1
|
Abrao-Nemeir I, Zaki O, Meyer N, Lepoitevin M, Torrent J, Janot JM, Balme S. Combining ionic diode, resistive pulse and membrane for detection and separation of anti-CD44 antibody. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
2
|
Eggenberger OM, Ying C, Mayer M. Surface coatings for solid-state nanopores. NANOSCALE 2019; 11:19636-19657. [PMID: 31603455 DOI: 10.1039/c9nr05367k] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Since their introduction in 2001, solid-state nanopores have been increasingly exploited for the detection and characterization of biomolecules ranging from single DNA strands to protein complexes. A major factor that enables the application of nanopores to the analysis and characterization of a broad range of macromolecules is the preparation of coatings on the pore wall to either prevent non-specific adhesion of molecules or to facilitate specific interactions of molecules of interest within the pore. Surface coatings can therefore be useful to minimize clogging of nanopores or to increase the residence time of target analytes in the pore. This review article describes various coatings and their utility for changing pore diameters, increasing the stability of nanopores, reducing non-specific interactions, manipulating surface charges, enabling interactions with specific target molecules, and reducing the noise of current recordings through nanopores. We compare the coating methods with respect to the ease of preparing the coating, the stability of the coating and the requirement for specialized equipment to prepare the coating.
Collapse
Affiliation(s)
- Olivia M Eggenberger
- Adolphe Merkle Institute, Chemin des Verdiers 4, University of Fribourg, Fribourg, Switzerland.
| | - Cuifeng Ying
- Adolphe Merkle Institute, Chemin des Verdiers 4, University of Fribourg, Fribourg, Switzerland.
| | - Michael Mayer
- Adolphe Merkle Institute, Chemin des Verdiers 4, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
3
|
Zhu Z, Wang D, Tian Y, Jiang L. Ion/Molecule Transportation in Nanopores and Nanochannels: From Critical Principles to Diverse Functions. J Am Chem Soc 2019; 141:8658-8669. [DOI: 10.1021/jacs.9b00086] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Zhongpeng Zhu
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Dianyu Wang
- College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Ye Tian
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Lei Jiang
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
4
|
Fu L, Zhai J. Biomimetic stimuli‐responsive nanochannels and their applications. Electrophoresis 2019; 40:2058-2074. [DOI: 10.1002/elps.201800536] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 02/23/2019] [Accepted: 02/26/2019] [Indexed: 01/26/2023]
Affiliation(s)
- Lulu Fu
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology of Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering Beijing Key Laboratory of Bio‐inspired Energy Materials and Devices School of Chemistry Beihang University Beijing P. R. China
| | - Jin Zhai
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology of Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering Beijing Key Laboratory of Bio‐inspired Energy Materials and Devices School of Chemistry Beihang University Beijing P. R. China
| |
Collapse
|
5
|
Zhang S, Liu G, Chai H, Zhao YD, Yu L, Chen W. Detection of alkaline phosphatase activity with a functionalized nanopipette. Electrochem commun 2019. [DOI: 10.1016/j.elecom.2019.01.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
6
|
Povarova NV, Barinov NA, Baranov MS, Markina NM, Varizhuk AM, Pozmogova GE, Klinov DV, Kozhemyako VB, Lukyanov KA. Efficient silica synthesis from tetra(glycerol)orthosilicate with cathepsin- and silicatein-like proteins. Sci Rep 2018; 8:16759. [PMID: 30425281 PMCID: PMC6233156 DOI: 10.1038/s41598-018-34965-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 10/24/2018] [Indexed: 12/21/2022] Open
Abstract
Silicateins play a key role in biosynthesis of spicules in marine sponges; they are also capable to catalyze formation of amorphous silica in vitro. Silicateins are highly homologous to cathepsins L – a family of cysteine proteases. Molecular mechanisms of silicatein activity remain controversial. Here site-directed mutagenesis was used to clarify significance of selected residues in silica polymerization. A number of mutations were introduced into two sponge proteins – silicatein A1 and cathepsin L from Latrunculia oparinae, as well as into human cathepsin L. First direction was alanine scanning of the proposed catalytic residues. Also, reciprocal mutations were introduced at selected positions that differ between cathepsins L and silicateins. Surprisingly, all the wild type and mutant proteins were capable to catalyze amorphous silica formation with a water-soluble silica precursor tetra(glycerol)orthosilicate. Some mutants possessed several-fold enhanced silica-forming activity and can potentially be useful for nanomaterial synthesis applications. Our findings contradict to the previously suggested mechanisms of silicatein action via a catalytic triad analogous to that in cathepsins L. Instead, a surface-templated biosilification by silicateins and related proteins can be proposed.
