1
|
Niu L, Jang E, Chin AL, Huo Z, Wang W, Cai W, Tong R. Noncovalently particle-anchored cytokines with prolonged tumor retention safely elicit potent antitumor immunity. SCIENCE ADVANCES 2024; 10:eadk7695. [PMID: 38640236 PMCID: PMC11029804 DOI: 10.1126/sciadv.adk7695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 03/19/2024] [Indexed: 04/21/2024]
Abstract
Preclinical studies have shown that immunostimulatory cytokines elicit antitumor immune responses but their clinical use is limited by severe immune-related adverse events upon systemic administration. Here, we report a facile and versatile strategy for noncovalently anchoring potent Fc-fused cytokine molecules to the surface of size-discrete particles decorated with Fc-binding peptide for local administration. Following intratumoral injection, particle-anchored Fc cytokines exhibit size-dependent intratumoral retention. The 1-micrometer particle prolongs intratumoral retention of Fc cytokine for over a week and has minimal systemic exposure, thereby eliciting antitumor immunity while eliminating systemic toxicity caused by circulating cytokines. In addition, the combination of these particle-anchored cytokines with immune checkpoint blockade antibodies safely promotes tumor regression in various syngeneic tumor models and genetically engineered murine tumor models and elicits systemic antitumor immunity against tumor rechallenge. Our formulation strategy renders a safe and tumor-agnostic approach that uncouples cytokines' immunostimulatory properties from their systemic toxicities for potential clinical application.
Collapse
Affiliation(s)
- Liqian Niu
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, Blacksburg, VA, 24061, USA
| | - Eungyo Jang
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, Blacksburg, VA, 24061, USA
| | - Ai Lin Chin
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, Blacksburg, VA, 24061, USA
| | - Ziyu Huo
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, Blacksburg, VA, 24061, USA
| | - Wenbo Wang
- Department of Materials Science and Engineering, Virginia Polytechnic Institute and State University, 445 Old Turner Street, Blacksburg, VA, 24061, USA
| | - Wenjun Cai
- Department of Materials Science and Engineering, Virginia Polytechnic Institute and State University, 445 Old Turner Street, Blacksburg, VA, 24061, USA
| | - Rong Tong
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, Blacksburg, VA, 24061, USA
| |
Collapse
|
2
|
Rahmania FJ, Huang YS, Workie YA, Imae T, Kondo A, Miki Y, Imai R, Nagai T, Nakagawa H, Kawai N, Tsutsumiuchi K. Preparation of Functional Nanoparticles-Loaded Magnetic Carbon Nanohorn Nanocomposites towards Composite Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:839. [PMID: 36903717 PMCID: PMC10005593 DOI: 10.3390/nano13050839] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Combination therapy for cancer is expected for the synergetic effect of different treatments, and the development of promising carrier materials is demanded for new therapeutics. In this study, nanocomposites including functional nanoparticles (NPs) such as samarium oxide NP for radiotherapy and gadolinium oxide NP as a magnetic resonance imaging agent were synthesized and chemically combined with iron oxide NP-embedded or carbon dot-coating iron oxide NP-embedded carbon nanohorn carriers, where iron oxide NP is a hyperthermia reagent and carbon dot exerts effects on photodynamic/photothermal treatments. These nanocomposites exerted potential for delivery of anticancer drugs (doxorubicin, gemcitabine, and camptothecin) even after being coated with poly(ethylene glycol). The co-delivery of these anticancer drugs played better drug-release efficacy than the independent drug delivery, and the thermal and photothermal procedures enlarged the drug release. Thus, the prepared nanocomposites can be expected as materials to develop advanced medication for combination treatment.
