1
|
Apostolakis A, Aoust G, Maisons G, Laurent L, Pereira MF. Photoacoustic Spectroscopy Using a Quantum Cascade Laser for Analysis of Ammonia in Water Solutions. ACS OMEGA 2024; 9:19127-19135. [PMID: 38708224 PMCID: PMC11064027 DOI: 10.1021/acsomega.3c10175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 05/07/2024]
Abstract
Ammonia (NH3) toxicity, stemming from nitrification, can adversely affect aquatic life and influence the taste and odor of drinking water. This underscores the necessity for highly responsive and accurate sensors to continuously monitor NH3 levels in water, especially in complex environments, where reliable sensors have been lacking until this point. Herein, we detail the development of a sensor comprising a compact and selective analyzer with low gas consumption and a timely response based on photoacoustic spectroscopy. This, combined with an automated liquid sampling system, enables the precise detection of ammonia traces in water. The sensor system incorporates a state-of-the art quantum cascade laser as the excitation source emitting at 9 μm in resonance with the absorption line of NH3 located at 1103.46 cm-1. Our instrument demonstrated detection sensitivity at a low ppm level for the ammonia molecule with response times of less than 60 s. For the sampling system, an ammonia stripping solution was designed, resulting in a prompt full measurement cycle (6.35 min). A further evaluation of the sensor within a pilot study showed good reliability and agreement with the reference method for real water samples, confirming the potential of our NH3 analyzer for water quality monitoring applications.
Collapse
Affiliation(s)
- Apostolos Apostolakis
- Institute
of Physics, Czech Academy of Sciences, Na Slovance 2, CZ-18200 Prague, Czech Republic
| | - Guillaume Aoust
- MIRSENSE, Nano-INNOV Batiment 863, 8 av de
la Vauve, 91120 Palaiseau, France
| | - Grégory Maisons
- MIRSENSE, Nano-INNOV Batiment 863, 8 av de
la Vauve, 91120 Palaiseau, France
| | - Ludovic Laurent
- MIRSENSE, Nano-INNOV Batiment 863, 8 av de
la Vauve, 91120 Palaiseau, France
| | - Mauro Fernandes Pereira
- Institute
of Physics, Czech Academy of Sciences, Na Slovance 2, CZ-18200 Prague, Czech Republic
- Department
of Physics, Khalifa University of Science
and Technology, 127788 Abu Dhabi, United Arab Emirates
| |
Collapse
|
2
|
Hlavatsch M, Teuber A, Eisele M, Mizaikoff B. Sensing Liquid- and Gas-Phase Hydrocarbons via Mid-Infrared Broadband Femtosecond Laser Source Spectroscopy. ACS MEASUREMENT SCIENCE AU 2023; 3:452-458. [PMID: 38145022 PMCID: PMC10740123 DOI: 10.1021/acsmeasuresciau.3c00026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 12/26/2023]
Abstract
In this study, we demonstrate the combination of a tunable broadband mid-infrared (MIR) femtosecond laser source separately coupled to a ZnSe crystal horizontal attenuated total reflection (ATR) sensor cell for liquid phase samples and to a substrate-integrated hollow waveguide (iHWG) for gas phase samples. Utilizing this emerging light source technology as an alternative MIR radiation source for Fourier transform infrared (FTIR) spectroscopy opens interesting opportunities for analytical applications. In a first approach, we demonstrate the quantitative analysis of three individual samples, ethanol (liquid), methane (gas), and 2-methyl-1-propene (gas), with limits of detection of 0.3% (ethanol) and 22 ppmv and 74 ppmv (methane and isobutylene), respectively, determined at selected emission wavelengths of the MIR laser source (i.e., 890 cm-1, 1046 and 1305 cm-1). Hence, the applicability of a broadband MIR femtosecond laser source as a bright alternative light source for quantitative analysis via FTIR spectroscopy in various sensing configurations has been demonstrated.
Collapse
Affiliation(s)
- Michael Hlavatsch
- Institute
of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Andrea Teuber
- Institute
of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Max Eisele
- TOPTICA
Photonics AG, Lochhamer Schlag 19, D-82166 Graefelfing (Munich), Germany
| | - Boris Mizaikoff
- Institute
of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
- Hahn-Schickard, Sedanstraße
4, D-89077 Ulm, Germany
| |
Collapse
|
3
|
Liu X, Zhou X, Li X, Wei Y, Wang T, Liu S, Yang H, Sun X. Saliva Analysis Based on Microfluidics: Focusing the Wide Spectrum of Target Analyte. Crit Rev Anal Chem 2023:1-23. [PMID: 38039145 DOI: 10.1080/10408347.2023.2287656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
Saliva is one of the most critical human body fluids that can reflect the state of the human body. The detection of saliva is of great significance for disease diagnosis and health monitoring. Microfluidics, characterized by microscale size and high integration, is an ideal platform for the development of rapid and low-cost disease diagnostic techniques and devices. Microfluidic-based saliva testing methods have aroused considerable interest due to the increasing need for noninvasive testing and frequent or long-term testing. This review briefly described the significance of saliva analysis and generally classified the targets in saliva detection into pathogenic microorganisms, inorganic substances, and organic substances. By using this classification as a benchmark, the state-of-the-art research results on microfluidic detection of various substances in saliva were summarized. This work also put forward the challenges and future development directions of microfluidic detection methods for saliva.