Collapse
Affiliation(s)
- Natalia V Povarova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Nikolay A Barinov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Malaya Pirogovskaya 1a, 119435, Moscow, Russia
| | - Mikhail S Baranov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997, Moscow, Russia.,Pirogov Russian National Research Medical University, Ostrovitianov 1, 117997, Moscow, Russia
| | - Nadezhda M Markina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Anna M Varizhuk
- Federal Research and Clinical Center of Physical-Chemical Medicine, Malaya Pirogovskaya 1a, 119435, Moscow, Russia
| | - Galina E Pozmogova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Malaya Pirogovskaya 1a, 119435, Moscow, Russia
| | - Dmitry V Klinov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Malaya Pirogovskaya 1a, 119435, Moscow, Russia
| | - Valery B Kozhemyako
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 690022, Vladivostok, Russia
| | - Konstantin A Lukyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997, Moscow, Russia.
| |
Collapse
|
7
|
Ananth A, Genua M, Aissaoui N, Díaz L, Eisele NB, Frey S, Dekker C, Richter RP, Görlich D. Reversible Immobilization of Proteins in Sensors and Solid-State Nanopores. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1703357. [PMID: 29611258 DOI: 10.1002/smll.201703357] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 02/13/2018] [Indexed: 06/08/2023]
Abstract
The controlled functionalization of surfaces with proteins is crucial for many analytical methods in life science research and biomedical applications. Here, a coating for silica-based surfaces is established which enables stable and selective immobilization of proteins with controlled orientation and tunable surface density. The coating is reusable, retains functionality upon long-term storage in air, and is applicable to surfaces of complex geometry. The protein anchoring method is validated on planar surfaces, and then a method is developed to measure the anchoring process in real time using silicon nitride solid-state nanopores. For surface attachment, polyhistidine tags that are site specifically introduced into recombinant proteins are exploited, and the yeast nucleoporin Nsp1 is used as model protein. Contrary to the commonly used covalent thiol chemistry, the anchoring of proteins via polyhistidine tag is reversible, permitting to take proteins off and replace them by other ones. Such switching in real time in experiments on individual nanopores is monitored using ion conductivity. Finally, it is demonstrated that silica and gold surfaces can be orthogonally functionalized to accommodate polyhistidine-tagged proteins on silica but prevent protein binding to gold, which extends the applicability of this surface functionalization method to even more complex sensor devices.
Collapse
Affiliation(s)
- Adithya Ananth
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - María Genua
- CIC biomaGUNE, Biosurfaces Lab, Paseo Miramon 182, 20014, San Sebastian, Spain
| | - Nesrine Aissaoui
- CIC biomaGUNE, Biosurfaces Lab, Paseo Miramon 182, 20014, San Sebastian, Spain
| | - Leire Díaz
- CIC biomaGUNE, Biosurfaces Lab, Paseo Miramon 182, 20014, San Sebastian, Spain
| | - Nico B Eisele
- CIC biomaGUNE, Biosurfaces Lab, Paseo Miramon 182, 20014, San Sebastian, Spain
| | - Steffen Frey
- Department for Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Ralf P Richter
- CIC biomaGUNE, Biosurfaces Lab, Paseo Miramon 182, 20014, San Sebastian, Spain
- Faculty of Biological Sciences, School of Biomedical Sciences, Faculty of Mathematics and Physical Sciences, School of Physics and Astronomy, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Dirk Görlich
- Department for Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| |
Collapse
|
8
|
Lepoitevin M, Ma T, Bechelany M, Janot JM, Balme S. Functionalization of single solid state nanopores to mimic biological ion channels: A review. Adv Colloid Interface Sci 2017; 250:195-213. [PMID: 28942265 DOI: 10.1016/j.cis.2017.09.001] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/01/2017] [Accepted: 09/06/2017] [Indexed: 10/18/2022]
Abstract
In nature, ion channels are highly selective pores and act as gate to ensure selective ion transport, allowing ions to cross the membrane. By mimicking them, single solid state nanopore devices emerge as a new, powerful class of molecule sensors that allow for the label-free detection of biomolecules (DNA, RNA, and proteins), non-biological polymers, as well as small molecules. In this review, we exhaustively describe the fabrication and functionalization techniques to design highly robust and selective solid state nanopores. First we outline the different materials and methods to design nanopores, we explain the ionic conduction in nanopores, and finally we summarize some techniques to modify and functionalize the surface in order to obtain biomimetic nanopores, responding to different external stimuli.