Collapse
Affiliation(s)
- Fitriani Jati Rahmania
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Yi-Shou Huang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Yitayal Admassu Workie
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Toyoko Imae
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Anna Kondo
- College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto, Kasugai 487-8501, Japan
| | - Yukiko Miki
- College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto, Kasugai 487-8501, Japan
| | - Ritsuko Imai
- College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto, Kasugai 487-8501, Japan
| | - Takashi Nagai
- Department of Nephron-Urology, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan
| | - Hiroshi Nakagawa
- College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto, Kasugai 487-8501, Japan
| | - Noriyasu Kawai
- Department of Nephron-Urology, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan
| | - Kaname Tsutsumiuchi
- College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto, Kasugai 487-8501, Japan
| |
Collapse
|
3
|
Ding H, Kollipara PS, Kim Y, Kotnala A, Li J, Chen Z, Zheng Y. Universal optothermal micro/nanoscale rotors. SCIENCE ADVANCES 2022; 8:eabn8498. [PMID: 35704582 PMCID: PMC9200276 DOI: 10.1126/sciadv.abn8498] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/02/2022] [Indexed: 05/29/2023]
Abstract
Rotation of micro/nano-objects is important for micro/nanorobotics, three-dimensional imaging, and lab-on-a-chip systems. Optical rotation techniques are especially attractive because of their fuel-free and remote operation. However, current techniques require laser beams with designed intensity profile and polarization or objects with sophisticated shapes or optical birefringence. These requirements make it challenging to use simple optical setups for light-driven rotation of many highly symmetric or isotropic objects, including biological cells. Here, we report a universal approach to the out-of-plane rotation of various objects, including spherically symmetric and isotropic particles, using an arbitrary low-power laser beam. Moreover, the laser beam is positioned away from the objects to reduce optical damage from direct illumination. The rotation mechanism based on opto-thermoelectrical coupling is elucidated by rigorous experiments combined with multiscale simulations. With its general applicability and excellent biocompatibility, our universal light-driven rotation platform is instrumental for various scientific research and engineering applications.
Collapse
Affiliation(s)
- Hongru Ding
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | | | - Youngsun Kim
- Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Abhay Kotnala
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jingang Li
- Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Zhihan Chen
- Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Yuebing Zheng
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
4
|
Namazi N. A Modified Polymeric Nano-formulation to Control Binding and Release of Insulin. J Pharm Sci 2022; 111:2481-2489. [DOI: 10.1016/j.xphs.2022.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 10/18/2022]
|
5
|
Aprà P, Mino L, Battiato A, Olivero P, Sturari S, Valsania MC, Varzi V, Picollo F. Interaction of Nanodiamonds with Water: Impact of Surface Chemistry on Hydrophilicity, Aggregation and Electrical Properties. NANOMATERIALS 2021; 11:nano11102740. [PMID: 34685181 PMCID: PMC8538990 DOI: 10.3390/nano11102740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 11/30/2022]
Abstract
In recent decades, nanodiamonds (NDs) have earned increasing interest in a wide variety of research fields, thanks to their excellent mechanical, chemical, and optical properties, together with the possibility of easily tuning their surface chemistry for the desired purpose. According to the application context, it is essential to acquire an extensive understanding of their interaction with water in terms of hydrophilicity, environmental adsorption, stability in solution, and impact on electrical properties. In this paper, we report on a systematic study of the effects of reducing and oxidizing thermal processes on ND surface water adsorption. Both detonation and milled NDs were analyzed by combining different techniques. Temperature-dependent infrared spectroscopy was employed to study ND surface chemistry and water adsorption, while dynamic light scattering allowed the evaluation of their behavior in solution. The influence of water adsorption on their electrical properties was also investigated and correlated with structural and optical information obtained via Raman/photoluminescence spectroscopy. In general, higher oxygen-containing surfaces exhibited higher hydrophilicity, better stability in solution, and higher electrical conduction, although for the latter the surface graphitic contribution was also crucial. Our results provide in-depth information on the hydrophilicity of NDs in relation to their surface chemical and physical properties, by also evaluating the impacts on their aggregation and electrical conductance.
Collapse
Affiliation(s)
- Pietro Aprà
- Physics Department, University of Torino, Via Pietro Giuria 1, 10125 Torino, Italy; (P.A.); (P.O.); (S.S.); (V.V.); (F.P.)
- “Nanostructured Interfaces and Surfaces” (NIS) Inter-Departmental Centre, University of Torino, Via Quarello 15/a, 10135 Torino, Italy;
- National Institute of Nuclear Physics, Section of Torino, Via Pietro Giuria 1, 10125 Torino, Italy;
| | - Lorenzo Mino
- “Nanostructured Interfaces and Surfaces” (NIS) Inter-Departmental Centre, University of Torino, Via Quarello 15/a, 10135 Torino, Italy;
- Department of Chemistry, University of Torino, Via Pietro Giuria 7, 10125 Torino, Italy
- Correspondence:
| | - Alfio Battiato
- National Institute of Nuclear Physics, Section of Torino, Via Pietro Giuria 1, 10125 Torino, Italy;
| | - Paolo Olivero
- Physics Department, University of Torino, Via Pietro Giuria 1, 10125 Torino, Italy; (P.A.); (P.O.); (S.S.); (V.V.); (F.P.)
