Here, we show that CRP regulates the differentiation of osteoclasts, a central mediator of joint inflammation and bone erosion in RA, in a conformation- and receptor activator of NF-κB ligand (RANKL)-dependent manner. CRP in the native conformation is ineffective, whereas the monomeric conformation (mCRP) actively modulates osteoclast differentiation through NF-κB and phospholipase C signaling. Moreover, mCRP can bind RANKL, the major driver of osteoclast differentiation, and abrogate its activities. The binding and inhibition of RANKL are mediated by the cholesterol binding sequence (CBS) of mCRP. Corroborating the in vitro results, CRP knockout exacerbates LPS-induced bone resorption in mice. These results suggest that mCRP may be protective in joint inflammation by inhibiting pathological osteoclast differentiation and that the CBS peptide could be exploited as a potential RANKL inhibitor.
Collapse
Affiliation(s)
- Zhe-Kun Jia
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Hai-Yun Li
- MOE Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Yu-Lin Liang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | | | - Shang-Rong Ji
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yi Wu
- MOE Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,The Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
16
|
Goda T, Miyahara Y. Specific binding of human C-reactive protein towards supported monolayers of binary and engineered phospholipids. Colloids Surf B Biointerfaces 2017; 161:662-669. [PMID: 29172154 DOI: 10.1016/j.colsurfb.2017.11.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/13/2017] [Accepted: 11/14/2017] [Indexed: 02/04/2023]
Abstract
Circulating C-reactive protein (CRP) recognizes altered plasma membranes and activates complements systems in the acute phase of inflammation and infection in human. We have shown previously the calcium-independent adsorption of CRP toward 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and lysophosphatidylcholine (LPC) on supported phospholipid monolayers. Here, we extended our study to other phospholipids and additives to elucidate the pattern recognition of CRP using a surface plasmon resonance biosensor. Surface density and lateral fluidity depended on the type of phospholipids in the monolayers as characterized by SPR and fluorescence recovery after photobleaching measurements. CRP recognized 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine (POPS) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (POPG) in the supported POPC monolayers without calcium at pH 7.4 and 5.5. As opposed to LPC, CRP did not recognize 3-sn-lysophosphatidylethanolamine in the POPC monolayers in calcium-free conditions. While, the addition of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) or sphingomyelin to supported POPC monolayers blocked CRP adsorption. Calcium-dependent CRP binding was observed only at pH 5.5 on supported monolayers of engineered phospholipids with inverted headgroups relative to POPC. The complement 1q (C1q) protein recognized the active form of CRP on the supported phospholipid monolayers. The discovery of CRP recognition with these phospholipids aids our understanding of the activation dynamics of CRP with phospholipid-based biomaterials when used during the acute phase.
Collapse
Affiliation(s)
- Tatsuro Goda
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan.
| | - Yuji Miyahara
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| |
Collapse
|
17
|
Alnaas AA, Moon CL, Alton M, Reed SM, Knowles MK. Conformational Changes in C-Reactive Protein Affect Binding to Curved Membranes in a Lipid Bilayer Model of the Apoptotic Cell Surface. J Phys Chem B 2017; 121:2631-2639. [PMID: 28225631 DOI: 10.1021/acs.jpcb.6b11505] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
C-reactive protein (CRP) is a serum protein that binds to damaged membranes through a phosphatidylcholine binding site. The membrane binding process can initiate the complement immune response and facilitates the clearance of apoptotic cells, likely aiding in the protection of autoimmunity. The initiation of an immune response relies on a conformation change from a native, pentameric form to a modified form, where the modified form binds complement proteins (i.e., C1q) and regulatory proteins substantially better than the native form. In vitro, this reactivity is observed when CRP is monomeric, and a modified form has also been observed at sites of inflammation. Despite evidence that the monomeric form has much higher affinities for almost all proteinaceous binding partners, the role of CRP conformation on lipid binding is yet unknown. In this work, we mimic the outer leaflet of apoptotic cell membranes using a nanopatterned substrate to create curved, supported lipid bilayers and then characterize how CRP conformation affects the interactions between CRP and target membranes. In this assay, the chemical composition and shape are separately tunable parameters. The lipids consisted primarily of palmitoyloleoylphosphatidylcholine, with and without lysophosphatidylcholine, and the curvature had a radius of 27-55 nm. Using this model system combined with quantitative fluorescence microscopy methods, CRP binding to lipid membranes was measured as a function of different conformations of CRP. The modified form of CRP bound curved membranes, but the pentameric form did not for the range of curvatures measured. Unlike most other curvature-sensing proteins, modified CRP accumulated more at a moderate curvature, rather than highly curved or flat regions, suggesting that the membrane bound form does not solely depend on a defect binding mechanism. The presence of lysophosphatidylcholine, a component of apoptotic membranes, increased CRP binding to all types of membranes. Overall, our results show that CRP interactions vary with protein form, lipid composition, and membrane shape. The mechanism by which CRP recognizes damaged membranes depends on the combination of all three.
