1
|
Chinoy ZS, Moremen KW, Friscourt F. A Clickable Bioorthogonal Sydnone-Aglycone for the Facile Preparation of a Core 1 O-Glycan-Array. European J Org Chem 2022; 2022:e202200271. [PMID: 36035814 PMCID: PMC9401066 DOI: 10.1002/ejoc.202200271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/13/2022] [Indexed: 11/12/2022]
Abstract
Protein-O-glycosylation has been shown to be essential for many biological processes. However, determining the exact relationship between O-glycan structures and their biological activity remains challenging. Here we report that, unlike azides, sydnones can be incorporated as an aglycon into core 1 O-glycans early-on in their synthesis since it is compatible with carbohydrate chemistry and enzymatic glycosylations, allowing us to generate a small library of sydnone-containing core 1 O-glycans by chemoenzymatic synthesis. The sydnone-aglycon was then employed for the facile preparation of an O-glycan array, via bioorthogonal strain-promoted sydnone-alkyne cycloaddition click reaction, and in turn was utilized for the high-throughput screening of O-glycan-lectin interactions. This sydnone-aglycon, particularly adapted for O-glycomics, is a valuable chemical tool that complements the limited technologies available for investigating O-glycan structure-activity relationships.
Collapse
Affiliation(s)
- Zoeisha S. Chinoy
- Institut Européen de Chimie et BiologieUniversité de Bordeaux2 rue Robert Escarpit33607PessacFrance
- Institut des Sciences MoléculairesCNRS UMR525533405TalenceFrance
| | - Kelley W. Moremen
- Department of Biochemistry and Molecular BiologyUniversity of GeorgiaAthensGA 30602USA
- Complex Carbohydrate Research CenterUniversity of GeorgiaAthensGA 30602USA
| | - Frédéric Friscourt
- Institut Européen de Chimie et BiologieUniversité de Bordeaux2 rue Robert Escarpit33607PessacFrance
- Institut des Sciences MoléculairesCNRS UMR525533405TalenceFrance
| |
Collapse
|
2
|
Mátyás B, Singer J, Szarka M, Lowy DA, Döncző B, Makleit P, Failoc-Rojas VE, Ramirez A, Martínez P, Sándor Z, Kincses I, Guttman A. Determination of complex type free, non-conjugated oligosaccharide glucose unit values in tomato xylem sap for early detection of nutrient deficiency. Electrophoresis 2020; 42:200-205. [PMID: 33128395 DOI: 10.1002/elps.202000254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/04/2020] [Accepted: 10/27/2020] [Indexed: 11/07/2022]
Abstract
Although knowledge on glycan biosynthesis and processing is continuously maturing, there are still a limited number of studies that examine biological functions of N-glycan structures in plants, which remain virtually unknown. Here, the statistical correlation between nutrient (nitrogen) deficiency symptoms of crops and changes in 8-aminopyrene-1,3,6-trisulfonic acid (APTS)-labeled complex type free oligosaccharides is reported. While deficiency symptoms are predicted by multispectral images and Kjeldahl digestion, APTS-labeled complex type free oligosaccharides are identified by their glucose unit (GU) values in tomato xylem sap, using capillary electrophoresis with laser induced fluorescence detection (CE-LIF). Given the limited number of structures obtained from plants, archived in the literature, in the future, it is intended to create an open access database of promising indicators, namely, glycan structures that are presumably responsible for the nutrient deficiency caused stress in plants (http://glycoplants.org).
