1
|
Yousuf I, Bashir M, Arjmand F, Tabassum S. Advancement of metal compounds as therapeutic and diagnostic metallodrugs: Current frontiers and future perspectives. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214104] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
2
|
Zajda J, Wróblewska A, Ruzik L, Matczuk M. Methodology for characterization of platinum-based drug's targeted delivery nanosystems. J Control Release 2021; 335:178-190. [PMID: 34022322 DOI: 10.1016/j.jconrel.2021.05.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/13/2021] [Accepted: 05/18/2021] [Indexed: 12/18/2022]
Abstract
Conventional anticancer therapies exploiting platinum-based drugs rely principally on the intravascular injection of the therapeutic agent. The anticancer drug is distributed throughout the body by the systemic blood circulation undergoing cellular uptake, rapid clearance and excretion. Consequently, only a small portion of the platinum-based drug reaches the tumor site, which is associated with severe side effects. For this reason, targeted delivery systems are of great need since they offer enhanced and selective delivery of a drug to cancerous cells making the therapy safe and more effective. Up to date, a variety of the Pt-based drug targeted delivery systems (Pt-based DTDSs) utilizing nanomaterials have been developed and tested using a range of analytical techniques that provided essential information on their synthesis, stability, biodistribution and cytotoxicity. Here we summarize those experimental techniques indicating their applicability at different stages of the research, as well as pointing out their strengths, advantages, drawbacks and limitations. Also, the existing strategies and approaches are critically reviewed with the objective to reveal and give rise to the development of the analytical methodology suitable for reliable Pt-based DTDSs characterization which would eventually result in novel therapies and better patients' outcomes.
Collapse
Affiliation(s)
- J Zajda
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland
| | - A Wróblewska
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland
| | - L Ruzik
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland
| | - M Matczuk
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland.
| |
Collapse
|
3
|
Xiao H, Yan L, Dempsey EM, Song W, Qi R, Li W, Huang Y, Jing X, Zhou D, Ding J, Chen X. Recent progress in polymer-based platinum drug delivery systems. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2018.07.004] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
4
|
Abstract
The success of platinum-based anticancer agents has motivated the exploration of novel metal-based drugs for several decades, whereas problems such as drug-resistance and systemic toxicity hampered their clinical applications and efficacy. Stimuli-responsiveness of some metal complexes offers a good opportunity for designing site-specific prodrugs to maximize the therapeutic efficacy and minimize the side effect of metallodrugs. This review presents a comprehensive and up-to-date overview on the therapeutic stimuli-responsive metallodrugs that have appeared in the past two decades, where stimuli such as redox, pH, enzyme, light, temperature, and so forth were involved. The compounds are classified into three major categories based on the nature of stimuli, that is, endo-stimuli-responsive metallodrugs, exo-stimuli-responsive metallodrugs, and dual-stimuli-responsive metallodrugs. Representative examples of each type are discussed in terms of structure, response mechanism, and potential medical applications. In the end, future opportunities and challenges in this field are tentatively proposed. With diverse metal complexes being introduced, the foci of this review are pointed to platinum and ruthenium complexes.
Collapse
Affiliation(s)
- Xiaohui Wang
- College of Chemistry and Molecular Engineering , Nanjing Tech University , Nanjing 211816 , P. R. China
| | - Xiaoyong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , P. R. China
| | - Suxing Jin
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , P. R. China
| | - Nafees Muhammad
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210093 , P. R. China
| |
Collapse
|
5
|
Liu G, Gao H, Zuo Y, Zeng X, Tao W, Tsai HI, Mei L. DACHPt-Loaded Unimolecular Micelles Based on Hydrophilic Dendritic Block Copolymers for Enhanced Therapy of Lung Cancer. ACS APPLIED MATERIALS & INTERFACES 2017; 9:112-119. [PMID: 27966356 DOI: 10.1021/acsami.6b11917] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Combining sufficient stability during circulation and desirable drug release is still a great challenge for the clinical applications of nanocarriers. To satisfy this demand, we developed a novel unimolecular micelle (UM) to deliver the antitumor agent 1,2-diaminocyclohexane-platinum(II) (DACHPt) for enhanced therapy of lung cancer. This DACHPt-loaded UM (UM/DACHPt) was formed through chelate complexation between DACHPt and a hydrophilic and biodegradable dendritic block copolymer poly(amidoamine)-polyglutamic acid-b-polyethylene glycol (PAM-PGlu-b-PEG), which was composed of generation 3 PAMAM (PAMAM-G3), polyglutamic acid, and long-circulating polymer PEG. This UM/DACHPt displayed robust stability and would effectively inhibit the undesired release under physiological condition, thus exhibiting much longer in vivo half-life than diblock copolymer micelles. With significant in vitro cell cytotoxicity to A549 lung cancer cells, this UM/DACHPt demonstrated efficient antitumor efficacy on an A549 xenograft tumor model with negligible tissue cytotocxity. Therefore, this UM/DACHPt provides a promising new strategy for lung cancer therapy.
