1
|
Narimani S, Samadi N, Delnavaz E. Highly sensitive and novel dual-emission fluorescence nanosensor utilizing hybrid carbon dots-quantum dots for ratiometric determination of chlorpromazine. ANAL SCI 2024; 40:1521-1528. [PMID: 38740714 DOI: 10.1007/s44211-024-00591-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/24/2024] [Indexed: 05/16/2024]
Abstract
Herein, a ratiometric fluorimetric nanosensor is introduced for the sensitive and selective analysis of chlorpromazine (CPZ) via employing blue-emitting B-doped carbon dots (B-CDs) as the reference fluorophore and green-emitting CdTe capped thioglycolic acid (TGA) quantum dots (TGA-CdTe-QDs) as the specific recognition probe. The sensor exhibits dual emission centered at 440 and 560 nm, under a single excitation wavelength of 340 nm. Upon the addition of ultra-trace amount of CPZ, the fluorescence signal of TGA-CdTe-QDs declines due to electron transfer process from excited TGA-CdTe-QDs to CPZ molecules, whereas the fluorescence peak of B-CDs is unaffected. Therefore, a new fluorimetric platform was prepared for the assay of CPZ in the range of 2.2 × 10-10 to 5.0 × 10-9 M with a detection limit of 1.3 × 10-10 M. Moreover, the practicability of the designed strategy was investigated for the detection of CPZ in biological samples and the results demonstrate that it possesses considerable potential to be utilized in practical applications.
Collapse
Affiliation(s)
- Saeedeh Narimani
- Department of Analytical Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran.
| | - Naser Samadi
- Department of Analytical Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran
| | - Elnaz Delnavaz
- Department of Analytical Chemistry, Faculty of Chemistry, Tabriz University, Tabriz, Iran
| |
Collapse
|
2
|
Davodabadi F, Mirinejad S, Fathi-Karkan S, Majidpour M, Ajalli N, Sheervalilou R, Sargazi S, Rozmus D, Rahdar A, Diez-Pascual AM. Aptamer-functionalized quantum dots as theranostic nanotools against cancer and bacterial infections: A comprehensive overview of recent trends. Biotechnol Prog 2023; 39:e3366. [PMID: 37222166 DOI: 10.1002/btpr.3366] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/21/2023] [Accepted: 05/09/2023] [Indexed: 05/25/2023]
Abstract
Aptamers (Apts) are synthetic nucleic acid ligands that can be engineered to target various molecules, including amino acids, proteins, and pharmaceuticals. Through a series of adsorption, recovery, and amplification steps, Apts are extracted from combinatorial libraries of synthesized nucleic acids. Using aptasensors in bioanalysis and biomedicine can be improved by combining them with nanomaterials. Moreover, Apt-associated nanomaterials, including liposomes, polymeric, dendrimers, carbon nanomaterials, silica, nanorods, magnetic NPs, and quantum dots (QDs), have been widely used as promising nanotools in biomedicine. Following surface modifications and conjugation with appropriate functional groups, these nanomaterials can be successfully used in aptasensing. Advanced biological assays can use Apts immobilized on QD surfaces through physical interaction and chemical bonding. Accordingly, modern QD aptasensing platforms rely on interactions between QDs, Apts, and targets to detect them. QD-Apt conjugates can be used to directly detect prostate, ovarian, colorectal, and lung cancers or simultaneously detect biomarkers associated with these malignancies. Tenascin-C, mucin 1, prostate-specific antigen, prostate-specific membrane antigen, nucleolin, growth factors, and exosomes are among the cancer biomarkers that can be sensitively detected using such bioconjugates. Furthermore, Apt-conjugated QDs have shown great potential for controlling bacterial infections such as Bacillus thuringiensis, Pseudomonas aeruginosa, Escherichia coli, Acinetobacter baumannii, Campylobacter jejuni, Staphylococcus aureus, and Salmonella typhimurium. This comprehensive review discusses recent advancements in the design of QD-Apt bioconjugates and their applications in cancer and bacterial theranostics.
