1
|
Naquin TD, Canning AJ, Gu Y, Chen J, Naquin CM, Xia J, Lu B, Yang S, Koroza A, Lin K, Wang HN, Jeck WR, Lee LP, Vo-Dinh T, Huang TJ. Acoustic separation and concentration of exosomes for nucleotide detection: ASCENDx. SCIENCE ADVANCES 2024; 10:eadm8597. [PMID: 38457504 PMCID: PMC10923504 DOI: 10.1126/sciadv.adm8597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/05/2024] [Indexed: 03/10/2024]
Abstract
Efficient isolation and analysis of exosomal biomarkers hold transformative potential in biomedical applications. However, current methods are prone to contamination and require costly consumables, expensive equipment, and skilled personnel. Here, we introduce an innovative spaceship-like disc that allows Acoustic Separation and Concentration of Exosomes and Nucleotide Detection: ASCENDx. We created ASCENDx to use acoustically driven disc rotation on a spinning droplet to generate swift separation and concentration of exosomes from patient plasma samples. Integrated plasmonic nanostars on the ASCENDx disc enable label-free detection of enriched exosomes via surface-enhanced Raman scattering. Direct detection of circulating exosomal microRNA biomarkers from patient plasma samples by the ASCENDx platform facilitated a diagnostic assay for colorectal cancer with 95.8% sensitivity and 100% specificity. ASCENDx overcomes existing limitations in exosome-based molecular diagnostics and holds a powerful position for future biomedical research, precision medicine, and point-of-care medical diagnostics.
Collapse
Affiliation(s)
- Ty D. Naquin
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Aidan J. Canning
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Yuyang Gu
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Jianing Chen
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Chloe M. Naquin
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Jianping Xia
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Brandon Lu
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Shujie Yang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Aleksandra Koroza
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Katherine Lin
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Hsin-Neng Wang
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - William R. Jeck
- Department of Pathology, Duke University Medical Center, Durham, NC 27708, USA
| | - Luke P. Lee
- Harvard Medical School, Harvard University; Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Bioengineering and Department of Electrical Engineering and Computer Science, University of California, Berkeley, Berkeley, CA 94720, USA
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, Suwon, Gyeonggi-do, Korea
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, Korea
| | - Tuan Vo-Dinh
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Tony Jun Huang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| |
Collapse
|
2
|
Park JO, Choi Y, Ahn HM, Lee CK, Chun H, Park YM, Kim KB. Aggregation of Ag nanoparticle based on surface acoustic wave for surface-enhanced Raman spectroscopy detection of dopamine. Anal Chim Acta 2024; 1285:342036. [PMID: 38057052 DOI: 10.1016/j.aca.2023.342036] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/13/2023] [Accepted: 11/15/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Dopamine (DA), a vital neurotransmitter, plays a critical role in the human brain and relates to neuropsychiatric disorders such as Parkinson's disease and schizophrenia. Numerous studies have explored detection of such biomarkers through surface-enhanced Raman spectroscopy (SERS). However, most of the studies focused on SERS detection face significant challenges with plasmonic nanostructure development. Such challenges often include time-consuming processes, complex fabrication, specialized chemical labeling, poor reproducibility, and random hotspot generation. Therefore, the need for simple and rapid nanostructure development is evident in SERS. RESULTS We propose an innovative SERS-active sensing technique for 50 nm silver nanoparticle (AgNP) clustering based on surface acoustic wave (SAW). When a 1 μL droplet of AgNP colloid is dispensed onto the SAW-propagation zone, the AgNP cluster is deposited after the droplet completely evaporates, developing plasmonic nanogaps for SERS hotspot caused by spherical AgNP aggregation. By optimizing the SAW system through the hydrophobic treatment and modulation of the operational power, the SAW-induced AgNP clustering showed densely packed AgNP within a dot-like configuration (∼2200 AgNP μm-2), effectively preventing particle welding. The characterization of 4-mercaptobenzoic acid as a probe analyte revealed that concentrations as low as 1.14 pM was detected using our SAW-SERS system under 785 nm laser excitation. Moreover, DA was detected up to 4.28 nM with a determination of 0.99 (R2). SIGNIFICANCE This technique for AgNP clustering induced by SAW provides a rapid, in situ, label-free SERS sensing method with outstanding sensitivity and linearity. A mere act of dropping can create extensive plasmonic hotspots featuring nanogap of ∼1.5 nm. The SAW-induced AgNP clustering can serve as an ultrasensitive SERS-active substrate for diverse molecular detections, including neurotransmitter detection.