Collapse
Affiliation(s)
- Xin Liu
- Department of Respiratory Medicine, The Fourth Hospital of China Medical University, Shenyang, China
| | - Xinyue Zhou
- Department of Respiratory Medicine, The Fourth Hospital of China Medical University, Shenyang, China
| | - Xiaojia Li
- Teaching Center for Basic Medical Experiment, China Medical University, Shenyang, China
| | - Yixuan Wei
- Teaching Center for Basic Medical Experiment, China Medical University, Shenyang, China
| | - Tianlin Wang
- School of Intelligent Medicine, China Medical University, Shenyang, China
| | - Shuo Liu
- Department of Respiratory Medicine, The Fourth Hospital of China Medical University, Shenyang, China
| | - Huazhe Yang
- School of Intelligent Medicine, China Medical University, Shenyang, China
| | - Xiaoting Sun
- School of Forensic Medicine, China Medical University, Shenyang, China
| |
Collapse
|
4
|
Mao M, Gong T, Yuan K, Li L, Guo G, Sun X, Tian Y, Qiu X, Fittschen C, Li C. A Coin-Sized Oxygen Laser Sensor Based on Tunable Diode Laser Absorption Spectroscopy Combining a Toroidal Absorption Cell. SENSORS (BASEL, SWITZERLAND) 2023; 23:8249. [PMID: 37837080 PMCID: PMC10575156 DOI: 10.3390/s23198249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023]
Abstract
Laser gas sensors with small volume and light weight are in high demand in the aerospace industry. To address this, a coin-sized oxygen (O2) sensor has been successfully developed based on a small toroidal absorption cell design. The absorption cell integrates a vertical-cavity surface-emitting laser (VCSEL) and photodetector into a compact unit, measuring 90 × 40 × 20 mm and weighing 75.16 g. Tunable diode laser absorption spectroscopy (TDLAS) is used to obtain the O2 spectral line at 763 nm. For further improving the sensitivity and robustness of the sensor, wavelength modulation spectroscopy (WMS) is utilized for the measurement. The obtained linear correlation coefficient is 0.9994. Based on Allen variance analysis, the sensor achieves an impressive minimum detection limit of 0.06% for oxygen concentration at an integration time of 318 s. The pressure-dependent relationship has been validated by accounting for the pressure factor in data processing. To affirm its efficacy, the laser spectrometer underwent continuous atmospheric O2 measurement for 24 h, showcasing its stability and robustness. This development introduces a continuous online laser spectral sensor with potential applications in manned spaceflight scenarios.
Collapse
Affiliation(s)
- Minxia Mao
- Shanxi Engineering Research Center of Precision Measurement and Online Detection Equipment, Shanxi Center of Technology Innovation for Light Manipulations and Applications, School of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Ting Gong
- Shanxi Engineering Research Center of Precision Measurement and Online Detection Equipment, Shanxi Center of Technology Innovation for Light Manipulations and Applications, School of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Kangjie Yuan
- Shanxi Engineering Research Center of Precision Measurement and Online Detection Equipment, Shanxi Center of Technology Innovation for Light Manipulations and Applications, School of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Lin Li
- Shanxi Engineering Research Center of Precision Measurement and Online Detection Equipment, Shanxi Center of Technology Innovation for Light Manipulations and Applications, School of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Guqing Guo
- Shanxi Engineering Research Center of Precision Measurement and Online Detection Equipment, Shanxi Center of Technology Innovation for Light Manipulations and Applications, School of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Xiaocong Sun
- Shanxi Engineering Research Center of Precision Measurement and Online Detection Equipment, Shanxi Center of Technology Innovation for Light Manipulations and Applications, School of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Yali Tian
- Shanxi Engineering Research Center of Precision Measurement and Online Detection Equipment, Shanxi Center of Technology Innovation for Light Manipulations and Applications, School of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Xuanbing Qiu
- Shanxi Engineering Research Center of Precision Measurement and Online Detection Equipment, Shanxi Center of Technology Innovation for Light Manipulations and Applications, School of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Christa Fittschen
- CNRS, UMR 8522-PC2A—Physicochimie des Processus de Combustion et de l’Atmosphère, Université Lille, F-59000 Lille, France;
| | - Chuanliang Li
- Shanxi Engineering Research Center of Precision Measurement and Online Detection Equipment, Shanxi Center of Technology Innovation for Light Manipulations and Applications, School of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024, China
| |
Collapse
|
5
|
Chen J, Chen F, Wang X, Zhao Y, Wu Y, Cao Q, Jiang T, Li K, Li Y, Zhang J, Wu W, Che R. Room-Temperature Response Performance of Coupled Doped-Well Quantum Cascade Detectors with Array Structure. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:110. [PMID: 36616020 PMCID: PMC9824534 DOI: 10.3390/nano13010110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Energy level interaction and electron concentration are crucial aspects that affect the response performance of quantum cascade detectors (QCDs). In this work, two different-structured array QCDs are prepared, and the detectivity reaches 109 cm·Hz1/2/W at room temperature. The overlap integral (OI) and oscillator strength (OS) between different energy levels under a series of applied biases are fitted and reveal the influence of energy level interaction on the response performance. The redistribution of electrons in the cascade structure at room temperatures is established. The coupled doped-well structure shows a higher electron concentration at room temperature, which represents a high absorption efficiency in the active region. Even better responsivity and detectivity are exhibited in the coupled doped-well QCD. These results offer a novel strategy to understand the mechanisms that affect response performance and expand the application range of QCDs for long-wave infrared (LWIR) detection.