Collapse
Affiliation(s)
- Gan Liu
- The Shenzhen Key Lab of Gene and Antibody Therapy and Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University , Shenzhen 518055, People's Republic of China
- School of Life Sciences, Tsinghua University , Beijing 100084, People's Republic of China
| | - Hongjun Gao
- Kingfa Science & Technology Company, Ltd. , Guangzhou 510663, People's Republic of China
| | - Yixiong Zuo
- The Shenzhen Key Lab of Gene and Antibody Therapy and Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University , Shenzhen 518055, People's Republic of China
- School of Life Sciences, Tsinghua University , Beijing 100084, People's Republic of China
| | - Xiaowei Zeng
- The Shenzhen Key Lab of Gene and Antibody Therapy and Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University , Shenzhen 518055, People's Republic of China
- School of Life Sciences, Tsinghua University , Beijing 100084, People's Republic of China
| | - Wei Tao
- The Shenzhen Key Lab of Gene and Antibody Therapy and Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University , Shenzhen 518055, People's Republic of China
- School of Life Sciences, Tsinghua University , Beijing 100084, People's Republic of China
| | - Hsiang-I Tsai
- The Shenzhen Key Lab of Gene and Antibody Therapy and Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University , Shenzhen 518055, People's Republic of China
- School of Life Sciences, Tsinghua University , Beijing 100084, People's Republic of China
| | - Lin Mei
- The Shenzhen Key Lab of Gene and Antibody Therapy and Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University , Shenzhen 518055, People's Republic of China
- School of Life Sciences, Tsinghua University , Beijing 100084, People's Republic of China
| |
Collapse
|
6
|
Nanostructured materials functionalized with metal complexes: In search of alternatives for administering anticancer metallodrugs. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.01.001] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
7
|
Mitra I, Mukherjee S, Reddy B. VP, Dasgupta S, Bose K JC, Mukherjee S, Linert W, Moi SC. Benzimidazole based Pt(ii) complexes with better normal cell viability than cisplatin: synthesis, substitution behavior, cytotoxicity, DNA binding and DFT study. RSC Adv 2016. [DOI: 10.1039/c6ra17788c] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Water soluble Pt(ii) complexes with higher viability towards normal cells and comparable cytotoxicity to cancer cells as compared to cisplatin.
Collapse
Affiliation(s)
- Ishani Mitra
- Department of Chemistry
- National Institute of Technology
- Durgapur-713209
- India
| | - Subhajit Mukherjee
- Department of Chemistry
- National Institute of Technology
- Durgapur-713209
- India
| | | | - Subrata Dasgupta
- Department of Chemistry
- National Institute of Technology
- Durgapur-713209
- India
| | - Jagadeesh C. Bose K
- Department of Bio-Technology
- National Institute of Technology
- Durgapur-713209
- India
| | | | - Wolfgang Linert
- Institute of Applied Synthetic Chemistry
- Vienna University of Technology
- Austria
| | - Sankar Ch. Moi
- Department of Chemistry
- National Institute of Technology
- Durgapur-713209
- India
| |
Collapse
|
8
|
Kim J, Pramanick S, Lee D, Park H, Kim WJ. Polymeric biomaterials for the delivery of platinum-based anticancer drugs. Biomater Sci 2015. [PMID: 26221935 DOI: 10.1039/c5bm00039d] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Since cisplatin, cis-diamminedichloroplatinum(ii), received FDA approval for use in cancer treatment in 1978, platinum-based drugs have been one of the most widely used drugs for the treatment of tumors in testicles, ovaries, head and neck. However, there are concerns associated with the use of platinum-based anticancer drugs, owing to severe side effects and drug resistance. In order to overcome these limitations, various drug-delivery systems have been developed based on diverse organic and inorganic materials. In particular, the versatility of polymeric materials facilitates the tuning of drug-delivery systems to meet their primary goals. This review focuses on the progress made over the last five years in the application of polymeric nanoparticles for the delivery of platinum-based anticancer drugs. The present article not only describes the fundamental principles underlying the implementation of polymeric nanomaterials in platinum-based drug delivery, but also summarizes concepts and strategies employed in the development of drug-delivery systems.
Collapse
Affiliation(s)
- Jihoon Kim
- Center for Self-assembly and Complexity, Institute for Basic Science and Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang 790-784, Republic of Korea
| | | | | | | | | |
Collapse
|
9
|
Li M, Tang Z, Zhang Y, Lv S, Yu H, Zhang D, Hong H, Chen X. LHRH-peptide conjugated dextran nanoparticles for targeted delivery of cisplatin to breast cancer. J Mater Chem B 2014; 2:3490-3499. [DOI: 10.1039/c4tb00077c] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
10
|
Barry NPE, Sadler PJ. Challenges for metals in medicine: how nanotechnology may help to shape the future. ACS NANO 2013; 7:5654-9. [PMID: 23837396 DOI: 10.1021/nn403220e] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Encapsulation of the platinum(IV) prodrug mitaplatin in block copolymer nanoparticles increases drug circulation time in the blood and reduces accumulation in the kidneys, as reported by Lippard and colleagues in this issue of ACS Nano. Importantly, controlled drug release from the nanoparticles produces long-term anticancer efficacy, with the prospect of reduced side effects. We highlight the potential that such a strategy holds for the future development of metallodrugs. Metal coordination complexes offer the prospect of novel mechanisms of activity on account of their unique architectures, as well as potential activation mechanisms, including ligand substitution and metal- and ligand-centered redox properties. Nanoparticles offer exciting prospects for improving delivery, cell uptake, and targeting of metallodrugs, especially anticancer drugs, to make them more effective and safer.
Collapse
Affiliation(s)
- Nicolas P E Barry
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| | | |
Collapse
|