Collapse
Affiliation(s)
- Jin Oh Park
- Digital Health Care R&D Department, Korea Institute of Industrial Technology (KITECH), 89, Yangdaegiro-gil, Ipjang-myeon, Seobuk-gu, Cheonan, 31056, Republic of Korea; Department of Biomedical Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Yongheum Choi
- Heat and Surface Technology R&D Department, Korea Institute of Industrial Technology (KITECH), 156, Gaetbeol-ro, Yeonsu-gu, Incheon, 21999, Republic of Korea
| | - Hyeong Min Ahn
- Digital Health Care R&D Department, Korea Institute of Industrial Technology (KITECH), 89, Yangdaegiro-gil, Ipjang-myeon, Seobuk-gu, Cheonan, 31056, Republic of Korea; Department of Biomedical Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Chang Ki Lee
- Digital Health Care R&D Department, Korea Institute of Industrial Technology (KITECH), 89, Yangdaegiro-gil, Ipjang-myeon, Seobuk-gu, Cheonan, 31056, Republic of Korea
| | - Honggu Chun
- Department of Biomedical Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Young Min Park
- Heat and Surface Technology R&D Department, Korea Institute of Industrial Technology (KITECH), 156, Gaetbeol-ro, Yeonsu-gu, Incheon, 21999, Republic of Korea.
| | - Kwang Bok Kim
- Digital Health Care R&D Department, Korea Institute of Industrial Technology (KITECH), 89, Yangdaegiro-gil, Ipjang-myeon, Seobuk-gu, Cheonan, 31056, Republic of Korea.
| |
Collapse
|
3
|
Capillary electrophoresis and Raman: Can we ever expect light at the end of the tunnel? Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.117017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
4
|
Liu P, Tian Z, Yang K, Naquin TD, Hao N, Huang H, Chen J, Ma Q, Bachman H, Zhang P, Xu X, Hu J, Huang TJ. Acoustofluidic black holes for multifunctional in-droplet particle manipulation. SCIENCE ADVANCES 2022; 8:eabm2592. [PMID: 35363512 PMCID: PMC10938576 DOI: 10.1126/sciadv.abm2592] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Acoustic black holes offer superior capabilities for slowing down and trapping acoustic waves for various applications such as metastructures, energy harvesting, and vibration and noise control. However, no studies have considered the linear and nonlinear effects of acoustic black holes on micro/nanoparticles in fluids. This study presents acoustofluidic black holes (AFBHs) that leverage controlled interactions between AFBH-trapped acoustic wave energy and particles in droplets to enable versatile particle manipulation functionalities, such as translation, concentration, and patterning of particles. We investigated the AFBH-enabled wave energy trapping and wavelength shrinking effects, as well as the trapped wave energy-induced acoustic radiation forces on particles and acoustic streaming in droplets. This study not only fills the gap between the emerging fields of acoustofluidics and acoustic black holes but also leads to a class of AFBH-based in-droplet particle manipulation toolsets with great potential for many applications, such as biosensing, point-of-care testing, and drug screening.