Collapse
Affiliation(s)
- Fatemeh Davodabadi
- Department of Biology, Faculty of Basic Science, Payame Noor University, Tehran, Iran
| | - Shekoufeh Mirinejad
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Sonia Fathi-Karkan
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mahdi Majidpour
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Narges Ajalli
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | | | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Dominika Rozmus
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, Olsztyn, Poland
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, Iran
| | - Ana M Diez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Quimica Analitica, Quimica Fisica e Ingenieria Quimica, Madrid, Spain
| |
Collapse
|
3
|
Si NT, Nhat PV, Nguyen MT. Binding mechanism and SERS spectra of 5-fluorouracil on gold clusters. Front Chem 2022; 10:1050423. [PMID: 36545217 PMCID: PMC9760957 DOI: 10.3389/fchem.2022.1050423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
The adsorption behaviour of the 5-fluorouracil (5FU) on small gold clusters Au N with N = 6, 8, 20 was evaluated by means of density functional theory using the PBE-D3 functional in combination with a mixed basis set, i.e. cc-pVDZ-PP for gold atoms and cc-pVTZ for non-metal elements. The binding energies between 5FU and gold clusters were determined in the range of 16-24 and 11-19 kcal/mol in gas-phase and aqueous media, respectively. The corresponding Gibbs energies were found to be around -7 to -10 kcal/mol in vacum and sigificantly reduced to -1 to -6 kcal/mol in water solution, indicating that both the association and dissociation processes are likely spontaneous. An analysis on the charge density difference tends to confirm the existence of a charge transfer from the 5FU molecule to Au atoms. Analysis of the surface-enhanced Raman scattering (SERS) spectra of 5FU adsorbed on the Au surfaces shows that the stretching vibrations of N-H and C=O bonds play a major role in the SERS phenomenon. A mechanism for the drug releasing from the gold surfaces is also proposed. The process is triggered by either the low pH in cancerous tumors or the presence of cysteine residues in protein matrices.
Collapse
Affiliation(s)
- Nguyen Thanh Si
- Department of Chemistry, Can Tho University, Can Tho City, Vietnam
| | - Pham Vu Nhat
- Department of Chemistry, Can Tho University, Can Tho City, Vietnam
| | - Minh Tho Nguyen
- Laboratory for Chemical Computation and Modeling, Institute for Computational Science and Artificial Intelligence, Van Lang University, Ho Chi Minh City, Vietnam,Faculty of Applied Technology, Van Lang University, Ho Chi Minh City, Vietnam,*Correspondence: Minh Tho Nguyen,
| |
Collapse
|
4
|
Liu H, Liu Y, Zhou T, Zhou P, Li J, Deng A. Ultrasensitive and Specific Detection of Anticancer Drug 5-Fluorouracil in Blood Samples by a Surface-Enhanced Raman Scattering (SERS)-Based Lateral Flow Immunochromatographic Assay. Molecules 2022; 27:4019. [PMID: 35807264 PMCID: PMC9268288 DOI: 10.3390/molecules27134019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 12/10/2022] Open
Abstract
5-Fluorouracil (5-FU) is an effective anticancer drug widely used in the world. To improve therapy efficiency and reduce side effects, it is very important to frequently detect the concentration of 5-FU in blood samples of patients. In this work, a new type of lateral flow immunochromatographic assay (LFIA) based on surface-enhanced Raman scattering (SERS) for ultrasensitive and specific detection of 5-FU in blood samples was developed. Au@Ag/Au nanoparticles (NPs) employing Au particles as the core and Ag/Au alloy as the shell were synthesized, characterized and used as the substrate in SERS-LFIA due to their high SERS enhancement and biocompatibility. The immunoprobe was made in the form of AuMBA@Ag/Au-Ab in which mercaptobenzoic acid (MBA, a common Raman active reporter) was embedded in the core-shell layer and the monoclonal antibody (mAb) against 5-FU was immobilized on the surface. The performance of SERS-LFIA was similar to that in colloidal gold based-LFIA, and the entire assay time was within 20 min. According to the color intensity on the testing (T) lines of LFIA strips visualized by eyes, the contents of 5-FU in the samples could be qualitatively or semi-quantitatively identified. Furthermore, by measuring the characteristic Raman intensities of MBA on T lines, quantitative detection of 5-FU in the samples were achieved. The IC50 and limit of detection (LOD) of the LFIA for 5-FU were found to be 20.9 pg mL-1 and 4.4 pg mL-1, respectively. There was no cross-reactivity (CR) of the LFIA with nine relative compounds, and the CR with cytosine, tegafur and carmofur were less than 4.5%. The recoveries of 5-FU from spiked blood samples were in the range of 78.6~86.4% with the relative standard deviation (RSD) of 2.69~4.42%. Five blood samples containing 5-FU collected from the Cancer Hospital were measured by SERS-LFIA, and the results were confirmed by LC-MS/MS. It was proven that the proposed method was able to simply and rapidly detect 5-FU in blood samples with high sensitivity, specificity, accuracy and precision.
