1
|
Mohan T, Kleinschek KS, Kargl R. Polysaccharide peptide conjugates: Chemistry, properties and applications. Carbohydr Polym 2022; 280:118875. [PMID: 35027118 DOI: 10.1016/j.carbpol.2021.118875] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/25/2021] [Accepted: 11/05/2021] [Indexed: 11/02/2022]
Abstract
The intention of this publication is to give an overview on research related to conjugates of polysaccharides and peptides. Dextran, chitosan, and alginate were selected, to cover four of the most often encountered functional groups known to be present in polysaccharides. These groups are the hydroxyl, the amine, the carboxyl, and the acetal functionality. A collection of the commonly used chemical reactions for conjugation is provided. Conjugation results into distinct properties compared to the parent polysaccharide, and a number of these characteristics are highlighted. This review aims at demonstrating the applicability of said conjugates with a strong emphasis on biomedical applications, drug delivery, biosensing, and tissue engineering. Some suggestions are made for more rigorous chemistries and analytics that could be investigated. Finally, an outlook is given into which direction the field could be developed further. We hope that this survey provides the reader with a comprehensive summary and contributes to the progress of works that aim at synthetically combining two of the main building blocks of life into supramolecular structures with unprecedented biological response.
Collapse
Affiliation(s)
- Tamilselvan Mohan
- Institute for Chemistry and Technology of Biobased Systems (IBIOSYS), Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Karin Stana Kleinschek
- Institute for Chemistry and Technology of Biobased Systems (IBIOSYS), Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Rupert Kargl
- Institute for Chemistry and Technology of Biobased Systems (IBIOSYS), Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria; Institute for Automation, Faculty of Electrical Engineering and Computer Science, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia.
| |
Collapse
|
2
|
Kamarudheen N, Khaparde A, Gopal S, Rao KB. Unraveling a natural protease inhibitor from marine Streptomyces griseoincarnatus HK12 active against Chikungunya virus. Microbiol Res 2021; 252:126858. [PMID: 34509708 DOI: 10.1016/j.micres.2021.126858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/04/2021] [Accepted: 08/29/2021] [Indexed: 11/16/2022]
Abstract
Proteases play an indispensable role in the life cycles of several life-threatening organisms such as the ones causing malaria, cancer and AIDS. A targeted blockade of these enzymes could be an efficient approach for drug modeling against these causative agents. Our study was directed towards the extraction and characterization of a protease inhibitor having activity against Chikungunya virus (CHIKV). A protein-based protease inhibitor (PI) in Streptomyces griseoincarnatus HK12 with anti-viral activity against CHIKV was revealed when screened against two major proteases, papain and trypsin. The PI was efficiently extracted at 60 % ammonium sulfate saturation and purified by ion-exchange chromatography (CM-Sepharose) at 300 mM NaCl elution followed by SDS-PAGE (10 %). The protein was characterized by denaturing SDS-PAGE, reverse zymography, and MALDI-TOF peptide mass fingerprinting. The protein-based PI was studied to have a high molecular weight of 66-70 kDA. The PI was tested to supress the supress cytopathic effects (CPE) exerted by the clinically isolated virus in BHK21 cells. This was used as a measure to determine the antiviral activity. The PI exerted significant effects with an effective concentration calculated as EC50 11.21 μg/mL. The protein was found to be reported as the first of its kind which also stands out to be the first a natural protease inhibitor against the treatment of the chikungunya virus.
Collapse
Affiliation(s)
- Neethu Kamarudheen
- Marine Biotechnology Laboratory, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Ashish Khaparde
- Centre for Bio-separation Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Sai Gopal
- Department of Virology, Sri Venkateswara University, Tirupati, Andhra, India
| | - Kv Bhaskara Rao
- Marine Biotechnology Laboratory, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
3
|
Serine Protease Inhibitors-New Molecules for Modification of Polymeric Biomaterials. Biomolecules 2020; 10:biom10010082. [PMID: 31947983 PMCID: PMC7023003 DOI: 10.3390/biom10010082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/25/2019] [Accepted: 12/31/2019] [Indexed: 12/20/2022] Open
Abstract
Three serine protease inhibitors (AEBSF, soy inhibitor, α1-antitrypsin) were covalently immobilized on the surface of three polymer prostheses with the optimized method. The immobilization efficiency ranged from 11 to 51%, depending on the chosen inhibitor and biomaterial. The highest activity for all inhibitors was observed in the case of immobilization on the surface of the polyester Uni-Graft prosthesis, and the preparations obtained showed high stability in the environment with different pH and temperature values. Modification of the Uni-Graft prosthesis surface with the synthetic AEBSF inhibitor and human α1-antitrypsin inhibited the adhesion and multiplication of Staphylococcus aureus subs. aureus ATCC® 25923TM and Candida albicans from the collection of the Department of Genetics and Microbiology, UMCS. Optical profilometry analysis indicated that, after the immobilization process on the surface of AEBSF-modified Uni-Graft prostheses, there were more structures with a high number of protrusions, while the introduction of modifications with a protein inhibitor led to the smoothing of their surface.