Collapse
Affiliation(s)
- Pengzhan Liu
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
- State Key Lab of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Zhenhua Tian
- Department of Aerospace Engineering, Mississippi State University, Mississippi State, MS 39762, USA
| | - Kaichun Yang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Ty Downing Naquin
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Nanjing Hao
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Huiyu Huang
- State Key Lab of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Jinyan Chen
- State Key Lab of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Qiuxia Ma
- State Key Lab of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Hunter Bachman
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Peiran Zhang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Xiahong Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products; Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Junhui Hu
- State Key Lab of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Tony Jun Huang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| |
Collapse
|
5
|
Akther A, Walsh EP, Reineck P, Gibson BC, Ohshima T, Abe H, McColl G, Jenkins NL, Hall LT, Simpson DA, Rezk AR, Yeo LY. Acoustomicrofluidic Concentration and Signal Enhancement of Fluorescent Nanodiamond Sensors. Anal Chem 2021; 93:16133-16141. [PMID: 34813284 DOI: 10.1021/acs.analchem.1c03893] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Diamond nitrogen-vacancy (NV) centers constitute a promising class of quantum nanosensors owing to the unique magneto-optic properties associated with their spin states. The large surface area and photostability of diamond nanoparticles, together with their relatively low synthesis costs, make them a suitable platform for the detection of biologically relevant quantities such as paramagnetic ions and molecules in solution. Nevertheless, their sensing performance in solution is often hampered by poor signal-to-noise ratios and long acquisition times due to distribution inhomogeneities throughout the analyte sample. By concentrating the diamond nanoparticles through an intense microcentrifugation effect in an acoustomicrofluidic device, we show that the resultant dense NV ensembles within the diamond nanoparticles give rise to an order-of-magnitude improvement in the measured acquisition time. The ability to concentrate nanoparticles under surface acoustic wave (SAW) microcentrifugation in a sessile droplet is, in itself, surprising given the well-documented challenge of achieving such an effect for particles below 1 μm in dimension. In addition to a demonstration of their sensing performance, we thus reveal in this work that the reason why the diamond nanoparticles readily concentrate under the SAW-driven recirculatory flow can be attributed to their considerably higher density and hence larger acoustic contrast compared to those for typical particles and cells for which the SAW microcentrifugation flow has been shown to date.
Collapse
Affiliation(s)
- Asma Akther
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Ella P Walsh
- School of Physics, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Philipp Reineck
- ARC Centre of Excellence for Nanoscale BioPhotonics & School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Brant C Gibson
- ARC Centre of Excellence for Nanoscale BioPhotonics & School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Takeshi Ohshima
- National Institutes for Quantum Science and Technology, Takasaki, Gunma 370-1292, Japan
| | - Hiroshi Abe
- National Institutes for Quantum Science and Technology, Takasaki, Gunma 370-1292, Japan
| | - Gawain McColl
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne Parkville, Victoria 3010, Australia
| | - Nicole L Jenkins
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne Parkville, Victoria 3010, Australia
| | - Liam T Hall
- School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - David A Simpson
- School of Physics, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Amgad R Rezk
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Leslie Y Yeo
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| |
Collapse
|
6
|
Xia L, Li G. Recent progress of microfluidics in surface-enhanced Raman spectroscopic analysis. J Sep Sci 2021; 44:1752-1768. [PMID: 33630352 DOI: 10.1002/jssc.202001196] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/20/2021] [Accepted: 02/20/2021] [Indexed: 12/21/2022]
Abstract
Surface-enhanced Raman spectroscopy is a significant analytical tool capable of fingerprint identification of molecule in a rapid and ultrasensitive manner. However, it is still hard to meet the requirements of practical sample analysis. The introduction of microfluidics can effectively enhance the performance of surface-enhanced Raman spectroscopy in complex sample analysis including reproducibility, selectivity, sensitivity, and speed. This review summarizes the recent progress of microfluidics in surface-enhanced Raman spectroscopic analysis through four combination approaches. First, microfluidic synthetic techniques offer uniform nano-/microparticle fabrication approaches for reproductive surface-enhanced Raman spectroscopic analysis. Second, the integration of microchip and surface-enhanced Raman spectroscopic substrate provides advanced devices for sensitive and efficient detection. Third, microfluidic sample preparations enable rapid separation and preconcentration of analyte prior to surface-enhanced Raman spectroscopic detection. Fourth, highly integrated microfluidic devices can be employed to realize multistep surface-enhanced Raman spectroscopic analysis containing material fabrication, sample preparation, and detection processes. Furthermore, the challenges and outlooks of the application of microfluidics in surface-enhanced Raman spectroscopic analysis are discussed.
Collapse
Affiliation(s)
- Ling Xia
- School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| |
Collapse
|
7
|
Akther A, Marqus S, Rezk AR, Yeo LY. Submicron Particle and Cell Concentration in a Closed Chamber Surface Acoustic Wave Microcentrifuge. Anal Chem 2020; 92:10024-10032. [PMID: 32475111 DOI: 10.1021/acs.analchem.0c01757] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Preconcentrating particulate and cellular matter for their isolation or detection is often a necessary and critical sample preparation or purification step in many lab-on-a-chip diagnostic devices. While surface acoustic wave (SAW) microcentrifugation has been demonstrated as a powerful means to drive efficient particle concentration, this has primarily been limited to micron dimension particles. When the particle size is around 1 μm or below, studies on SAW microcentrifugation to date have shown that particle ring-like aggregates can only be obtained in contrast to the localized concentrated clusters that are obtained with larger particles. Considering the importance of submicron particles and bioparticles that are common in many real-world samples, we elucidate why previous studies have not been able to achieve the concentration of these smaller particles to completion, and we present a practical solution involving a novel closed chamber configuration that minimizes sample heating and eliminates evaporation to show that it is indeed possible to drive submicron particle and cell concentration down to 200 nm diameters with SAW microcentrifugation over longer durations.