- “Nanostructured Interfaces and Surfaces” (NIS) Inter-Departmental Centre, University of Torino, Via Quarello 15/a, 10135 Torino, Italy;
- National Institute of Nuclear Physics, Section of Torino, Via Pietro Giuria 1, 10125 Torino, Italy;
| | - Sofia Sturari
- Physics Department, University of Torino, Via Pietro Giuria 1, 10125 Torino, Italy; (P.A.); (P.O.); (S.S.); (V.V.); (F.P.)
| | - Maria Carmen Valsania
- “Nanostructured Interfaces and Surfaces” (NIS) Inter-Departmental Centre, University of Torino, Via Quarello 15/a, 10135 Torino, Italy;
| | - Veronica Varzi
- Physics Department, University of Torino, Via Pietro Giuria 1, 10125 Torino, Italy; (P.A.); (P.O.); (S.S.); (V.V.); (F.P.)
- “Nanostructured Interfaces and Surfaces” (NIS) Inter-Departmental Centre, University of Torino, Via Quarello 15/a, 10135 Torino, Italy;
- National Institute of Nuclear Physics, Section of Torino, Via Pietro Giuria 1, 10125 Torino, Italy;
| | - Federico Picollo
- Physics Department, University of Torino, Via Pietro Giuria 1, 10125 Torino, Italy; (P.A.); (P.O.); (S.S.); (V.V.); (F.P.)
- “Nanostructured Interfaces and Surfaces” (NIS) Inter-Departmental Centre, University of Torino, Via Quarello 15/a, 10135 Torino, Italy;
- National Institute of Nuclear Physics, Section of Torino, Via Pietro Giuria 1, 10125 Torino, Italy;
| |
Collapse
|
6
|
Geißler D, Nirmalananthan-Budau N, Scholtz L, Tavernaro I, Resch-Genger U. Analyzing the surface of functional nanomaterials-how to quantify the total and derivatizable number of functional groups and ligands. Mikrochim Acta 2021; 188:321. [PMID: 34482449 PMCID: PMC8418596 DOI: 10.1007/s00604-021-04960-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/08/2021] [Indexed: 12/04/2022]
Abstract
Functional nanomaterials (NM) of different size, shape, chemical composition, and surface chemistry are of increasing relevance for many key technologies of the twenty-first century. This includes polymer and silica or silica-coated nanoparticles (NP) with covalently bound surface groups, semiconductor quantum dots (QD), metal and metal oxide NP, and lanthanide-based NP with coordinatively or electrostatically bound ligands, as well as surface-coated nanostructures like micellar encapsulated NP. The surface chemistry can significantly affect the physicochemical properties of NM, their charge, their processability and performance, as well as their impact on human health and the environment. Thus, analytical methods for the characterization of NM surface chemistry regarding chemical identification, quantification, and accessibility of functional groups (FG) and surface ligands bearing such FG are of increasing importance for quality control of NM synthesis up to nanosafety. Here, we provide an overview of analytical methods for FG analysis and quantification with special emphasis on bioanalytically relevant FG broadly utilized for the covalent attachment of biomolecules like proteins, peptides, and oligonucleotides and address method- and material-related challenges and limitations. Analytical techniques reviewed include electrochemical titration methods, optical assays, nuclear magnetic resonance and vibrational spectroscopy, as well as X-ray based and thermal analysis methods, covering the last 5-10 years. Criteria for method classification and evaluation include the need for a signal-generating label, provision of either the total or derivatizable number of FG, need for expensive instrumentation, and suitability for process and production control during NM synthesis and functionalization.
Collapse
Affiliation(s)
- Daniel Geißler
- Bundesanstalt für Materialforschung und -prüfung (BAM), Division Biophotonics (BAM-1.2), Richard-Willstätter-Str. 11, 12489, Berlin, Germany
| | - Nithiya Nirmalananthan-Budau
- Bundesanstalt für Materialforschung und -prüfung (BAM), Division Biophotonics (BAM-1.2), Richard-Willstätter-Str. 11, 12489, Berlin, Germany
| | - Lena Scholtz
- Bundesanstalt für Materialforschung und -prüfung (BAM), Division Biophotonics (BAM-1.2), Richard-Willstätter-Str. 11, 12489, Berlin, Germany
| | - Isabella Tavernaro
- Bundesanstalt für Materialforschung und -prüfung (BAM), Division Biophotonics (BAM-1.2), Richard-Willstätter-Str. 11, 12489, Berlin, Germany
| | - Ute Resch-Genger
- Bundesanstalt für Materialforschung und -prüfung (BAM), Division Biophotonics (BAM-1.2), Richard-Willstätter-Str. 11, 12489, Berlin, Germany.