Collapse
Affiliation(s)
- Bence Mátyás
- Genesis Sustainable Future Ltd., 33 Rákóczi St., Sárospatak, B-A-Z, H-3950, Hungary.,Research Group of Applied Plant Glycobiology, Dama Research Center limited, Kowloon, Hong Kong
| | | | - Máté Szarka
- Horváth Csaba Memorial Laboratory of Bioseparation Sciences, Research Center for Molecular Medicine, Faculty of Medicine, Doctoral School of Molecular Medicine, University of Debrecen, Hungary.,Institute for Nuclear Research (Atomki), Debrecen, Hungary.,Vitrolink Ltd., Debrecen, Hungary
| | - Daniel A Lowy
- Genesis Sustainable Future Ltd., 33 Rákóczi St., Sárospatak, B-A-Z, H-3950, Hungary.,Research Group of Applied Plant Glycobiology, Dama Research Center limited, Kowloon, Hong Kong.,Northern Virginia Community College, Alxandria, VA, USA
| | | | - Péter Makleit
- Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Hungary
| | - Virgilio E Failoc-Rojas
- Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud, Universidad San Ignacio de Loyola, Lima, Peru
| | - Andrés Ramirez
- Centro de Investigación y Transferencia de Tecnología - CIITT, Universidad Católica de Cuenca, Azogues, Ecuador
| | - Pedro Martínez
- Centro de Investigación y Transferencia de Tecnología - CIITT, Universidad Católica de Cuenca, Azogues, Ecuador
| | - Zsolt Sándor
- Research Group of Applied Plant Glycobiology, Dama Research Center limited, Kowloon, Hong Kong.,Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Hungary
| | - Ida Kincses
- Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Hungary
| | - András Guttman
- Horváth Csaba Memorial Laboratory of Bioseparation Sciences, Research Center for Molecular Medicine, Faculty of Medicine, Doctoral School of Molecular Medicine, University of Debrecen, Hungary.,Translational Glycomics Group, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprém, Hungary
| |
Collapse
|
3
|
Lectinocytochemical study of rat stomach mucosa under the conditions of cyclooxygenase-1/-2 blockage and pretreatment witH H-Glu-Asp-Gly-OH. UKRAINIAN BIOCHEMICAL JOURNAL 2020. [DOI: 10.15407/ubj92.02.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
4
|
Direct immobilization of sugar probes on bovine serum albumin-coated gold substrate for the development of glycan biosensors. Biointerphases 2019; 14:011003. [PMID: 30727738 DOI: 10.1116/1.5082005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Glycan biosensors based on surface plasmon resonance (SPR) spectroscopy have attracted a great deal of interest due to their potential applications in numerous biological and biomedical fields. Controlled immobilization of sugar probes on a gold substrate is believed to be critical for the performance of these SPR biosensors. In this regard, herein the authors report a direct coupling of mannose probes with bovine serum albumin (BSA) layer on the gold substrate via a squaric acid-mediated reaction under mild conditions, in which the BSA layer provides not only reactive amine groups but also a nonfouling surface property. SPR measurements show that the resultant biosensor with an appropriate amount of mannose probes exhibits high affinity to its corresponding lectin (i.e., concanavalin A) and at the same time could resist nonspecific adsorption of other lectins. The limit of detection of the current SPR biosensor is 1.9 nM. Thus, the squaric acid-mediated immobilization strategy appears to be effective and useful for the fabrication of bioanalytical devices.
Collapse
|
5
|
van Munster JM, Thomas B, Riese M, Davis AL, Gray CJ, Archer DB, Flitsch SL. Application of carbohydrate arrays coupled with mass spectrometry to detect activity of plant-polysaccharide degradative enzymes from the fungus Aspergillus niger. Sci Rep 2017; 7:43117. [PMID: 28220903 PMCID: PMC5318901 DOI: 10.1038/srep43117] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/19/2017] [Indexed: 01/25/2023] Open
Abstract
Renewables-based biotechnology depends on enzymes to degrade plant lignocellulose to simple sugars that are converted to fuels or high-value products. Identification and characterization of such lignocellulose degradative enzymes could be fast-tracked by availability of an enzyme activity measurement method that is fast, label-free, uses minimal resources and allows direct identification of generated products. We developed such a method by applying carbohydrate arrays coupled with MALDI-ToF mass spectrometry to identify reaction products of carbohydrate active enzymes (CAZymes) of the filamentous fungus Aspergillus niger. We describe the production and characterization of plant polysaccharide-derived oligosaccharides and their attachment to hydrophobic self-assembling monolayers on a gold target. We verify effectiveness of this array for detecting exo- and endo-acting glycoside hydrolase activity using commercial enzymes, and demonstrate how this platform is suitable for detection of enzyme activity in relevant biological samples, the culture filtrate of A. niger grown on wheat straw. In conclusion, this versatile method is broadly applicable in screening and characterisation of activity of CAZymes, such as fungal enzymes for plant lignocellulose degradation with relevance to biotechnological applications as biofuel production, the food and animal feed industry.