Collapse
Affiliation(s)
- Asma Akther
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Susan Marqus
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Amgad R Rezk
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Leslie Y Yeo
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| |
Collapse
|
8
|
Wong KS, Lim WTH, Ooi CW, Yeo LY, Tan MK. In situ generation of plasma-activated aerosols via surface acoustic wave nebulization for portable spray-based surface bacterial inactivation. LAB ON A CHIP 2020; 20:1856-1868. [PMID: 32342089 DOI: 10.1039/d0lc00001a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The presence of reactive species in plasma-activated water is known to induce oxidative stresses in bacterial species, which can result in their inactivation. By integrating a microfludic chipscale nebulizer driven by surface acoustic waves (SAWs) with a low-temperature atmospheric plasma source, we demonstrate an efficient technique for in situ production and application of plasma-activated aerosols for surface disinfection. Unlike bulk conventional systems wherein the water is separately batch-treated within a container, we show in this work the first demonstration of continuous plasma-treatment of water as it is transported through a paper strip from a reservoir onto the chipscale SAW device. The significantly larger surface area to volume ratio of the water within the paper strip leads to a significant reduction in the duration of the plasma-treatment, while maintaining the concentration of the reactive species. The subsequent nebulization of the plasma-activated water by the SAW then allows the generation of plasma-activated aerosols, which can be directly sprayed onto the contaminated surface, therefore eliminating the storage of the plasma-activated water and hence circumventing the typical limitation in conventional systems wherein the concentration of the reactive species diminishes over time during storage, resulting in a reduction in the efficacy of bacterial inactivation. In particular, we show up to 96% reduction in Escherichia coli colonies through direct spraying with the plasma-activated aerosols. This novel, low-cost, portable and energy-efficient hybrid system necessitates only minimal maintenance as it only requires the supply of tap water and battery power for operation, and is thus suitable for decontamination in home environments.
Collapse
Affiliation(s)
- Kiing S Wong
- School of Engineering, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia.
| | | | | | | | | |
Collapse
|
9
|
Acoustophoretic Control of Microparticle Transport Using Dual-Wavelength Surface Acoustic Wave Devices. MICROMACHINES 2019; 10:mi10010052. [PMID: 30642118 PMCID: PMC6356526 DOI: 10.3390/mi10010052] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/06/2019] [Accepted: 01/09/2019] [Indexed: 01/11/2023]
Abstract
We present a numerical and experimental study of acoustophoretic manipulation in a microfluidic channel using dual-wavelength standing surface acoustic waves (SSAWs) to transport microparticles into different outlets. The SSAW fields were excited by interdigital transducers (IDTs) composed of two different pitches connected in parallel and series on a lithium niobate substrate such that it yielded spatially superimposed and separated dual-wavelength SSAWs, respectively. SSAWs of a singltablee target wavelength can be efficiently excited by giving an RF voltage of frequency determined by the ratio of the velocity of the SAW to the target IDT pitch (i.e., f = cSAW/p). However, the two-pitch IDTs with similar pitches excite, less efficiently, non-target SSAWs with the wavelength associated with the non-target pitch in addition to target SSAWs by giving the target single-frequency RF voltage. As a result, dual-wavelength SSAWs can be formed. Simulated results revealed variations of acoustic pressure fields induced by the dual-wavelength SSAWs and corresponding influences on the particle motion. The acoustic radiation force in the acoustic pressure field was calculated to pinpoint zero-force positions and simulate particle motion trajectories. Then, dual-wavelength SSAW acoustofluidic devices were fabricated in accordance with the simulation results to experimentally demonstrate switching of SSAW fields as a means of transporting particles. The effects of non-target SSAWs on pre-actuating particles were predicted and observed. The study provides the design considerations needed for the fabrication of acoustofluidic devices with IDT-excited multi-wavelength SSAWs for acoustophoresis of microparticles.