Collapse
Affiliation(s)
- Jie Chen
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai 200438, China
- Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, China
| | - Fengwei Chen
- Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, China
| | - Xuemin Wang
- Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, China
| | - Yunhao Zhao
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai 200438, China
| | - Yuyang Wu
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai 200438, China
| | - Qingchen Cao
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai 200438, China
| | - Tao Jiang
- Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, China
| | - Keyu Li
- Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, China
| | - Yang Li
- Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, China
| | | | - Weidong Wu
- Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, China
| | - Renchao Che
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai 200438, China
- Zhejiang Laboratory, Hangzhou 311100, China
| |
Collapse
|
6
|
Pedersen RL, Tidemand-Lichtenberg P, Pedersen C. Synchronous upconversion of quantum cascade lasers in AgGaS 2. OPTICS LETTERS 2022; 47:5622-5625. [PMID: 37219286 DOI: 10.1364/ol.472219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/07/2022] [Indexed: 05/24/2023]
Abstract
We investigate synchronous upconversion of a pulsed, tunable quantum cascade laser (QCL) in the important 5.4-10.2 µm range, with a 30 kHz, Q-switched, 1064 nm laser. The possibility to accurately control the repetition rate and pulse duration of the QCL results in a good temporal overlap with the Q-switched laser, leading to an upconversion quantum efficiency of 16% in a 10 mm-long AgGaS2 crystal. We investigate the noise properties of the upconversion process in terms of pulse-to-pulse energy stability and timing jitter. For QCL pulses in the 30-70 ns range the upconverted pulse-to-pulse stability is approximately 1.75%. The demonstrated combination of broad tunability and high signal to noise in the system is well-suited for mid-IR spectral analysis of highly absorbing samples.
Collapse
|
7
|
Infrared Spectroscopy–Quo Vadis? APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12157598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Given the exquisite capability of direct, non-destructive label-free sensing of molecular transitions, IR spectroscopy has become a ubiquitous and versatile analytical tool. IR application scenarios range from industrial manufacturing processes, surveillance tasks and environmental monitoring to elaborate evaluation of (bio)medical samples. Given recent developments in associated fields, IR spectroscopic devices increasingly evolve into reliable and robust tools for quality control purposes, for rapid analysis within at-line, in-line or on-line processes, and even for bed-side monitoring of patient health indicators. With the opportunity to guide light at or within dedicated optical structures, remote sensing as well as high-throughput sensing scenarios are being addressed by appropriate IR methodologies. In the present focused article, selected perspectives on future directions for IR spectroscopic tools and their applications are discussed. These visions are accompanied by a short introduction to the historic development, current trends, and emerging technological opportunities guiding the future path IR spectroscopy may take. Highlighted state-of-the art implementations along with novel concepts enhancing the performance of IR sensors are presented together with cutting-edge developments in related fields that drive IR spectroscopy forward in its role as a versatile analytical technology with a bright past and an even brighter future.
Collapse
|
8
|
Wang CC, Chang Y, Chung C. Infrared detection of Criegee intermediates. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202100406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chia C. Wang
- Department of Chemistry National Sun Yat‐sen University Kaohsiung Taiwan
- Aerosol Science Research Center National Sun Yat‐sen University Kaohsiung Taiwan
| | - Yuan‐Pin Chang
- Department of Chemistry National Sun Yat‐sen University Kaohsiung Taiwan
- Aerosol Science Research Center National Sun Yat‐sen University Kaohsiung Taiwan
| | - Chao‐Yu Chung
- Department of Chemistry National Sun Yat‐sen University Kaohsiung Taiwan
- Aerosol Science Research Center National Sun Yat‐sen University Kaohsiung Taiwan
| |
Collapse
|
9
|
Feng S, Qiu X, Guo G, Zhang E, He Q, He X, Ma W, Fittschen C, Li C. Palm-Sized Laser Spectrometer with High Robustness and Sensitivity for Trace Gas Detection Using a Novel Double-Layer Toroidal Cell. Anal Chem 2021; 93:4552-4558. [PMID: 33660979 DOI: 10.1021/acs.analchem.0c04995] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A palm-sized laser spectrometer has been developed for detecting trace gases based on tunable diode laser absorption spectroscopy in combination with a novel double-layer toroidal cell. With the benefit of a homemade electronic system and compact optical design, the physical dimensions of the sensor are minimized to 24 × 15× 16 cm3. A toroidal absorption cell, with 84 reflections in 2 layers for an effective optical path length of 8.35 m, was used to enhance the absorption signals of gaseous species. A homemade electronic system was designed for implementing a distributed feedback (DFB) diode laser controller, an analog lock-in amplifier, data acquisition, and communication. Calibration-free scanned wavelength modulation spectroscopy was employed to determine the concentration of the gas and reduce the random fluctuations from electronical noise and mechanical vibration. The measurement of CH4 in ambient air was demonstrated using a DFB laser at 1.653 μm. The rise time and fall time for renewing the gas mixture are approximately 16 and 14 s, respectively. Vibration and temperature tests have been carried out for verifying the performance of the spectrometer, and standard deviations of 0.38 ppm and 0.11 ppm for 20 ppm CH4 at different vibration frequencies and temperatures, respectively, have been determined. According to the Allan deviation analysis, the minimum detection limit for CH4 can reach 22 ppb at an integration time of 57.8 s. The continuous measurement of atmospheric CH4 for 2 days validated the feasibility and robustness of our laser spectrometer, providing a promising laser spectral sensor for deploying in unmanned aerial vehicles or mobile robots.