Collapse
Affiliation(s)
| | | | | | | | - Jianguo Li
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Renai Road 199, Suzhou 215123, China; (H.L.); (Y.L.); (T.Z.); (P.Z.)
| | - Anping Deng
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Renai Road 199, Suzhou 215123, China; (H.L.); (Y.L.); (T.Z.); (P.Z.)
| |
Collapse
|
5
|
Gallagher SH, Schlauri P, Cesari E, Durrer J, Brühwiler D. Silica particles with fluorescein-labelled cores for evaluating accessibility through fluorescence quenching by copper. NANOSCALE ADVANCES 2021; 3:6459-6467. [PMID: 34913026 PMCID: PMC8577346 DOI: 10.1039/d1na00599e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/28/2021] [Indexed: 05/03/2023]
Abstract
Core-shell particles with fluorescent cores were synthesised by growing silica shells on fluorescein-labelled Stöber-type particles. The porosity of the shell could be altered in a subsequent pseudomorphic transformation step, without affecting the particle size and shape. These core-shell particles constitute a platform for the evaluation of pore connectivity and core accessibility by observing the effect of a quencher on the fluorescence signal emitted by the fluorescein-labelled cores. In combination with argon sorption measurements, quenching experiments with copper provided valuable information on the porosity generated during the shell formation process. It was further observed that the introduction of well-defined mesopores by pseudomorphic transformation in the presence of a structure-directing agent reduces the core accessibility. This led to the conclusion that the analysis by conventional gas sorption methods paints an incomplete picture of the mesoporous structure, in particular with regard to pores that do not offer an unobstructed path from the external particle surface to the core.
Collapse
Affiliation(s)
- Samuel H Gallagher
- Institute of Chemistry and Biotechnology, Zürich University of Applied Sciences CH-8820 Wädenswil Switzerland
| | - Paul Schlauri
- Institute of Chemistry and Biotechnology, Zürich University of Applied Sciences CH-8820 Wädenswil Switzerland
| | - Emanuele Cesari
- Institute of Chemistry and Biotechnology, Zürich University of Applied Sciences CH-8820 Wädenswil Switzerland
| | - Julian Durrer
- Institute of Chemistry and Biotechnology, Zürich University of Applied Sciences CH-8820 Wädenswil Switzerland
| | - Dominik Brühwiler
- Institute of Chemistry and Biotechnology, Zürich University of Applied Sciences CH-8820 Wädenswil Switzerland
| |
Collapse
|
6
|
Wang J, Qu X, Zhao L, Yan B. Fabricating Nanosheets and Ratiometric Detection of 5-Fluorouracil by Covalent Organic Framework Hybrid Material. Anal Chem 2021; 93:4308-4316. [PMID: 33616391 DOI: 10.1021/acs.analchem.0c05309] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Covalent organic framework (COF) nanosheets (NSs) are a new member in the family of two-dimensional (2D) nanomaterials that received increasing attention. The ability to prepare COF NSs with rapid acquisition is of great importance to explore their distinctive properties and potential applications. Herein, we elaborate design a new COF hybrid material EB-TFP:Eu(BTA)4 as a sensing platform. In the process of ratiometric fluorescence detection of 5-fluorouracil (5FU), an anticancer drug, we realize the preparation of COF NSs. Interaction occurs between 5FU and COF hybrid material, where the interlayer π-π stacking of COF was weakened, benefiting the exfoliation of bulk COF to acquire 2D COF NSs. This strategy provides not only a sensitive and selective 5FU sensor but also a significant inspiration for engineering 2D COF NSs.