Collapse
|
10
|
Tycova A, Prikryl J, Foret F. Recent strategies toward microfluidic-based surface-enhanced Raman spectroscopy. Electrophoresis 2017; 38:1977-1987. [DOI: 10.1002/elps.201700046] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/20/2017] [Accepted: 04/18/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Anna Tycova
- Institute of Analytical Chemistry of the CAS; v. v. i.; Brno Czech Republic
| | - Jan Prikryl
- Institute of Analytical Chemistry of the CAS; v. v. i.; Brno Czech Republic
| | - Frantisek Foret
- Institute of Analytical Chemistry of the CAS; v. v. i.; Brno Czech Republic
- CEITEC - Central European Institute of Technology; Brno Czech Republic
| |
Collapse
|
11
|
Destgeer G, Jung JH, Park J, Ahmed H, Sung HJ. Particle Separation inside a Sessile Droplet with Variable Contact Angle Using Surface Acoustic Waves. Anal Chem 2016; 89:736-744. [DOI: 10.1021/acs.analchem.6b03314] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ghulam Destgeer
- Department of Mechanical
Engineering, KAIST, Daejeon 34141, Korea
| | - Jin Ho Jung
- Department of Mechanical
Engineering, KAIST, Daejeon 34141, Korea
| | - Jinsoo Park
- Department of Mechanical
Engineering, KAIST, Daejeon 34141, Korea
| | - Husnain Ahmed
- Department of Mechanical
Engineering, KAIST, Daejeon 34141, Korea
| | - Hyung Jin Sung
- Department of Mechanical
Engineering, KAIST, Daejeon 34141, Korea
| |
Collapse
|
12
|
Destgeer G, Cho H, Ha BH, Jung JH, Park J, Sung HJ. Acoustofluidic particle manipulation inside a sessile droplet: four distinct regimes of particle concentration. LAB ON A CHIP 2016; 16:660-7. [PMID: 26755271 DOI: 10.1039/c5lc01104c] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In this study, we have investigated the motion of polystyrene microparticles inside a sessile droplet of water actuated by surface acoustic waves (SAWs), which produce an acoustic streaming flow (ASF) and impart an acoustic radiation force (ARF) on the particles. We have categorized four distinct regimes (R1-R4) of particle aggregation that depend on the particle diameter, the SAW frequency, the acoustic wave field (travelling or standing), the acoustic waves' attenuation length, and the droplet volume. The particles are concentrated at the centre of the droplet in the form of a bead (R1), around the periphery of the droplet in the form of a ring (R2), at the side of the droplet in the form of an isolated island (R3), and close to the centre of the droplet in the form of a smaller ring (R4). The ASF-based drag force, the travelling or standing SAW-based ARF, and the centrifugal force are utilized in various combinations to produce these distinct regimes. For simplicity, we fixed the fluid volume at 5 μL, varied the SAW actuation frequency (10, 20, 80, and 133 MHz), and tested several particle diameters in the range 1-30 μm to explicitly demonstrate the regimes R1-R4. We have further demonstrated the separation of particles (1 and 10 μm, 3 and 5 μm) using mixed regime configurations (R1 and R2, R2 and R4, respectively).
Collapse
Affiliation(s)
- Ghulam Destgeer
- Department of Mechanical Engineering, KAIST, Daejeon 34141, Korea.
| | | | | | | | | | | |
Collapse
|
13
|
Xu G, Gunson RN, Cooper JM, Reboud J. Rapid ultrasonic isothermal amplification of DNA with multiplexed melting analysis – applications in the clinical diagnosis of sexually transmitted diseases. Chem Commun (Camb) 2015; 51:2589-92. [PMID: 25569801 DOI: 10.1039/c4cc08389j] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe a nucleic acid testing (NAT) platform for infectious disease diagnostics at the point-of-care, using surface acoustic waves (SAW) to perform a multiplexed loop-mediated isothermal amplification (LAMP) test for sexually transmitted diseases. The ultrasonic actuation not only enables faster NAT reactions but also provides a route towards integrating low-cost, low-power molecular diagnostics into disposable sensors.