Collapse
Affiliation(s)
- Shiling Feng
- College of Environment and Safety, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Xuanbing Qiu
- College of Environment and Safety, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Guqing Guo
- College of Environment and Safety, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Enhua Zhang
- College of Environment and Safety, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Qiusheng He
- College of Environment and Safety, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Xiaohu He
- College of Environment and Safety, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Weiguang Ma
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
| | - Christa Fittschen
- Université Lille, CNRS, UMR 8522-PC2A-Physicochimie des Processus de Combustion et de l'Atmosphère, Lille F-59000, France
| | - Chuanliang Li
- College of Environment and Safety, Taiyuan University of Science and Technology, Taiyuan 030024, China
| |
Collapse
|
10
|
Mittal V, Mashanovich GZ, Wilkinson JS. Perspective on Thin Film Waveguides for on-Chip Mid-Infrared Spectroscopy of Liquid Biochemical Analytes. Anal Chem 2020; 92:10891-10901. [PMID: 32658466 DOI: 10.1021/acs.analchem.0c01296] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Miniaturized spectrometers offering low cost, low reagent consumption, high throughput, sensitivity and automation are the future of sensing and have significant applications in environmental monitoring, food safety, biotechnology, pharmaceuticals, and healthcare. Midinfrared (MIR) spectroscopy employing complementary metal oxide semiconductor (CMOS) compatible thin film waveguides and microfluidics shows great promise toward highly integrated and robust detection tools and liquid handling. This perspective provides an overview of the emergence of thin film optical waveguides used for evanescent field sensing of liquid chemical and biological samples for MIR absorption spectroscopy. The state of the art of new material and waveguide systems used for spectroscopic measurements in the MIR is presented. An outlook on the advantages and future of waveguide-based MIR spectroscopy for application in clinical settings for point-of-care biochemical analysis is discussed.
Collapse
Affiliation(s)
- Vinita Mittal
- Zepler Institute for Photonics and Nanoelectronics, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Goran Z Mashanovich
- Zepler Institute for Photonics and Nanoelectronics, University of Southampton, Southampton, SO17 1BJ, United Kingdom.,School of Electrical Engineering, University of Belgrade, 11120 Belgrade, Serbia
| | - James S Wilkinson
- Zepler Institute for Photonics and Nanoelectronics, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| |
Collapse
|
11
|
Kratz C, Furchner A, Sun G, Rappich J, Hinrichs K. Sensing and structure analysis by in situIR spectroscopy: from mL flow cells to microfluidic applications. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:393002. [PMID: 32235045 DOI: 10.1088/1361-648x/ab8523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
In situmid-infrared (MIR) spectroscopy in liquids is an emerging field for the analysis of functional surfaces and chemical reactions. Different basic geometries exist forin situMIR spectroscopy in milliliter (mL) and microfluidic flow cells, such as attenuated total reflection (ATR), simple reflection, transmission and fiber waveguides. After a general introduction of linear opticalin situMIR techniques, the methodology of ATR, ellipsometric and microfluidic applications in single-reflection geometries is presented. Selected examples focusing on thin layers relevant to optical, electronical, polymer, biomedical, sensing and silicon technology are discussed. The development of an optofluidic platform translates IR spectroscopy to the world of micro- and nanofluidics. With the implementation of SEIRA (surface enhanced infrared absorption) interfaces, the sensitivity of optofluidic analyses of biomolecules can be improved significantly. A large variety of enhancement surfaces ranging from tailored nanostructures to metal-island film substrates are promising for this purpose. Meanwhile, time-resolved studies, such as sub-monolayer formation of organic molecules in nL volumes, become available in microscopic or laser-based set-ups. With the adaption of modern brilliant IR sources, such as tunable and broadband IR lasers as well as frequency comb sources, possible applications of far-field IR spectroscopy inin situsensing with high lateral (sub-mm) and time (sub-s) resolution are considerably extended.