Collapse
|
9
|
Ali M, Ramirez P, Duznovic I, Nasir S, Mafe S, Ensinger W. Label-free histamine detection with nanofluidic diodes through metal ion displacement mechanism. Colloids Surf B Biointerfaces 2017; 150:201-208. [DOI: 10.1016/j.colsurfb.2016.11.038] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/14/2016] [Accepted: 11/28/2016] [Indexed: 10/20/2022]
|
10
|
Pérez-Mitta G, Albesa AG, Trautmann C, Toimil-Molares ME, Azzaroni O. Bioinspired integrated nanosystems based on solid-state nanopores: " iontronic" transduction of biological, chemical and physical stimuli. Chem Sci 2017; 8:890-913. [PMID: 28572900 PMCID: PMC5452273 DOI: 10.1039/c6sc04255d] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 10/25/2016] [Indexed: 12/17/2022] Open
Abstract
The ability of living systems to respond to stimuli and process information has encouraged scientists to develop integrated nanosystems displaying similar functions and capabilities. In this regard, biological pores have been a source of inspiration due to their exquisite control over the transport of ions within cells, a feature that ultimately plays a major role in multiple physiological processes, e.g. transduction of physical stimuli into nervous signals. Developing abiotic nanopores, which respond to certain chemical, biological or physical inputs producing "iontronic" signals, is now a reality thanks to the combination of "soft" surface science with nanofabrication techniques. The interplay between the functional richness of predesigned molecular components and the remarkable physical characteristics of nanopores plays a critical role in the rational integration of molecular functions into nanopore environments, permitting us to envisage nanopore-based biomimetic integrated nanosystems that respond to a variety of external stimuli such as pH, redox potential, molecule concentration, temperature, or light. Transduction of these stimuli into a predefined "iontronic" response can be amplified by exploiting nanoconfinement and physico-chemical effects such as charge distribution, steric constraints, equilibria displacement, or local changes in ionic concentration, to name but a few examples. While in past decades the focus has been mostly on their fundamental aspects and the in-depth study of their interesting transport properties, for several years now nanopore research has started to shift towards specific practical applications. This work is dedicated to bringing together the latest developments in the use of nanopores as "iontronic" transducing elements. Our aim is to show the wide potential of abiotic nanopores in sensing and signal transduction and also to promote the potential of this technology among doctoral students, postdocs, and researchers. We believe that even a casual reader of this perspective will not fail to be impressed by the wealth of opportunities that solid-state nanopores can offer to the transduction of biological, physical and chemical stimuli.
Collapse
Affiliation(s)
- Gonzalo Pérez-Mitta
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA) , Universidad Nacional de La Plata , CONICET , CC. 16 Suc. 4 , 1900 La Plata , Argentina .
| | - Alberto G Albesa
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA) , Universidad Nacional de La Plata , CONICET , CC. 16 Suc. 4 , 1900 La Plata , Argentina .
| | - Christina Trautmann
- GSI Helmholtzzentrum für Schwerionenforschung , Darmstadt , Germany
- Technische Universität Darmstadt , Darmstadt , Germany
| | | | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA) , Universidad Nacional de La Plata , CONICET , CC. 16 Suc. 4 , 1900 La Plata , Argentina .
| |
Collapse
|
11
|
Lepoitevin M, Bechelany M, Balanzat E, Janot JM, Balme S. Non-Fluorescence label protein sensing with track-etched nanopore decorated by avidin/biotin system. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.06.079] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
A single glass conical nanopore channel modified with 6-carboxymethyl-chitosan to study the binding of bovine serum albumin due to hydrophobic and hydrophilic interactions. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1527-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Meng Z, Chen Y, Li X, Xu Y, Zhai J. Cooperative effect of pH-dependent ion transport within two symmetric-structured nanochannels. ACS APPLIED MATERIALS & INTERFACES 2015; 7:7709-7716. [PMID: 25806828 DOI: 10.1021/acsami.5b00647] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A novel and simple design is introduced to construct bichannel nanofluid diodes by combining two poly(ethylene terephthalate) (PET) films with columnar nanochannel arrays varying in size or in surface charge. This type of bichannel device performs obvious ion current rectification, and the pH-dependent tunability and degree of rectification can be improved by histidine modification. The origin of the ion current rectification and its pH-dependent tunability are attributed to the cooperative effect of the two columnar half-channels and the applied bias on the mobile ions. As a result of surface groups on the bichannel being charged with different polarities or degrees at different pH values, the function of the bichannel device can be converted from a nanofluid diode to a normal nanochannel or to a reverse diode.