| |
Collapse
|
7
|
Ali RF, Guo I, Kang H, Radford MJ, Yapp DT, Gates BD. Tuning the Surface Chemistry of Second-Harmonic-Active Lithium Niobate Nanoprobes Using a Silanol-Alcohol Condensation Reaction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:7689-7700. [PMID: 34128677 DOI: 10.1021/acs.langmuir.1c00645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The surface functionalization of nanoparticles (NPs) is of great interest for improving the use of NPs in, for example, therapeutic and diagnostic applications. The conjugation of specific molecules with NPs through the formation of covalent linkages is often sought to provide a high degree of colloidal stability and biocompatibility, as well as to provide functional groups for further surface modification. NPs of lithium niobate (LiNbO3) have been explored for use in second-harmonic-generation (SHG)-based bioimaging, expanding the applications of SHG-based microscopy techniques. The efficient use of SHG-active LiNbO3 NPs as probes will, however, require the functionalization of their surfaces with molecular reagents such as polyethylene glycol and fluorescent molecules to enhance their colloidal and chemical stability and to enable a correlative imaging platform. Herein, we demonstrate the surface functionalization of LiNbO3 NPs through the covalent attachment of alcohol-based reagents through a silanol-alcohol condensation reaction. Alcohol-based reagents are widely available and can have a range of terminal functional groups such as carboxylic acids, amines, and aldehydes. Attaching these molecules to NPs through the silanol-alcohol condensation reaction could diversify the reagents available to modify NPs, but this reaction pathway must first be established as a viable route to modifying NPs. This study focuses on the attachment of a linear alcohol functionalized with carboxylic acid and its use as a reactive group to further tune the surface chemistry of LiNbO3 NPs. These carboxylic acid groups were reacted to covalently attach other molecules to the NPs using copper-free click chemistry. This derivatization of the NPs provided a means to covalently attach polyethylene glycols and fluorescent probes to the NPs, reducing NP aggregation and enabling multimodal tracking of SHG nanoprobes, respectively. This extension of the silanol-alcohol condensation reaction to functionalize the surfaces of LiNbO3 NPs can be extended to other types of nanoprobes for use in bioimaging, biosensing, and photodynamic therapies.
Collapse
Affiliation(s)
- Rana Faryad Ali
- Department of Chemistry and 4D LABS, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Iris Guo
- Department of Chemistry and 4D LABS, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Henry Kang
- Department of Chemistry and 4D LABS, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Melissa J Radford
- Department of Chemistry and 4D LABS, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Donald T Yapp
- British Columbia Cancer Agency, 675 West 10th Avenue, Vancouver BC V5Z 1L3, Canada
| | - Byron D Gates
- Department of Chemistry and 4D LABS, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
8
|
Luo XL, Wu YT, Zhang LY, Li KX, Jia TJ, Chen Y, Zhou LH, Huang PL. An effective solution to simultaneously analyze size, mass and number concentration of polydisperse nanoplastics in a biological matrix: asymmetrical flow field fractionation coupled with a diode array detector and multiangle light scattering. RSC Adv 2021; 11:12902-12906. [PMID: 35423824 PMCID: PMC8697335 DOI: 10.1039/d1ra00450f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/26/2021] [Indexed: 11/21/2022] Open
Abstract
To accurately understand the biological pollution level and toxicity of polydisperse nanoplastics, an effective solution is presented to separate polydisperse nanoplastics and detect their size, mass and number concentration in a biological matrix by asymmetrical flow field fractionation coupled with a diode array detector and a multiangle light scattering detector. AF4-DAD-MALS is proposed to separate polydisperse nanoplastics and detect their size, mass and number concentration in a biological matrix.![]()
Collapse
Affiliation(s)
- Xing-ling Luo
- School of Public Health
- Capital Medical University
- Beijing 100069
- China
| | - Ying-ting Wu
- Core Facility Center