Collapse
|
4
|
Erban T, Shcherbachenko E, Talacko P, Harant K. The Unique Protein Composition of Honey Revealed by Comprehensive Proteomic Analysis: Allergens, Venom-like Proteins, Antibacterial Properties, Royal Jelly Proteins, Serine Proteases, and Their Inhibitors. JOURNAL OF NATURAL PRODUCTS 2019; 82:1217-1226. [PMID: 30995037 DOI: 10.1021/acs.jnatprod.8b00968] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Honey is a unique natural product produced by European honeybees. Due to its high economic value, honey is considered to be well characterized chemically, and it is often discovered to be an adulterated commodity. However, this study shows that our knowledge of honey protein composition, which is of high medical and pharmaceutical importance, is incomplete. In this in-depth proteomic study of 13 honeys, we identified a number of proteins that are important for an understanding of honey properties and merit additional pharmaceutical research. Our major result is an expanded understanding of the proteins underlying honey's antimicrobial properties, such as hymenoptaecin and defensin-1, glucose dehydrogenase isoforms, venom allergens and other venom-like proteins, serine proteases and serine protease inhibitors, and a series of royal jelly proteins. In addition, we performed quantitative comparisons of all of the proteins previously known or newly identified. The honey proteins, determined using label-free nLC-MS/MS in which the same protein quantity was analyzed in one series, were found in relatively similar proportions, although eucalyptus honey differed most widely from the remaining honeys. Overall, the proteome analysis indicated that honeybees supply proteins to honey in a relatively stable ratio within each proteome, but total protein quantity can differ by approximately an order of magnitude in different honeys.
Collapse
Affiliation(s)
- Tomas Erban
- Proteomics and Metabolomics Laboratory , Crop Research Institute , Drnovska 507/73 , Prague 6-Ruzyne , CZ-16106 , Czechia
| | - Elena Shcherbachenko
- Proteomics and Metabolomics Laboratory , Crop Research Institute , Drnovska 507/73 , Prague 6-Ruzyne , CZ-16106 , Czechia
| | - Pavel Talacko
- Proteomics Core Facility, Faculty of Science , Charles University , BIOCEV, Prumyslova 595 , Vestec , CZ-25242 , Czechia
| | - Karel Harant
- Proteomics Core Facility, Faculty of Science , Charles University , BIOCEV, Prumyslova 595 , Vestec , CZ-25242 , Czechia
| |
Collapse
|
5
|
Schubert J, Chanana M. Coating Matters: Review on Colloidal Stability of Nanoparticles with Biocompatible Coatings in Biological Media, Living Cells and Organisms. Curr Med Chem 2018; 25:4553-4586. [PMID: 29852857 PMCID: PMC7040520 DOI: 10.2174/0929867325666180601101859] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/13/2018] [Accepted: 04/18/2018] [Indexed: 12/21/2022]
Abstract
Within the last two decades, the field of nanomedicine has not developed as successfully as has widely been hoped for. The main reason for this is the immense complexity of the biological systems, including the physico-chemical properties of the biological fluids as well as the biochemistry and the physiology of living systems. The nanoparticles' physicochemical properties are also highly important. These differ profoundly from those of freshly synthesized particles when applied in biological/living systems as recent research in this field reveals. The physico-chemical properties of nanoparticles are predefined by their structural and functional design (core and coating material) and are highly affected by their interaction with the environment (temperature, pH, salt, proteins, cells). Since the coating material is the first part of the particle to come in contact with the environment, it does not only provide biocompatibility, but also defines the behavior (e.g. colloidal stability) and the fate (degradation, excretion, accumulation) of nanoparticles in the living systems. Hence, the coating matters, particularly for a nanoparticle system for biomedical applications, which has to fulfill its task in the complex environment of biological fluids, cells and organisms. In this review, we evaluate the performance of different coating materials for nanoparticles concerning their ability to provide colloidal stability in biological media and living systems.