Collapse
Affiliation(s)
| | | | - Guoguang Sun
- ISAS-e.V., Schwarzschildstr. 8, 12489 Berlin, Germany
| | - Jörg Rappich
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Kekuléstr. 5, 12489 Berlin, Germany
| | | |
Collapse
|
12
|
Yang Z, Zou M, Sun L. Generalized optical design of the multiple-row circular multi-pass cell with dense spot pattern. OPTICS EXPRESS 2019; 27:32883-32891. [PMID: 31878364 DOI: 10.1364/oe.27.032883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
We present a generalized method for designing a novel circular multi-pass cell (MPC) with multifold overall optical path length, or alternatively enlarged path-to-volume ratio in the same magnification compared to traditional version, by exploiting the vertical dimension of cavity mirrors. Multiple rows of reflection spots can be generated on arbitrary number of different horizontal planes within the cell that consists of two easy-fabricating circular spherical mirrors. Base on this method, one can arbitrarily determine the interval of reflection spots in both horizontal and vertical directions, so that almost seamless and regular distributed dense spot pattern, and consequently large path-to-volume ratio can be achieved. A series of q-preserving configurations of the multiple-row circular multi-pass cell are calculated and simulated, in which the q-parameters of probe Gaussian beams can be approximately unchanged after the whole transmission within the cells. The maximum optical path length among these simulation cases is 201.8 m within 427.2 mL volume. Furthermore, we demonstrate a practical optical setup with 21.9 m optical path length within 100.1 mL, which is the smallest volume case among the existing actual MPCs with similar overall optical path lengths.
Collapse
|
13
|
Hinkov B, Hayden J, Szedlak R, Martin-Mateos P, Jerez B, Acedo P, Strasser G, Lendl B. High frequency modulation and (quasi) single-sideband emission of mid-infrared ring and ridge quantum cascade lasers. OPTICS EXPRESS 2019; 27:14716-14724. [PMID: 31163916 DOI: 10.1364/oe.27.014716] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 04/05/2019] [Indexed: 06/09/2023]
Abstract
We investigate the high frequency modulation characteristics of mid-infrared surface-emitting ring and edge-emitting ridge quantum cascade lasers (QCLs). In particular, a detailed comparison between circular ring devices and ridge-QCLs from the same laser material, which have a linear waveguide in a "Fabry-Pérot (FP) type" cavity, reveals distinct similarities and differences. Both device types are single-mode emitting, based on either 2 nd- (ring-QCL) or 1 st-order (ridge-QCL) distributed feedback (DFB) gratings with an emission wavelength around 7.56 μm. Their modulation characteristics are investigated in the frequency-domain using an optical frequency-to-amplitude conversion technique based on the ro-vibrational absorptions of CH 4. We observe that the amplitude of frequency tuning Δf over intensity modulation index m as function of the modulation frequency behaves similarly for both types of devices, while the ring-QCLs typically show higher values. The frequency-to-intensity modulation (FM-IM) phase shift shows a decrease starting from ∼72 ∘ at a modulation frequency of 800 kHz to about 0 ∘ at 160 MHz. In addition, we also observe a quasi single-sideband (qSSB) regime for modulation frequencies above 100 MHz, which is identified by a vanishing -1 st-order sideband for both devices. This special FM-state can be observed in DFB QCLs and is in strong contrast to the behavior of regular DFB diode lasers, which do not achieve any significant sideband suppression. By analyzing these important high frequency characteristics of ring-QCLs and comparing them to ridge DFB-QCLs, it shows the potential of intersubband devices for applications in e.g. novel spectroscopic techniques and highly-integrated and high-bitrate free-space data communication. In addition, the obtained results close an existing gap in literature for high frequency modulation characteristics of QCLs.
Collapse
|
14
|
Yang Z, Zou M, Sun L. Generalized method for seeking q-preserving configurations of multi-pass cells. OPTICS EXPRESS 2019; 27:14054-14063. [PMID: 31163859 DOI: 10.1364/oe.27.014054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/23/2019] [Indexed: 06/09/2023]
Abstract
A method is presented for seeking specified multi-pass cell (MPC) configurations with q-parameters of the input and output Gaussian beams that remain the same (q-preserving configurations). The Frobenius norm (F-norm) is chosen as the quantitative criterion of the deviation between the transfer matrix of the MPC configurations and identity matrix. When the deviation is down near to zero, the corresponding configuration is close to an ideal q-preserving configuration. In contrast to common 2 × 2 transfer matrixes that are only applicable to MPCs with negligible astigmatism, we adopt 4 × 4 transfer matrixes that are also workable for multi-pass systems with astigmatism. To demonstrate the validation of the method, several q-preserving structures of four-objective multi-pass matrix system (FO-MMS) and double-row circular MPC (DR-CMPC), which are two fundamentally different MPC types, are illustrated. The variation tendencies of the quantitative deviation between the transfer matrix and the identity matrix are discussed in detail for each structure as functions of structural parameters. The optimal q-preserving structures are found for FO-MMS and DR-CMPC, with the matrix deviation of 0.0047 and 0.0051, while the corresponding total optical path length (OPL) are 33.6 m and 67.8 m, respectively. The OPL of the optimal DR-CPMC is longer than the traditional CMPC in the state of the art, and the deviation is three orders of magnitude smaller if the similar spherical reflecting surfaces are adopted.
Collapse
|
15
|
Mid-Infrared Tunable Laser-Based Broadband Fingerprint Absorption Spectroscopy for Trace Gas Sensing: A Review. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9020338] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The vast majority of gaseous chemical substances exhibit fundamental rovibrational absorption bands in the mid-infrared spectral region (2.5–25 μm), and the absorption of light by these fundamental bands provides a nearly universal means for their detection. A main feature of optical techniques is the non-intrusive in situ detection of trace gases. We reviewed primarily mid-infrared tunable laser-based broadband absorption spectroscopy for trace gas detection, focusing on 2008–2018. The scope of this paper is to discuss recent developments of system configuration, tunable lasers, detectors, broadband spectroscopic techniques, and their applications for sensitive, selective, and quantitative trace gas detection.