Collapse
Affiliation(s)
- Aml A Alnaas
- Department of Chemistry and Biochemistry, University of Denver , Denver, Colorado 80208, United States
| | - Carrie L Moon
- Molecular and Cellular Biophysics, University of Denver , Denver, Colorado 80208, United States
| | - Mitchell Alton
- Department of Chemistry and Biochemistry, University of Denver , Denver, Colorado 80208, United States
| | - Scott M Reed
- Department of Chemistry, University of Colorado Denver , Denver, Colorado 80204, United States
| | - Michelle K Knowles
- Department of Chemistry and Biochemistry, University of Denver , Denver, Colorado 80208, United States.,Molecular and Cellular Biophysics, University of Denver , Denver, Colorado 80208, United States
| |
Collapse
|
18
|
Transitional changes in the CRP structure lead to the exposure of proinflammatory binding sites. Nat Commun 2017; 8:14188. [PMID: 28112148 PMCID: PMC5264208 DOI: 10.1038/ncomms14188] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 12/07/2016] [Indexed: 12/16/2022] Open
Abstract
C-reactive protein (CRP) concentrations rise in response to tissue injury or infection. Circulating pentameric CRP (pCRP) localizes to damaged tissue where it leads to complement activation and further tissue damage. In-depth knowledge of the pCRP activation mechanism is essential to develop therapeutic strategies to minimize tissue injury. Here we demonstrate that pCRP by binding to cell-derived microvesicles undergoes a structural change without disrupting the pentameric symmetry (pCRP*). pCRP* constitutes the major CRP species in human-inflamed tissue and allows binding of complement factor 1q (C1q) and activation of the classical complement pathway. pCRP*–microvesicle complexes lead to enhanced recruitment of leukocytes to inflamed tissue. A small-molecule inhibitor of pCRP (1,6-bis(phosphocholine)-hexane), which blocks the pCRP–microvesicle interactions, abrogates these proinflammatory effects. Reducing inflammation-mediated tissue injury by therapeutic inhibition might improve the outcome of myocardial infarction, stroke and other inflammatory conditions. C-reactive protein is a pentameric protein secreted by the liver in response to injury and infection. Here Braig et al. show that conformational changes in CRP on the surface of monocyte-derived microvesicles enable binding of complement C1q and lead to activation of the complement cascade and aggravation of inflammation.
Collapse
|
19
|
Calcium-independent binding of human C-reactive protein to lysophosphatidylcholine in supported planar phospholipid monolayers. Acta Biomater 2017; 48:206-214. [PMID: 27815167 DOI: 10.1016/j.actbio.2016.10.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 10/06/2016] [Accepted: 10/31/2016] [Indexed: 12/22/2022]
Abstract
Details describing the molecular dynamics of inflammation biomarker human C-reactive protein (CRP) on plasma membranes containing bioactive lipid lysophosphatidylcholine (LPC) remain elusive. Here, we measured the binding kinetics of CRP to supported phospholipid monolayers deposited on an alkanethiol self-assembled monolayer on a planar gold substrate using surface plasmon resonance. Surprisingly, CRP binding to supported 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/LPC monolayers was calcium-independent although CRP binding to supported POPC monolayers was calcium-dependent. Binding inhibition assays indicate a specific interaction between CRP and the glycerophosphate group in LPC in the absence of calcium ions. Binding experiments on supported POPC/1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) monolayers further validated calcium-independent binding of CRP through the glycerophosphate moiety. Docking analysis predicted a new binding site for LPC in the absence of calcium ions, which is located on the opposite side of the known binding site for PC of cyclic pentameric CRP. These results using model plasma membranes should aid our understanding of the activation dynamics of CRP in altered local microenvironments of inflammation and infection. STATEMENT OF SIGNIFICANCE C-reactive protein (CRP), a major acute-phase pentraxin, binds to plasma membranes through the multivalent contacts with zwitterionic phosphorylcholine groups for activating classical complement systems. However, the interaction of CRP with phosphorylcholine-based biomaterials is unknown due to the lack of our understanding on the activation mechanism of CRP in altered local microenvironments. This paper reports the novel calcium-independent interaction of CRP to bioactive phospholipid lysophosphatidylcholine (LPC) in supported phospholipids monolayers as determined using SPR. Binding inhibition experiments indicate exposure of glycerophosphate moiety of LPC is responsible for the calcium-free interaction. Our study may explode the established concept that CRP requires calcium for binding to LPC on damaged cell membranes or biomaterials.