- Capital Medical University
- Beijing 100069
- China
| | - Ling-yan Zhang
- School of Public Health
- Capital Medical University
- Beijing 100069
- China
| | - Ke-xin Li
- School of Public Health
- Capital Medical University
- Beijing 100069
- China
| | - Tian-jiang Jia
- School of Public Health
- Capital Medical University
- Beijing 100069
- China
| | - Yi Chen
- School of Basic Medical Sciences
- Capital Medical University
- Beijing 100069
- China
| | - Li-hong Zhou
- School of Public Health
- Capital Medical University
- Beijing 100069
- China
| | - Pei-li Huang
- School of Public Health
- Capital Medical University
- Beijing 100069
- China
| |
Collapse
|
9
|
Wathiong B, Deville S, Jacobs A, Smisdom N, Gervois P, Lambrichts I, Ameloot M, Hooyberghs J, Nelissen I. Role of nanoparticle size and sialic acids in the distinct time-evolution profiles of nanoparticle uptake in hematopoietic progenitor cells and monocytes. J Nanobiotechnology 2019; 17:62. [PMID: 31084605 PMCID: PMC6513515 DOI: 10.1186/s12951-019-0495-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 05/04/2019] [Indexed: 12/30/2022] Open
Abstract
Background Human hematopoietic progenitor cells (HPCs) are important for cell therapy in cancer and tissue regeneration. In vitro studies have shown a transient association of 40 nm polystyrene nanoparticles (PS NPs) with these cells, which is of interest for intelligent design and application of NPs in HPC-based regenerative protocols. In this study, we aimed to investigate the involvement of nanoparticles’ size and membrane-attached glycan molecules in the interaction of HPCs with PS NPs, and compared it with monocytes. Human cord blood-derived HPCs and THP-1 cells were exposed to fluorescently labelled, carboxylated PS NPs of 40, 100 and 200 nm. Time-dependent nanoparticle membrane association and/or uptake was observed by measuring fluorescence intensity of exposed cells at short time intervals using flow cytometry. By pretreating the cells with neuraminidase, we studied the possible effect of membrane-associated sialic acids in the interaction with NPs. Confocal microscopy was used to visualize the cell-specific character of the NP association. Results Confocal images revealed that the majority of PS NPs was initially observed to be retained at the outer membrane of HPCs, while the same NPs showed immediate internalization by THP-1 monocytic cells. After prolonged exposure up to 4 h, PS NPs were also observed to enter the HPCs’ intracellular compartment. Cell-specific time courses of NP association with HPCs and THP-1 cells remained persistent after cells were enzymatically treated with neuraminidase, but significantly increased levels of NP association could be observed, suggesting a role for membrane-associated sialic acids in this process. Conclusions We conclude that the terminal membrane-associated sialic acids contribute to the NP retention at the outer cell membrane of HPCs. This retention behavior is a unique characteristic of the HPCs and is independent of NP size. Electronic supplementary material The online version of this article (10.1186/s12951-019-0495-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bart Wathiong
- Health Department, Flemish Institute For Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium
| | - Sarah Deville
- Health Department, Flemish Institute For Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium
| | - An Jacobs
- Health Department, Flemish Institute For Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium
| | - Nick Smisdom
- Biomedical Research Institute (BIOMED), Hasselt University, Agoralaan Building C, 3590, Diepenbeek, Belgium
| | - Pascal Gervois
- Biomedical Research Institute (BIOMED), Hasselt University, Agoralaan Building C, 3590, Diepenbeek, Belgium
| | - Ivo Lambrichts
- Biomedical Research Institute (BIOMED), Hasselt University, Agoralaan Building C, 3590, Diepenbeek, Belgium
| | - Marcel Ameloot
- Biomedical Research Institute (BIOMED), Hasselt University, Agoralaan Building C, 3590, Diepenbeek, Belgium
| | - Jef Hooyberghs
- Health Department, Flemish Institute For Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium.,Theoretical Physics, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Inge Nelissen
- Health Department, Flemish Institute For Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium.