Collapse
|
16
|
Isensee K, Kröger-Lui N, Petrich W. Biomedical applications of mid-infrared quantum cascade lasers - a review. Analyst 2019; 143:5888-5911. [PMID: 30444222 DOI: 10.1039/c8an01306c] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mid-infrared spectroscopy has been applied to research in biology and medicine for more than 20 years and conceivable applications have been identified. More recently, these applications have been shown to benefit from the use of quantum cascade lasers due to their specific properties, namely high spectral power density, small beam parameter product, narrow emission spectrum and, if needed, tuning capabilities. This review provides an overview of the achievements and illustrates some applications which benefit from the key characteristics of quantum cascade laser-based mid-infrared spectroscopy using examples such as breath analysis, the investigation of serum, non-invasive glucose monitoring in bulk tissue and the combination of spectroscopy and microscopy of tissue thin sections for rapid histopathology.
Collapse
Affiliation(s)
- Katharina Isensee
- Kirchhoff-Institute for Physics, Heidelberg University, INF 277, 69120 Heidelberg, Germany.
| | | | | |
Collapse
|
17
|
Quantum Cascade Laser Infrared Spectroscopy for Online Monitoring of Hydroxylamine Nitrate. Int J Anal Chem 2018; 2018:7896903. [PMID: 30344609 PMCID: PMC6174729 DOI: 10.1155/2018/7896903] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/26/2018] [Accepted: 08/29/2018] [Indexed: 11/18/2022] Open
Abstract
We describe a new approach for high sensitivity and real-time online measurements to monitor the kinetics in the processing of nuclear materials and other chemical reactions. Mid infrared (Mid-IR) quantum cascade laser (QCL) high-resolution spectroscopy was used for rapid and continuous sampling of nitrates in aqueous and organic reactive systems, using pattern recognition analysis and high sensitivity to detect and identify chemical species. In this standoff or off-set method, the collection of a sample for analysis is not required. To perform the analysis, a flow cell was used for in situ sampling of a liquid slipstream. A prototype was designed based on attenuated total reflection (ATR) coupled with the QCL beam to detect and identify chemical changes and be deployed in hostile environments, either radiological or chemical. The limit of detection (LOD) and the limit of quantification (LOQ) at 3σ for hydroxylamine nitrate ranged from 0.3 to 3 and from 3.5 to 10 g·L−1, respectively, for the nitrate system at three peaks with wavelengths between 3.8 and 9.8 μm.
Collapse
|
18
|
Yang Z, Guo Y, Ming X, Sun L. Generalized Optical Design of the Double-Row Circular Multi-Pass Cell. SENSORS 2018; 18:s18082680. [PMID: 30111713 PMCID: PMC6111760 DOI: 10.3390/s18082680] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/09/2018] [Accepted: 08/13/2018] [Indexed: 12/25/2022]
Abstract
A new design of circular multi-pass cells (CMPC) with two rows of reflection spots on mirrors is presented. The effective optical path length (OPL) of this novel CMPC is double that of traditional CMPC with the same diameter and interval of spots. This OPL can be readily adjusted to have regular intervals by rough rotation adjustment. We achieved a spatial separation of pre- and post-transfer optical systems that was adequately large even in the cases with a large number of passes. Analytical chief ray tracing analysis and a generalized method for parameter determination for designing the cell are presented in detail. The stable condition of the double-row CMPC (DR-CMPC) is also derived by the ABCD matrix method. Designs with maximum effective OPL of 74.72 m, 48.67 m and 24.57 m are demonstrated and verified by ray tracing simulations within a 25 cm diameter DR-CMPC. An adjustment of the regular intervals to 1 m can be achieved in both designs. The overall astigmatism of the design with an effective OPL of 74.72 m is only 9.30 × 10−6 mm, which is four orders of magnitude smaller than that of the traditional CMPC with similar geometric parameters.
Collapse
Affiliation(s)
- Zheng Yang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China.
| | - Yin Guo
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China.
| | - Xianshun Ming
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China.
| | - Liqun Sun
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
19
|
Liu CW, Zhang JC, Jia ZW, Zhuo N, Zhai SQ, Wang LJ, Liu JQ, Liu SM, Liu FQ, Wang ZG. Low Power Consumption Substrate-Emitting DFB Quantum Cascade Lasers. NANOSCALE RESEARCH LETTERS 2017; 12:517. [PMID: 28866815 PMCID: PMC5581747 DOI: 10.1186/s11671-017-2281-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 08/19/2017] [Indexed: 06/07/2023]
Abstract
In the present work, an ultra-low power consumption substrate-emitting distributed feedback (DFB) quantum cascade laser (QCL) was developed. The continuous-wave (CW) threshold power dissipation is reduced to 0.43 W at 25 °C by shortening the cavity length to 0.5 mm and depositing high-reflectivity (HR) coating on both facets. As far as we know, this is the recorded threshold power dissipation of QCLs in the same conditions. Single-mode emission was achieved by employing a buried second-order grating. Mode-hop free emission can be observed within a wide temperature range from 15 to 105 °C in CW mode. The divergence angles are 22.5o and 1.94o in the ridge-width direction and cavity-length direction, respectively. The maximum optical power in CW operation was 2.4 mW at 25 °C, which is sufficient to spectroscopy applications.