Collapse
Affiliation(s)
- Jinmin Wang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xianglong Qu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Limin Zhao
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China
| | - Bing Yan
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China.,School of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
7
|
Chitosan/carbon quantum dot/aptamer complex as a potential anticancer drug delivery system towards the release of 5-fluorouracil. Int J Biol Macromol 2020; 165:1422-1430. [PMID: 32987067 DOI: 10.1016/j.ijbiomac.2020.09.166] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/13/2020] [Accepted: 09/20/2020] [Indexed: 01/25/2023]
Abstract
Nowadays, nanotechnology contributes diminishing side effects rather than traditional therapeutic methods like chemotherapy. Thus, designing a biocompatible specific targeted nanocarrier with prolonged half-life and enhanced bio-availability using simultaneous cell imaging seems urgent. To meet this demand, 5-fluorouracil-chitosan‑carbon quantum dot-aptamer (5-FU-CS-CQD-Apt) nanoparticle was successfully synthesized for specific targeted delivery of 5-FU anti-cancer drug used in breast cancer treatment and this was done by following facile water-in-oil (W/O) emulsification method. Physicochemical properties were characterized and high drug loading and entrapment efficiency were achieved. The average size and zeta potential of the nanoparticle were 122.7 nm and + 31.2 mV, respectively. According to the in-vitro drug release profile, 5-FU-CS-CQD-Apt released the drug in a controlled manner. MTT assay, flow cytometry, fluorescence microscopy, and gene expression results demonstrated that the blank nanoparticle was biocompatible, and 5-FU-CS-CQD-Apt could kill tumor cells efficiently. Bcl-2/Bax ratio was decreased after 5-FU-CS-CQD-Apt treatment in MCF-7 cells. It was concluded that 5-FU-CS-CQD-Apt could be used as a potential nanocarrier in breast cancer treatment.
Collapse
|
8
|
Abu Shawish HM, Abu Ghalwa N, Al-Kashef ID, Saadeh SM, Abed Almonem KI. Extraordinary enhancement of a 5-fluorouracil electrode by praepagen HY micellar solutions. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104316] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
9
|
Fisher L. Retraction: Temperature-regulated polymerization and swelling/collapsing/flocculation properties of hybrid nanospheres with magnetic cores and thermo/pH-sensitive nanogel shells. RSC Adv 2020; 10:37818. [PMID: 35560805 PMCID: PMC9088420 DOI: 10.1039/d0ra90104k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 10/05/2020] [Indexed: 11/21/2022] Open
Abstract
Retraction of ‘Temperature-regulated polymerization and swelling/collapsing/flocculation properties of hybrid nanospheres with magnetic cores and thermo/pH-sensitive nanogel shells’ by Rijun Gui et al., RSC Adv., 2014, 4, 2797–2806, DOI: 10.1039/C3RA43919D.
Collapse
Affiliation(s)
- Laura Fisher
- Royal Society of Chemistry
- Thomas Graham House
- Science Park
- Cambridge
- UK
| |
Collapse
|
10
|
Luo L, Liang Y, Erichsen ES, Anwander R. Hierarchical Mesoporous Organosilica-Silica Core-Shell Nanoparticles Capable of Controlled Fungicide Release. Chemistry 2018; 24:7200-7209. [DOI: 10.1002/chem.201800135] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Leilei Luo
- Institut für Anorganische Chemie; Universität Tübingen; Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Yucang Liang
- Institut für Anorganische Chemie; Universität Tübingen; Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Egil Severin Erichsen
- Laboratory for Electron Microscopy; University of Bergen; Allégaten 41 5007 Bergen Norway
| | - Reiner Anwander
- Institut für Anorganische Chemie; Universität Tübingen; Auf der Morgenstelle 18 72076 Tübingen Germany
| |
Collapse
|
11
|
Chen L, Xu Y, Sun L, Zheng J, Dai J, Li C, Yan Y. Convenient Determination of Sulfamethazine in Milk by Novel Ratiometric Fluorescence with Carbon and Quantum Dots with On-site Naked-eye Detection and Low Interferences. ANAL LETT 2018. [DOI: 10.1080/00032719.2017.1402336] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Li Chen
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, China
| | - Yeqing Xu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, China
| | - Lin Sun
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, China
| | - Jiahong Zheng
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, China
- School of Materials Science and Engineering, Chang’an University, Xi’an, China
| | - Jiangdong Dai
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, China
| | - Chunxiang Li
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, China
| | - Yongsheng Yan
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
12
|
Amjadi M, Jalili R. A molecularly imprinted dual-emission carbon dot-quantum dot mesoporous hybrid for ratiometric determination of anti-inflammatory drug celecoxib. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 191:345-351. [PMID: 29055279 DOI: 10.1016/j.saa.2017.10.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 09/20/2017] [Accepted: 10/09/2017] [Indexed: 06/07/2023]
Abstract
We report on a ratiometric fluorescent sensor based on dual-emission molecularly imprinted mesoporous silica embedded with carbon dots and CdTe quantum dots (mMIP@CDs/QDs) for celecoxib (CLX) as target molecule. The fluorescence of the embedded CDs is insensitive to the analyte while the green emissive QDs are selectively quenched by it. This effect is much stronger for the MIP than for the non-imprinted polymer, which indicates a good recognition ability of the mesoporous MIP. The hybrid sensor also exhibited good selectivity to CLX over other substances. The ratio of the intensity at two wavelengths (F550/F440) proportionally decreased with the increasing of CLX concentration in the range of 0.08-0.90μM. A detection limit as low as 57nM was achieved. Experimental results testified that this sensor was highly sensitive and selective for the detection of CLX in human serum samples.