| |
Collapse
|
10
|
Xiang L, Zhu S, Li M, Zhang J, Gamal El-Din M, Zeng H. Probing fouling mechanism of naphthenic acids on forward osmosis polymer membranes in oil sands process water treatment. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.01.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Vafajoo A, Rostami A, Foroutan Parsa S, Salarian R, Rabiee N, Rabiee G, Rabiee M, Tahriri M, Vashaee D, Tayebi L, Hamblin MR. Multiplexed microarrays based on optically encoded microbeads. Biomed Microdevices 2018; 20:66. [PMID: 30088103 PMCID: PMC6143764 DOI: 10.1007/s10544-018-0314-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In recent years, there has been growing interest in optically-encoded or tagged functionalized microbeads as a solid support platform to capture proteins or nucleotides which may serve as biomarkers of various diseases. Multiplexing technologies (suspension array or planar array) based on optically encoded microspheres have made possible the observation of relatively minor changes in biomarkers related to specific diseases. The ability to identify these changes at an early stage may allow the diagnosis of serious diseases (e.g. cancer) at a time-point when curative treatment may still be possible. As the overall accuracy of current diagnostic methods for some diseases is often disappointing, multiplexed assays based on optically encoded microbeads could play an important role to detect biomarkers of diseases in a non-invasive and accurate manner. However, detection systems based on functionalized encoded microbeads are still an emerging technology, and more research needs to be done in the future. This review paper is a preliminary attempt to summarize the state-of-the-art concerning diagnostic microbeads; including microsphere composition, synthesis, encoding technology, detection systems, and applications.
Collapse
Affiliation(s)
- Atieh Vafajoo
- Biomaterials Group, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Azin Rostami
- Biomaterials Group, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Sanam Foroutan Parsa
- Biomaterials Group, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Reza Salarian
- Biomedical Engineering Department, Maziar University, Royan, Noor, Iran
| | - Navid Rabiee
- Department of Chemistry, Shahid Beheshti University, Tehran, Iran
| | - Ghazal Rabiee
- Department of Chemistry, Shahid Beheshti University, Tehran, Iran
| | - Mohammad Rabiee
- Biomaterials Group, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | | | - Daryoosh Vashaee
- Electrical and Computer Engineering Department, North Carolina State University, Raleigh, NC, 27606, USA
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, 53233, USA
- Biomaterials and Advanced Drug Delivery Laboratory, School of Medicine, Stanford University, Palo Alto, CA, 94304, USA
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02114, USA.
- Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA.
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
12
|
Paramagnetic Quantum Dots as Multimodal Probes for Potential Applications in Nervous System Imaging. J Inorg Organomet Polym Mater 2017. [DOI: 10.1007/s10904-017-0766-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
13
|
Synthesis of highly carboxylated monodisperse polystyrene microspheres by dispersion polymerization in fluorinated alcohol. Macromol Res 2016. [DOI: 10.1007/s13233-016-4093-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Fischer T, Dietrich PM, Unger WES, Rurack K. Multimode Surface Functional Group Determination: Combining Steady-State and Time-Resolved Fluorescence with X-ray Photoelectron Spectroscopy and Absorption Measurements for Absolute Quantification. Anal Chem 2016; 88:1210-7. [DOI: 10.1021/acs.analchem.5b03468] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tobias Fischer
- Bundesanstalt für Materialforschung und −prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany
| | - Paul M. Dietrich
- Bundesanstalt für Materialforschung und −prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany
| | - Wolfgang E. S. Unger
- Bundesanstalt für Materialforschung und −prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany
| | - Knut Rurack
- Bundesanstalt für Materialforschung und −prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany
| |
Collapse
|
15
|
Novel mechanism of gene transfection by low-energy shock wave. Sci Rep 2015; 5:12843. [PMID: 26243452 PMCID: PMC4525295 DOI: 10.1038/srep12843] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 07/10/2015] [Indexed: 01/01/2023] Open
Abstract
Extracorporeal shock wave (SW) therapy has been studied in the transfection of naked nucleic acids into various cell lines through the process of sonoporation, a process that affects the permeation of cell membranes, which can be an effect of cavitation. In this study, siRNAs were efficiently transfected into primary cultured cells and mouse tumor tissue via SW treatment. Furthermore SW-induced siRNA transfection was not mediated by SW-induced sonoporation, but by microparticles (MPs) secreted from the cells. Interestingly, the transfection effect of the siRNAs was transferable through the secreted MPs from human umbilical vein endothelial cell (HUVEC) culture medium after treatment with SW, into HUVECs in another culture plate without SW treatment. In this study, we suggest for the first time a mechanism of gene transfection induced by low-energy SW through secreted MPs, and show that it is an efficient physical gene transfection method in vitro and represents a safe therapeutic strategy for site-specific gene delivery in vivo.
Collapse
|