Collapse
Affiliation(s)
- Chuan-Wei Liu
- Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Beijing, 100083 People’s Republic of China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 101408 People’s Republic of China
| | - Jin-Chuan Zhang
- Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Beijing, 100083 People’s Republic of China
| | - Zhi-Wei Jia
- Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Beijing, 100083 People’s Republic of China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 101408 People’s Republic of China
| | - Ning Zhuo
- Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Beijing, 100083 People’s Republic of China
| | - Shen-Qiang Zhai
- Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Beijing, 100083 People’s Republic of China
| | - Li-Jun Wang
- Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Beijing, 100083 People’s Republic of China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 101408 People’s Republic of China
| | - Jun-Qi Liu
- Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Beijing, 100083 People’s Republic of China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 101408 People’s Republic of China
| | - Shu-Man Liu
- Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Beijing, 100083 People’s Republic of China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 101408 People’s Republic of China
| | - Feng-Qi Liu
- Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Beijing, 100083 People’s Republic of China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 101408 People’s Republic of China
| | - Zhan-Guo Wang
- Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Beijing, 100083 People’s Republic of China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 101408 People’s Republic of China
| |
Collapse
|
20
|
Schwaighofer A, Brandstetter M, Lendl B. Quantum cascade lasers (QCLs) in biomedical spectroscopy. Chem Soc Rev 2017; 46:5903-5924. [DOI: 10.1039/c7cs00403f] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review focuses on the recent applications of QCLs in mid-IR spectroscopy of clinically relevant samples.
Collapse
Affiliation(s)
- Andreas Schwaighofer
- Institute of Chemical Technologies and Analytics
- Vienna University of Technology
- 1060 Vienna
- Austria
| | | | - Bernhard Lendl
- Institute of Chemical Technologies and Analytics
- Vienna University of Technology
- 1060 Vienna
- Austria
| |
Collapse
|
21
|
Schädle T, Mizaikoff B. Mid-Infrared Waveguides: A Perspective. APPLIED SPECTROSCOPY 2016; 70:1625-1638. [PMID: 27624555 DOI: 10.1177/0003702816659668] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 05/10/2016] [Indexed: 05/28/2023]
Abstract
Significant advancements in waveguide technology in the mid-infrared (MIR) regime during recent decades have assisted in establishing MIR spectroscopic and sensing technologies as a routine tool among nondestructive analytical methods. In this review, the evolution of MIR waveguides along with state-of-the-art technologies facilitating next-generation MIR chem/bio sensors will be discussed introducing a classification scheme defining three "generations" of MIR waveguides: (1) conventional internal reflection elements as "first generation" waveguides; (2) MIR-transparent optical fibers as "second generation" waveguides; and most recently introduced(3) thin-film structures as "third generation" waveguides. Selected application examples for these each waveguide category along with future trends will highlight utility and perspectives for waveguide-based MIR spectroscopy and sensing systems.
Collapse
Affiliation(s)
- Thomas Schädle
- Institute of Analytical and Bioanalytical Chemistry (IABC), Ulm University, Ulm, Germany
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry (IABC), Ulm University, Ulm, Germany
| |
Collapse
|
22
|
Pniewski J, Stefaniuk T, Van HL, Long VC, Van LC, Kasztelanic R, Stępniewski G, Ramaniuk A, Trippenbach M, Buczyński R. Dispersion engineering in nonlinear soft glass photonic crystal fibers infiltrated with liquids. APPLIED OPTICS 2016; 55:5033-5040. [PMID: 27409187 DOI: 10.1364/ao.55.005033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We present a numerical study of the dispersion characteristic modification of nonlinear photonic crystal fibers infiltrated with liquids. A photonic crystal fiber based on the soft glass PBG-08, infiltrated with 17 different organic solvents, is proposed. The glass has a light transmission window in the visible-mid-IR range of 0.4-5 μm and has a higher refractive index than fused silica, which provides high contrast between the fiber structure and the liquids. A fiber with air holes is designed and then developed in the stack-and-draw process. Analyzing SEM images of the real fiber, we calculate numerically the refractive index, effective mode area, and dispersion of the fundamental mode for the case when the air holes are filled with liquids. The influence of the liquids on the fiber properties is discussed. Numerical simulations of supercontinuum generation for the fiber with air holes only and infiltrated with toluene are presented.
Collapse
|
23
|
Haas J, Mizaikoff B. Advances in Mid-Infrared Spectroscopy for Chemical Analysis. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2016; 9:45-68. [PMID: 27070183 DOI: 10.1146/annurev-anchem-071015-041507] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Infrared spectroscopy in the 3-20 μm spectral window has evolved from a routine laboratory technique into a state-of-the-art spectroscopy and sensing tool by benefitting from recent progress in increasingly sophisticated spectra acquisition techniques and advanced materials for generating, guiding, and detecting mid-infrared (MIR) radiation. Today, MIR spectroscopy provides molecular information with trace to ultratrace sensitivity, fast data acquisition rates, and high spectral resolution catering to demanding applications in bioanalytics, for example, and to improved routine analysis. In addition to advances in miniaturized device technology without sacrificing analytical performance, selected innovative applications for MIR spectroscopy ranging from process analysis to biotechnology and medical diagnostics are highlighted in this review.