Collapse
Affiliation(s)
- Mohammad Amjadi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 5166616471, Iran
| | - Roghayeh Jalili
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 5166616471, Iran.
| |
Collapse
|
13
|
Jin H, Gui R, Wang Y, Sun J. Carrot-derived carbon dots modified with polyethyleneimine and nile blue for ratiometric two-photon fluorescence turn-on sensing of sulfide anion in biological fluids. Talanta 2017; 169:141-148. [DOI: 10.1016/j.talanta.2017.03.083] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 03/17/2017] [Accepted: 03/26/2017] [Indexed: 01/28/2023]
|
14
|
Šelešovská R, Janíková L, Štěpánková M, Chýlková J. Copper solid amalgam electrode as a simple and sensitive tool for voltammetric determination of the antineoplastic drug 5-fluorouracil in pharmaceuticals. CHEMICAL PAPERS 2016. [DOI: 10.1007/s11696-016-0091-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
15
|
Aptamer and 5-fluorouracil dual-loading Ag 2S quantum dots used as a sensitive label-free probe for near-infrared photoluminescence turn-on detection of CA125 antigen. Biosens Bioelectron 2016; 92:378-384. [PMID: 27836590 DOI: 10.1016/j.bios.2016.10.093] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/08/2016] [Accepted: 10/31/2016] [Indexed: 12/25/2022]
Abstract
In this article, Ag2S quantum dots (QDs) were prepared by a facile aqueous synthesis method, using thiourea as a new sulfur precursor. Based on electrostatic interactions, 5-fluorouracil (5-Fu) was combined with the aptamer of CA125 antigen to fabricate aptamer/5-Fu complex. The surface of as-prepared Ag2S QDs was modified with polyethylenimine, followed by combination with the aptamer/5-Fu complex to form Ag2S QDs/aptamer/5-Fu hybrids. During the combination of Ag2S QDs with aptamer/5-Fu complex, near-infrared (NIR) photoluminescence (PL) of QDs (peaked at 850nm) was markedly reduced under excitation at 625nm, attributed to photo-induced electron transfer from QDs to 5-Fu. However, the addition of CA125 induced obvious NIR PL recovery, which was ascribed to the strong binding affinity of CA125 with its aptamer, and the separation of aptamer/5-Fu complex from the surface of QDs. Hence, the Ag2S QDs/aptamer/5-Fu hybrids were developed as a novel NIR PL turn-on probe of CA125. In the concentration range of [CA125] from 0.1 to 106ngmL-1, there were a good linear relationship between NIR PL intensities of Ag2S QDs and Log[CA125], and a low limit of detection of 0.07ngmL-1. Experimental results revealed the highly selective and sensitive NIR PL responses of this probe to CA125, over other potential interferences. In real human body fluids, this probe also exhibited superior analytical performance, together with high detection recoveries.