Collapse
Affiliation(s)
- Zheyi Meng
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry and Environment, Beihang University, Beijing 100191, P. R. China
| | - Yang Chen
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry and Environment, Beihang University, Beijing 100191, P. R. China
| | - Xiulin Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry and Environment, Beihang University, Beijing 100191, P. R. China
| | - Yanglei Xu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry and Environment, Beihang University, Beijing 100191, P. R. China
| | - Jin Zhai
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry and Environment, Beihang University, Beijing 100191, P. R. China
| |
Collapse
|
14
|
Cai SL, Cao SH, Zheng YB, Zhao S, Yang JL, Li YQ. Surface charge modulated aptasensor in a single glass conical nanopore. Biosens Bioelectron 2015; 71:37-43. [PMID: 25884732 DOI: 10.1016/j.bios.2015.04.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 03/06/2015] [Accepted: 04/04/2015] [Indexed: 11/17/2022]
Abstract
In this work, we have proposed a label-free nanopore-based biosensing strategy for protein detection by performing the DNA-protein interaction inside a single glass conical nanopore. A lysozyme binding aptamer (LBA) was used to functionalize the walls of glass nanopore via siloxane chemistry and negatively charged recognition sites were thus generated. The covalent modification procedures and their recognition towards lysozyme of the single conical nanopore were characterized via ionic current passing through the nanopore membrane, which was measured by recording the current-voltage (I-V) curves in 1mM KCl electrolyte at pH=7.4. With the occurring of recognition event, the negatively charged wall was partially neutralized by the positively charged lysozyme molecules, leading to a sensitive change of the surface charge-dependent current-voltage (I-V) characteristics. Our results not only demonstrate excellent selectivity and sensitivity towards the target protein, but also suggest a route to extend this nanopore-based sensing strategy to the biosensing platform designs of a wide range of proteins based on a charge modulation.
Collapse
Affiliation(s)
- Sheng-Lin Cai
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shuo-Hui Cao
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yu-Bin Zheng
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shuang Zhao
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jin-Lei Yang
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yao-Qun Li
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
15
|
Barsbay M, Güven O. Grafting in confined spaces: Functionalization of nanochannels of track-etched membranes. Radiat Phys Chem Oxf Engl 1993 2014. [DOI: 10.1016/j.radphyschem.2014.05.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
16
|
Nasir S, Ali M, Ramirez P, Gómez V, Oschmann B, Muench F, Tahir MN, Zentel R, Mafe S, Ensinger W. Fabrication of single cylindrical Au-coated nanopores with non-homogeneous fixed charge distribution exhibiting high current rectifications. ACS APPLIED MATERIALS & INTERFACES 2014; 6:12486-12494. [PMID: 25051046 DOI: 10.1021/am502419j] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We designed and characterized a cylindrical nanopore that exhibits high electrochemical current rectification ratios at low and intermediate electrolyte concentrations. For this purpose, the track-etched single cylindrical nanopore in polymer membrane was coated with a gold (Au) layer via electroless plating technique. Then, a non-homogeneous fixed charge distribution inside the Au-coated nanopore was obtained by incorporating thiol-terminated uncharged poly(N-isopropylacrylamide) chains in series to poly(4-vinylpyridine) chains, which were positively charged at acidic pH values. The functionalization reaction was checked by measuring the current-voltage curves prior to and after the chemisorption of polymer chains. The experimental nanopore characterization included the effects of temperature, adsorption of chloride ions, electrolyte concentration, and pH of the external solutions. The results obtained are further explained in terms of a theoretical continuous model. The combination of well-established chemical procedures (thiol and self-assembled monolayer formation chemistry, electroless plating, ion track etching) and physical models (two-region pore and Nernst-Planck equations) permits the obtainment of a new nanopore with high current rectification ratios. The single pore could be scaled up to multipore membranes of potential interest for pH sensing and chemical actuators.
Collapse
Affiliation(s)
- Saima Nasir
- Department of Material- and Geo-Sciences, Materials Analysis, Technische Universität Darmstadt , D-64287 Darmstadt, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Ramirez P, Cervera J, Ali M, Ensinger W, Mafe S. Logic Functions with Stimuli-Responsive Single Nanopores. ChemElectroChem 2014. [DOI: 10.1002/celc.201300255] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
18
|
Ali M, Nasir S, Ahmed I, Fruk L, Ensinger W. Tuning nanopore surface polarity and rectification properties through enzymatic hydrolysis inside nanoconfined geometries. Chem Commun (Camb) 2013; 49:8770-2. [DOI: 10.1039/c3cc45318a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Biogenic Inorganic Polysilicates (Biosilica): Formation and Biomedical Applications. BIOMEDICAL INORGANIC POLYMERS 2013; 54:197-234. [DOI: 10.1007/978-3-642-41004-8_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|