Collapse
Affiliation(s)
- Julian Haas
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, 89069 Ulm, Germany;
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, 89069 Ulm, Germany;
| |
Collapse
|
24
|
|
25
|
|
26
|
Mid-infrared surface transmitting and detecting quantum cascade device for gas-sensing. Sci Rep 2016; 6:21795. [PMID: 26887891 PMCID: PMC4757892 DOI: 10.1038/srep21795] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 02/01/2016] [Indexed: 11/09/2022] Open
Abstract
We present a bi-functional surface emitting and surface detecting mid-infrared device applicable for gas-sensing. A distributed feedback ring quantum cascade laser is monolithically integrated with a detector structured from a bi-functional material for same frequency lasing and detection. The emitted single mode radiation is collimated, back reflected by a flat mirror and detected by the detector element of the sensor. The surface operation mode combined with the low divergence emission of the ring quantum cascade laser enables for long analyte interaction regions spatially separated from the sample surface. The device enables for sensing of gaseous analytes which requires a relatively long interaction region. Our design is suitable for 2D array integration with multiple emission and detection frequencies. Proof of principle measurements with isobutane (2-methylpropane) and propane as gaseous analytes were conducted. Detectable concentration values of 0-70% for propane and 0-90% for isobutane were reached at a laser operation wavelength of 6.5 μm utilizing a 10 cm gas cell in double pass configuration.
Collapse
|
27
|
Wolf JM, Riedi S, Süess MJ, Beck M, Faist J. 3.36 µm single-mode quantum cascade laser with a dissipation below 250 mW. OPTICS EXPRESS 2016; 24:662-671. [PMID: 26832296 DOI: 10.1364/oe.24.000662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We present 3.36 µm buried heterostructure distributed-feedback quantum cascade lasers with a power dissipation at threshold below 250 mW and operation temperatures as high as 130 °C. Threshold values below 20 mA at -10 °C in pulsed operation and 30 mA at -20 °C in continuous-wave operation are reported. Optical power above 130 mW and 13 mW are achieved at -20 °C in pulsed and continuous-wave operation, respectively. Continuous-wave operation occurs until 15 °C. We show single-mode emission in pulsed and continuous-wave operation. Single-mode performance is demonstrated in long pulse (5.56 µs) operation. The laser far-field exhibits a single lobe emission with full-width-half-max of 27 ° × 34 °.
Collapse
|
28
|
Arbabi A, Briggs RM, Horie Y, Bagheri M, Faraon A. Efficient dielectric metasurface collimating lenses for mid-infrared quantum cascade lasers. OPTICS EXPRESS 2015; 23:33310-7. [PMID: 26831996 DOI: 10.1364/oe.23.033310] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Light emitted from single-mode semiconductor lasers generally has large divergence angles, and high numerical aperture lenses are required for beam collimation. Visible and near infrared lasers are collimated using aspheric glass or plastic lenses, yet collimation of mid-infrared quantum cascade lasers typically requires more costly aspheric lenses made of germanium, chalcogenide compounds, or other infrared-transparent materials. Here we report mid-infrared dielectric metasurface flat lenses that efficiently collimate the output beam of single-mode quantum cascade lasers. The metasurface lenses are composed of amorphous silicon posts on a flat sapphire substrate and can be fabricated at low cost using a single step conventional UV binary lithography. Mid-infrared radiation from a 4.8 μm distributed-feedback quantum cascade laser is collimated using a polarization insensitive metasurface lens with 0.86 numerical aperture and 79% transmission efficiency. The collimated beam has a half divergence angle of 0.36° and beam quality factor of M2=1.02.
Collapse
|
29
|
Vitiello MS, Scalari G, Williams B, De Natale P. Quantum cascade lasers: 20 years of challenges. OPTICS EXPRESS 2015; 23:5167-82. [PMID: 25836550 DOI: 10.1364/oe.23.005167] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We review the most recent technological and application advances of quantum cascade lasers, underlining the present milestones and future directions from the Mid-infrared to the Terahertz spectral range. Challenges and developments, which are the subject of the contributions to this focus issue, are also introduced.
Collapse
|
30
|
Jágerská J, Jouy P, Tuzson B, Looser H, Mangold M, Soltic P, Hugi A, Brönnimann R, Faist J, Emmenegger L. Simultaneous measurement of NO and NO(2) by dual-wavelength quantum cascade laser spectroscopy. OPTICS EXPRESS 2015; 23:1512-1522. [PMID: 25835908 DOI: 10.1364/oe.23.001512] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The concept of a multi-wavelength quantum cascade laser emitting at two or more spectrally well-separated wavelengths is highly appealing for applied spectroscopy, as it allows detecting several species with compact and cost-efficient optical setups. Here we present a practical realization of such a dual-wavelength setup, which is based on a room-temperature quantum cascade laser emitting single-mode at 1600 cm-1 and 1900 cm-1 and is thus well-suited for simultaneous NO and NO2 detection. Operated in a time-division multiplexed mode, our spectrometer reaches detection limits of 0.5 and 1.5 ppb for NO2 and NO, respectively. The performance of the system is validated against the well-established chemiluminescence detection while measuring the NOx emissions on an automotive test-bench, as well as upon monitoring the pollution at a suburban site.
Collapse
|