Collapse
Affiliation(s)
- Jolanda M van Munster
- Fungal Biology and Genetics, School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Baptiste Thomas
- Chemical Biology, Manchester Institute for Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Michel Riese
- Chemical Biology, Manchester Institute for Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Adrienne L Davis
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Christopher J Gray
- Chemical Biology, Manchester Institute for Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - David B Archer
- Fungal Biology and Genetics, School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Sabine L Flitsch
- Chemical Biology, Manchester Institute for Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
6
|
Tao S, Jia TW, Yang Y, Chu LQ. BSA-Sugar Conjugates as Ideal Building Blocks for SPR-Based Glycan Biosensors. ACS Sens 2017; 2:57-60. [PMID: 28722428 DOI: 10.1021/acssensors.6b00679] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Controlled immobilization of sugar probes is of key importance for the development of glycan biosensors. To this end, a series of BSA-sugar conjugates with different numbers of mannose units are prepared via the squaric acid-mediated coupling reaction. The conjugates can absorb directly on gold substrate without any derivation reactions, thus providing a simple and effective method for the construction of SPR-based glycan biosensors. SPR measurements show that the BSA-mannose conjugate with 11 mannoses exhibit the highest affinity to the lectin concanavalin A with a limit of detection of ca. 1.8 nM. Regeneration and specificity of the obtained glycan biosensors are also investigated.
Collapse
Affiliation(s)
- Shun Tao
- College of Chemical Engineering and Materials Science and ‡China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Tian-Wei Jia
- College of Chemical Engineering and Materials Science and ‡China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Yang Yang
- College of Chemical Engineering and Materials Science and ‡China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Li-Qiang Chu
- College of Chemical Engineering and Materials Science and ‡China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| |
Collapse
|
7
|
Multivalent Carbohydrate-Lectin Interactions: How Synthetic Chemistry Enables Insights into Nanometric Recognition. Molecules 2016; 21:molecules21050629. [PMID: 27187342 PMCID: PMC6274006 DOI: 10.3390/molecules21050629] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/02/2016] [Accepted: 05/10/2016] [Indexed: 12/15/2022] Open
Abstract
Glycan recognition by sugar receptors (lectins) is intimately involved in many aspects of cell physiology. However, the factors explaining the exquisite selectivity of their functional pairing are not yet fully understood. Studies toward this aim will also help appraise the potential for lectin-directed drug design. With the network of adhesion/growth-regulatory galectins as therapeutic targets, the strategy to recruit synthetic chemistry to systematically elucidate structure-activity relationships is outlined, from monovalent compounds to glyco-clusters and glycodendrimers to biomimetic surfaces. The versatility of the synthetic procedures enables to take examining structural and spatial parameters, alone and in combination, to its limits, for example with the aim to produce inhibitors for distinct galectin(s) that exhibit minimal reactivity to other members of this group. Shaping spatial architectures similar to glycoconjugate aggregates, microdomains or vesicles provides attractive tools to disclose the often still hidden significance of nanometric aspects of the different modes of lectin design (sequence divergence at the lectin site, differences of spatial type of lectin-site presentation). Of note, testing the effectors alone or in combination simulating (patho)physiological conditions, is sure to bring about new insights into the cooperation between lectins and the regulation of their activity.
Collapse
|
8
|
Antonyuk V, Grama S, Plichta Z, Magorivska I, Horak D, Stoika R. Use of specific polysaccharide-immobilized monodisperse poly(glycidyl methacrylate) core-silica shell microspheres for affinity purification of lectins. Biomed Chromatogr 2015; 29:783-7. [PMID: 25339319 DOI: 10.1002/bmc.3360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 08/13/2014] [Accepted: 09/15/2014] [Indexed: 12/29/2022]
Abstract
Immobilization of polysaccharides (yeast mannan and gum arabic) on the macroporous poly(glycidyl methacrylate) monodisperse microspheres coated with silica (SiO2 )-containing amino groups on the surface was used to prepare affinity sorbents for lectin purification. The efficiency of isolating mannose specific Pisum sativum lectin was demonstrated on sorbent with immobilized yeast mannan and that of galactose specific Glycine hispida lectin on sorbent with immobilized gum arabic. The microspheres with immobilized polysaccharides can be used for selecting an affinity sorbent for purification of other mannose- and galactose-specific lectins. In contrast to yeast mannan, the gum arabic immobilized on the microspheres possesses much narrower specificity and is suitable for purification of only those galactose specific lectins which interact well with l-rhamnose or l-arabinose. The synthesized macroporous particles are capable of immobilizing 50 mg of polysaccharide per 1 g of the matrix, which is 10 times higher than the capacity of epoxy-activated Sepharose 6B. That makes it possible to obtain the same lectin quantity using a column of 10 times smaller volume. Another advantage of novel affinity sorbents comparing corresponding Sepharose gels is the possibility of sorbent drying after use.