Collapse
Affiliation(s)
- Jonas Schubert
- Address correspondence to these authors at the Department of Nanostructured Materials, Leibniz-Institut für Polymerforschung Dresden, Dresden, Germany and Department of Physical Chemistry II, University of Bayreuth, 95447 Bayreuth, Germany;E-mails: ;
| | - Munish Chanana
- Address correspondence to these authors at the Department of Nanostructured Materials, Leibniz-Institut für Polymerforschung Dresden, Dresden, Germany and Department of Physical Chemistry II, University of Bayreuth, 95447 Bayreuth, Germany;E-mails: ;
| |
Collapse
|
6
|
Skariyachan S. Exploring the Potential of Herbal Ligands Toward Multidrug-Resistant Bacterial Pathogens by Computational Drug Discovery. TRANSLATIONAL BIOINFORMATICS AND ITS APPLICATION 2017. [DOI: 10.1007/978-94-024-1045-7_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
7
|
An update on polysaccharide-based nanomaterials for antimicrobial applications. Appl Microbiol Biotechnol 2016; 100:2603-15. [PMID: 26830099 DOI: 10.1007/s00253-016-7315-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/09/2016] [Accepted: 01/12/2016] [Indexed: 01/01/2023]
Abstract
Scientific community has made a lot of efforts to combat the infectious diseases using antimicrobial agents, but these are associated with problems of development of multi-drug resistance and their adverse side effects. To tackle these challenges, nanocarrier-based drug delivery system using polysaccharides has received enormous attention in the past few years. These antimicrobial agents can become more efficacious when adsorbed, entrapped, or linked to polysaccharides. In addition, these nanocarrier-based systems provide an increase in the surface area of the drug and are able to achieve the targeted drug delivery as well as used for the synthesis of packaging materials with improved mechanical strength, barrier, and antimicrobial properties. This review focuses on potential therapeutic applications of nanocarrier-based drug delivery systems using polysaccharides for antimicrobial applications.
Collapse
|
8
|
Mandal SM, Bharti R, Porto WF, Gauri SS, Mandal M, Franco OL, Ghosh AK. Identification of multifunctional peptides from human milk. Peptides 2014; 56:84-93. [PMID: 24703967 DOI: 10.1016/j.peptides.2014.03.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/19/2014] [Accepted: 03/21/2014] [Indexed: 11/24/2022]
Abstract
Pharmaceutical industries have renewed interest in screening multifunctional bioactive peptides as a marketable product in health care applications. In this context, several animal and plant peptides with potential bioactivity have been reported. Milk proteins and peptides have received much attention as a source of health-enhancing components to be incorporated into nutraceuticals and functional foods. By using this source, 24 peptides have been fractionated and purified from human milk using RP-HPLC. Multifunctional roles including antimicrobial, antioxidant and growth stimulating activity have been evaluated in all 24 fractions. Nevertheless, only four fractions show multiple combined activities among them. Using a proteomic approach, two of these four peptides have been identified as lactoferrin derived peptide and kappa casein short chain peptide. Lactoferrin derived peptide (f8) is arginine-rich and kappa casein derived (f12) peptide is proline-rich. Both peptides (f8 and f12) showed antimicrobial activities against both Gram-positive and Gram-negative bacteria. Fraction 8 (f8) exhibits growth stimulating activity in 3T3 cell line and f12 shows higher free radical scavenging activity in comparison to other fractions. Finally, both peptides were in silico evaluated and some insights into their mechanism of action were provided. Thus, results indicate that these identified peptides have multiple biological activities which are valuable for the quick development of the neonate and may be considered as potential biotechnological products for nutraceutical industry.
Collapse
Affiliation(s)
- Santi M Mandal
- Central Research Facility, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, WB, India
| | - Rashmi Bharti
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, WB, India
| | - William F Porto
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Samiran S Gauri
- Central Research Facility, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, WB, India
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, WB, India
| | - Octavio L Franco
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia Universidade Católica de Brasília, Brasília, DF, Brazil.
| | - Ananta K Ghosh
- Central Research Facility, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, WB, India.
| |
Collapse
|