Collapse
|
20
|
Li HY, Wang J, Meng F, Jia ZK, Su Y, Bai QF, Lv LL, Ma FR, Potempa LA, Yan YB, Ji SR, Wu Y. An Intrinsically Disordered Motif Mediates Diverse Actions of Monomeric C-reactive Protein. J Biol Chem 2016; 291:8795-804. [PMID: 26907682 DOI: 10.1074/jbc.m115.695023] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Indexed: 12/25/2022] Open
Abstract
Most proinflammatory actions of C-reactive protein (CRP) are only expressed following dissociation of its native pentameric assembly into monomeric form (mCRP). However, little is known about what underlies the greatly enhanced activities of mCRP. Here we show that a single sequence motif, i.e. cholesterol binding sequence (CBS; a.a. 35-47), is responsible for mediating the interactions of mCRP with diverse ligands. The binding of mCRP to lipoprotein component ApoB, to complement component C1q, to extracellular matrix components fibronectin and collagen, to blood coagulation component fibrinogen, and to membrane lipid component cholesterol, are all found to be markedly inhibited by the synthetic CBS peptide but not by other CRP sequences tested. Likewise, mutating CBS in mCRP also greatly impairs these interactions. Functional experiments further reveal that CBS peptide significantly reduces the effects of mCRP on activation of endothelial cells in vitro and on acute induction of IL-6 in mice. The potency and specificity of CBS are critically determined by the N-terminal residues Cys-36, Leu-37, and His-38; while the versatility of CBS appears to originate from its intrinsically disordered conformation polymorphism. Together, these data unexpectedly identify CBS as the major recognition site of mCRP and suggest that this motif may be exploited to tune the proinflammatory actions of mCRP.
Collapse
Affiliation(s)
- Hai-Yun Li
- From the MOE Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China, State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jing Wang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences and
| | - Fan Meng
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences and
| | - Zhe-Kun Jia
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences and
| | - Yang Su
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences and
| | - Qi-Feng Bai
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China, and
| | - Ling-Ling Lv
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences and
| | - Fu-Rong Ma
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences and
| | | | - Yong-Bin Yan
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shang-Rong Ji
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences and
| | - Yi Wu
- From the MOE Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China, MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences and
| |
Collapse
|
21
|
Ten Broeke T, van Spriel A, Sun P, Leusen J. Meeting report on immunoreceptors 2014. FASEB J 2015; 29:740-4. [PMID: 25733692 DOI: 10.1096/fj.15-0302ufm] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Toine Ten Broeke
- *Laboratory of Translational Immunology, Immunotherapy Group, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands; and Structural Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Annemiek van Spriel
- *Laboratory of Translational Immunology, Immunotherapy Group, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands; and Structural Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Peter Sun
- *Laboratory of Translational Immunology, Immunotherapy Group, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands; and Structural Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jeanette Leusen
- *Laboratory of Translational Immunology, Immunotherapy Group, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands; and Structural Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
22
|
Messersmith RE, Nusz GJ, Reed SM. Using the Localized Surface Plasmon Resonance of Gold Nanoparticles to Monitor Lipid Membrane Assembly and Protein Binding. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2013; 117:26725-26733. [PMID: 25621096 PMCID: PMC4300962 DOI: 10.1021/jp406013q] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Gold nanoparticles provide a template for preparing supported lipid layers with well-defined curvature. Here, we utilize the localized surface plasmon resonance (LSPR) of gold nanoparticles as a sensor for monitoring the preparation of lipid layers on nanoparticles. The LSPR is very sensitive to the immediate surroundings of the nanoparticle surface and it is used to monitor the coating of lipids and subsequent conversion of a supported bilayer to a hybrid membrane with an outer lipid leaflet and an inner leaflet containing hydrophobic alkanethiol. We demonstrate that both decanethiol and propanethiol are able to form hybrid membranes and that the membrane created over the shorter thiol can be stripped from the gold along with the lipid leaflet using β-mercaptoethanol. The sensitivity of the nanoparticle LSPR to the refractive index (RI) of its surroundings is greater when the shorter thiol is used (37.8 ± 1.5 nm per RI unit) than when the longer thiol is used (27.5 ± 0.5 nm per RI unit). Finally, C-reactive protein binding to the membrane is measured using this sensor allowing observation of both protein-membrane and nanoparticle-nanoparticle interactions without chemical labeling of protein or lipids.
Collapse
Affiliation(s)
- Reid E. Messersmith
- Department of Chemistry, University of Colorado Denver, Campus Box 194, P.O. Box 173364, Denver, CO 80217-3364, Office: 303 556-6260
| | - Greg J. Nusz
- Department of Chemistry, University of Colorado Denver, Campus Box 194, P.O. Box 173364, Denver, CO 80217-3364, Office: 303 556-6260
| | - Scott M. Reed
- Department of Chemistry, University of Colorado Denver, Campus Box 194, P.O. Box 173364, Denver, CO 80217-3364, Office: 303 556-6260
| |
Collapse
|