Collapse
Affiliation(s)
- Volodymyr Antonyuk
- Institute of Cell Biology, National Academy of Science of Ukraine, Drahomanov St, 14/16, 79005, Lviv, Ukraine
| | | | | | | | | | | |
Collapse
|
9
|
Lectins: getting familiar with translators of the sugar code. Molecules 2015; 20:1788-823. [PMID: 25621423 PMCID: PMC6272290 DOI: 10.3390/molecules20021788] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 12/23/2014] [Accepted: 01/08/2015] [Indexed: 11/16/2022] Open
Abstract
The view on the significance of the presence of glycans in glycoconjugates is undergoing a paradigmatic change. Initially mostly considered to be rather inert and passive, the concept of the sugar code identifies glycans as highly versatile platform to store information. Their chemical properties endow carbohydrates to form oligomers with unsurpassed structural variability. Owing to their capacity to engage in hydrogen (and coordination) bonding and C-H/π-interactions these “code words” can be “read” (in Latin, legere) by specific receptors. A distinct class of carbohydrate-binding proteins are the lectins. More than a dozen protein folds have developed carbohydrate-binding capacity in vertebrates. Taking galectins as an example, distinct expression patterns are traced. The availability of labeled endogenous lectins facilitates monitoring of tissue reactivity, extending the scope of lectin histochemistry beyond that which traditionally involved plant lectins. Presentation of glycan and its cognate lectin can be orchestrated, making a glycan-based effector pathway in growth control of tumor and activated T cells possible. In order to unravel the structural basis of lectin specificity for particular glycoconjugates mimetics of branched glycans and programmable models of cell surfaces are being developed by strategic combination of lectin research with synthetic and supramolecular chemistry.
Collapse
|
10
|
Abstract
Carbohydrate antigens are important targets for the immune system, but identification of key glycan antigens is challenging. Direct analysis of glycomes by mass spectrometry is difficult, and detection reagents, such as monoclonal antibodies and lectins, are only available for a small subset of glycans. An alternative approach involves profiling serum anti-glycan antibody populations to identify unique antibodies or changes in antibody subpopulations. Glycan microarray technology allows rapid evaluation of hundreds to thousands of antigen-antibody interactions in a single experiment. This high-throughput format is particularly useful in profiling complex anti-glycan antibodies in serum. Here we elaborate the use of this technology to explore clinically relevant carbohydrate antigens by profiling serum anti-glycan antibodies. Detailed protocols from glycan microarray fabrication to microarray binding assays and analysis of microarray data are presented.
Collapse
|
11
|
Abstract
Glycans on proteins and lipids are known to alter with malignant transformation. The study of these may contribute to the discovery of biomarkers and treatment targets as well as understanding of cancer biology. We here describe the change of glycosylation specifically defining colorectal cancer with view on N-glycans, O-glycans, and glycosphingolipid glycans in colorectal cancer cells and tissues as well as patient sera. Glycan alterations observed in colon cancer include increased β1,6-branching and correlating higher abundance of (poly-)N-acetyllactosamine extensions of N-glycans as well as an increase in (truncated) high-mannose type glycans, while bisected structures decrease. Colorectal cancer-associated O-glycan changes are predominated by reduced expression of core 3 and 4 glycans, whereas higher levels of core 1 glycans, (sialyl) T-antigen, (sialyl) Tn-antigen, and a generally higher density of O-glycans are observed. Specific changes for glycosphingolipid glycans are lower abundances of disialylated structures as well as globo-type glycosphingolipid glycans with exception of Gb3. In general, alterations affecting all discussed glycan types are increased sialylation, fucosylation as well as (sialyl) Lewis-type antigens and type-2 chain glycans. As a consequence, interactions with glycan-binding proteins can be affected and the biological function and cellular consequences of the altered glycosylation with regard to tumorigenesis, metastasis, modulation of immunity, and resistance to antitumor therapy will be discussed. Finally, analytical approaches aiding in the field of glycomics will be reviewed with focus on binding assays and mass spectrometry.
Collapse
Affiliation(s)
- Stephanie Holst
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands.
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands; Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands; Division of BioAnalytical Chemistry, VU University, Amsterdam, The Netherlands
| | - Yoann Rombouts
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|