Collapse
|
16
|
Wu P, Hou X, Xu JJ, Chen HY. Ratiometric fluorescence, electrochemiluminescence, and photoelectrochemical chemo/biosensing based on semiconductor quantum dots. NANOSCALE 2016; 8:8427-42. [PMID: 27056088 DOI: 10.1039/c6nr01912a] [Citation(s) in RCA: 204] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Ratiometric fluorescent sensors, which can provide built-in self-calibration for correction of a variety of analyte-independent factors, have attracted particular attention for analytical sensing and optical imaging with the potential to provide a precise and quantitative analysis. A wide variety of ratiometric sensing probes using small fluorescent molecules have been developed. Compared with organic dyes, exploiting semiconductor quantum dots (QDs) in ratiometric fluorescence sensing is even more intriguing, owing to their unique optical and photophysical properties that offer significant advantages over organic dyes. In this review, the main photophysical mechanism for generating dual-emission from QDs for ratiometry is discussed and categorized in detail. Typically, dual-emission can be obtained either with energy transfer from QDs to dyes or with independent dual fluorophores of QDs and dye/QDs. The recent discovery of intrinsic dual-emission from Mn-doped QDs offers new opportunities for ratiometric sensing. Particularly, the signal transduction of QDs is not restricted to fluorescence, and electrochemiluminescence and photoelectrochemistry from QDs are also promising for sensing, which can be made ratiometric for correction of interferences typically encountered in electrochemistry. All these unique photophysical properties of QDs lead to a new avenue of ratiometry, and the recent progress in this area is addressed and summarized here. Several interesting applications of QD-based ratiometry are presented for the determination of metal ions, temperature, and biomolecules, with specific emphasis on the design principles and photophysical mechanisms of these probes.
Collapse
Affiliation(s)
- Peng Wu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | | | | | | |
Collapse
|
17
|
Bukkitgar SD, Shetti NP. Electrochemical Sensor for the Determination of Anticancer Drug 5- Fluorouracil at Glucose Modified Electrode. ChemistrySelect 2016. [DOI: 10.1002/slct.201600197] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Shikandar D. Bukkitgar
- Department of Chemistry; K.L.E. Institution of Technology; Opposite to airport, Gokul, Hubballi- 580030 Karnataka India
| | - Nagaraj P. Shetti
- Department of Chemistry; K.L.E. Institution of Technology; Opposite to airport, Gokul, Hubballi- 580030 Karnataka India
- Affiliated to Visvesvaraya Technological University, Belgavi; Karnataka India
| |
Collapse
|
18
|
Jeyaraj M, Praphakar RA, Rajendran C, Ponnamma D, Sadasivuni KK, Munusamy MA, Rajan M. Surface functionalization of natural lignin isolated from Aloe barbadensis Miller biomass by atom transfer radical polymerization for enhanced anticancer efficacy. RSC Adv 2016. [DOI: 10.1039/c6ra01866a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Lignin (LIG), one of the major natural polymers in the biomass is widely used for various industrial and biomedical applications, mainly in its modified form of grafted lignin.
Collapse
Affiliation(s)
- Murugaraj Jeyaraj
- National Centre for Nanoscience and Nanotechnology
- University of Madras
- Guindy Campus
- Chennai-25
- India
| | - Rajendran Amarnath Praphakar
- Biomaterials in Medicinal Chemistry Laboratory
- Department of Natural Products Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai-21
| | - Chinnusamy Rajendran
- Biomaterials in Medicinal Chemistry Laboratory
- Department of Natural Products Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai-21
| | | | | | - Murugan A. Munusamy
- Department of Botany and Microbiology
- College of Science
- King Saud University
- Riyadh-11451
- Saudi Arabia
| | - Mariappan Rajan
- Biomaterials in Medicinal Chemistry Laboratory
- Department of Natural Products Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai-21
| |
Collapse
|
19
|
McKeating KS, Aubé A, Masson JF. Biosensors and nanobiosensors for therapeutic drug and response monitoring. Analyst 2016; 141:429-49. [DOI: 10.1039/c5an01861g] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Review of different biosensors and nanobiosensors increasingly used in therapeutic drug monitoring (TDM) for pharmaceutical drugs with dosage limitations or toxicity issues and for therapeutic response monitoring.