Collapse
Affiliation(s)
- Gaolian Xu
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Oakfield Avenue, Rankine Building, G12 8LT Glasgow, UK.
| | | | | | | |
Collapse
|
14
|
Salehi-Reyhani A, Gesellchen F, Mampallil D, Wilson R, Reboud J, Ces O, Willison KR, Cooper JM, Klug DR. Chemical-Free Lysis and Fractionation of Cells by Use of Surface Acoustic Waves for Sensitive Protein Assays. Anal Chem 2015; 87:2161-9. [DOI: 10.1021/ac5033758] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
| | - Frank Gesellchen
- Division
of Biomedical Engineering, School of Engineering, University of Glasgow, Oakfield Avenue, Glasgow G12 8LT, United Kingdom
| | - Dileep Mampallil
- Division
of Biomedical Engineering, School of Engineering, University of Glasgow, Oakfield Avenue, Glasgow G12 8LT, United Kingdom
| | - Rab Wilson
- Division
of Biomedical Engineering, School of Engineering, University of Glasgow, Oakfield Avenue, Glasgow G12 8LT, United Kingdom
| | - Julien Reboud
- Division
of Biomedical Engineering, School of Engineering, University of Glasgow, Oakfield Avenue, Glasgow G12 8LT, United Kingdom
| | | | | | - Jonathan M. Cooper
- Division
of Biomedical Engineering, School of Engineering, University of Glasgow, Oakfield Avenue, Glasgow G12 8LT, United Kingdom
| | | |
Collapse
|
15
|
Gupta R, Siddhanta S, Mettela G, Chakraborty S, Narayana C, Kulkarni GU. Solution processed nanomanufacturing of SERS substrates with random Ag nanoholes exhibiting uniformly high enhancement factors. RSC Adv 2015. [DOI: 10.1039/c5ra17119a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
An Ag film exhibits an enhanced Raman signal over unusually large areas due to surface plasmons around its nanoholes. The SERS signal is increased by optical interference effects and the uniformity of the signal is improved by electrical activation.
Collapse
Affiliation(s)
- Ritu Gupta
- Thematic Unit of Excellence on Nanochemistry and Chemistry and Physics of Materials Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR)
- Bangalore 560064
- India
- Department of Chemistry
| | - Soumik Siddhanta
- Light Scattering Laboratory
- Chemistry and Physics of Materials Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR)
- Bangalore 560064
- India
| | - Gangaiah Mettela
- Thematic Unit of Excellence on Nanochemistry and Chemistry and Physics of Materials Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR)
- Bangalore 560064
- India
| | - Swati Chakraborty
- Thematic Unit of Excellence on Nanochemistry and Chemistry and Physics of Materials Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR)
- Bangalore 560064
- India
| | - Chandrabhas Narayana
- Light Scattering Laboratory
- Chemistry and Physics of Materials Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR)
- Bangalore 560064
- India
| | - Giridhar U. Kulkarni
- Thematic Unit of Excellence on Nanochemistry and Chemistry and Physics of Materials Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR)
- Bangalore 560064
- India
- Centre for Nano and Soft Matter Sciences
| |
Collapse
|
16
|
Schmid L, Weitz DA, Franke T. Sorting drops and cells with acoustics: acoustic microfluidic fluorescence-activated cell sorter. LAB ON A CHIP 2014; 14:3710-8. [PMID: 25031157 DOI: 10.1039/c4lc00588k] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We describe a versatile microfluidic fluorescence-activated cell sorter that uses acoustic actuation to sort cells or drops at ultra-high rates. Our acoustic sorter combines the advantages of traditional fluorescence-activated cell (FACS) and droplet sorting (FADS) and is applicable for a multitude of objects. We sort aqueous droplets, at rates as high as several kHz, into two or even more outlet channels. We can also sort cells directly from the medium without prior encapsulation into drops; we demonstrate this by sorting fluorescently labeled mouse melanoma cells in a single phase fluid. Our acoustic microfluidic FACS is compatible with standard cell sorting cytometers, yet, at the same time, enables a rich variety of more sophisticated applications.
Collapse
Affiliation(s)
- Lothar Schmid
- Lehrstuhl für Experimentalphysik I, Soft Matter Group, Universität Augsburg, Universitätsstr. 1, 86159 Augsburg, Germany.
| | | | | |
Collapse
|
17
|
Acoustic Alignment of a Supramolecular Nanofiber in Harmony with the Sound of Music. Chempluschem 2014; 79:516-523. [DOI: 10.1002/cplu.201300400] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Indexed: 11/07/2022]
|