Collapse
Affiliation(s)
| | - Alexandra Aubé
- Département de chimie
- Université de Montréal
- Montreal
- Canada
| | - Jean-Francois Masson
- Département de chimie
- Université de Montréal
- Montreal
- Canada
- Centre for self-assembled chemical structures (CSACS)
| |
Collapse
|
20
|
A sensitive electrochemical DNA biosensor for antineoplastic drug 5-fluorouracil based on glassy carbon electrode modified with poly(bromocresol purple). Talanta 2015; 144:793-800. [DOI: 10.1016/j.talanta.2015.06.077] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 06/22/2015] [Accepted: 06/26/2015] [Indexed: 01/26/2023]
|
21
|
Hua M, Wang C, Qian J, Wang K, Yang Z, Liu Q, Mao H, Wang K. Preparation of graphene quantum dots based core-satellite hybrid spheres and their use as the ratiometric fluorescence probe for visual determination of mercury(II) ions. Anal Chim Acta 2015; 888:173-81. [DOI: 10.1016/j.aca.2015.07.042] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/13/2015] [Accepted: 07/14/2015] [Indexed: 01/12/2023]
|
22
|
Facile synthesis of gold nanorods/hydrogels core/shell nanospheres for pH and near-infrared-light induced release of 5-fluorouracil and chemo-photothermal therapy. Colloids Surf B Biointerfaces 2015; 128:498-505. [PMID: 25794443 DOI: 10.1016/j.colsurfb.2015.02.049] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 01/29/2015] [Accepted: 02/26/2015] [Indexed: 12/24/2022]
Abstract
We described a facile synthesis of pH and near-infrared (NIR) light dual-sensitive core/shell hybrid nanospheres, consisting of gold nanorods (GNR) as the core and poly(N-isopropylacrylamide-co-methacrylic acid) as the shell, p(NIPAM-MAA). The resultant GNR/p(NIPAM-MAA) nanospheres showed a core/shell structure, with an average diameter of ∼110nm and a strong longitudinal surface plasmon band at NIR region. Due to the photothermal effect of GNR and pH/thermal-sensitive volume transition of p(NIPAM-MAA) hydrogels, the nanospheres with loading of 5-fluorouracil (5-FU) by electrostatic interactions were developed as a smart carrier for pH- and photothermal-induced release of 5-FU. Experimental results testified that the cumulative release of 5-FU from nanospheres was markedly increased in a mild acidic medium. Moreover, a NIR light (808nm) irradiation triggered a greater and faster release of 5-FU, which was further testified by relevant results from in vitro cytotoxicity assay, in vivo tumor growth inhibition and histological images of ex vivo tumor sections. These results revealed significant applications of GNR/p(NIPAM-MAA) nanospheres in controlled release of anticancer agents and photothermal ablation therapy of tumor tissues, accompanied by synergistic effect of chem-photothermal therapy.
Collapse
|
23
|
Wang K, Qian J, Jiang D, Yang Z, Du X, Wang K. Onsite naked eye determination of cysteine and homocysteine using quencher displacement-induced fluorescence recovery of the dual-emission hybrid probes with desired intensity ratio. Biosens Bioelectron 2015; 65:83-90. [DOI: 10.1016/j.bios.2014.09.093] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/29/2014] [Accepted: 09/30/2014] [Indexed: 01/09/2023]
|
24
|
Li D, Jia S, Fodjo EK, Xu H, Kong C, Wang Y. Highly sensitive “turn-on” fluorescence probe for the detection of sparfloxacin in human serum using silica-functionalized CdTe quantum dots. RSC Adv 2015. [DOI: 10.1039/c5ra21587k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The hydrophilic carboxyl-capped CdTe@SiO2 quantum dots (SQDs) can served as a “turn-on” photoluminescence (PL) probe for highly sensitive and selective detection of sparfloxacin in human serum.
Collapse
Affiliation(s)
- Dan Li
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- P. R. China
| | - Shaojie Jia
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- P. R. China
| | - Essy Kouadio Fodjo
- Laboratory of Physical Chemistry
- University Felix Houphouet Boigny
- 22 BP 582 Abidjan 22
- Cote d’Ivoire
| | - Hu Xu
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- P. R. China
| | - Cong Kong
- East China Sea Fisheries Research Institute
- Chinese Academy of Fishery Sciences
- China
| | - Yuhong Wang
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- P. R. China
| |
Collapse
|
25
|
Core–shell particles: Preparation, fundamentals and applications in high performance liquid chromatography. J Chromatogr A 2014; 1357:36-52. [DOI: 10.1016/j.chroma.2014.05.010] [Citation(s) in RCA: 311] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/01/2014] [Accepted: 05/02/2014] [Indexed: 11/23/2022]
|