1
|
Züblin P, Zeller A, Moulis C, Remaud-Simeon M, Yao Y, Mezzenga R. Expanding the Enzymatic Polymerization Landscape by Lipid Mesophase Soft Nanoconfinement. Angew Chem Int Ed Engl 2024; 63:e202312880. [PMID: 37962302 DOI: 10.1002/anie.202312880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/15/2023]
Abstract
Soft nanoconfinement can increase chemical reactivity in nature and has therefore led to considerable interest in transferring this universal feature to artificial biological systems. However, little is known about the underlying principles of soft nanoconfinement responsible for the enhancement of biochemical reactions. Herein we demonstrate how enzymatic polymerization can be expanded, optimized, and engineered when carried out under soft nanoconfinement mediated by lipidic mesophases. By systematically varying the water content in the mesophase and thus the diameter of the confined water nanochannels, we show higher efficiency, turnover rate, and degrees of polymerization as compared to the bulk aqueous solution, all controlled by soft nanoconfinement effects. Furthermore, we exploit the unique properties of unfreezing soft nanoconfined water to perform the first enzymatic polymerization at -20 °C in pure aqueous media. These results underpin lipidic mesophases as a versatile host system for chemical reactions and promote them as an original and unexplored platform for enzymatic polymerization.
Collapse
Affiliation(s)
- Patrick Züblin
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092, Zürich, Switzerland
| | - Adrian Zeller
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092, Zürich, Switzerland
| | - Claire Moulis
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 135 Av. de Rangueil, 31400, Toulouse, France
| | - Magali Remaud-Simeon
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 135 Av. de Rangueil, 31400, Toulouse, France
| | - Yang Yao
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092, Zürich, Switzerland
| | - Raffaele Mezzenga
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092, Zürich, Switzerland
- Department of Materials, ETH Zürich, Wolfgang-Pauli-Strasse 10, 8093, Zürich, Switzerland
| |
Collapse
|
2
|
Gharai PK, Khan J, Mallesh R, Garg S, Saha A, Ghosh S, Ghosh S. Vanillin Benzothiazole Derivative Reduces Cellular Reactive Oxygen Species and Detects Amyloid Fibrillar Aggregates in Alzheimer's Disease Brain. ACS Chem Neurosci 2023; 14:773-786. [PMID: 36728363 DOI: 10.1021/acschemneuro.2c00771] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The misfolding of amyloid beta (Aβ) peptides into Aβ fibrillary aggregates is a major hallmark of Alzheimer's disease (AD), which responsible for the excess production of hydrogen peroxide (H2O2), a prominent reactive oxygen species (ROS) from the molecular oxygen (O2) by the reduction of the Aβ-Cu(I) complex. The excessive production of H2O2 causes oxidative stress and inflammation in the AD brain. Here, we have designed and developed a dual functionalized molecule VBD by using π-conjugation (C═C) in the backbone structure. In the presence of H2O2, the VBD can turn into fluorescent probe VBD-1 by cleaving of the selective boronate ester group. The fluorescent probe VBD-1 can undergo intramolecular charge transfer transition (ICT) by a π-conjugative system, and as a result, its emission increases from the yellow (532 nm) to red (590 nm) region. The fluorescence intensity of VBD-1 increases by 3.5-fold upon binding with Aβ fibrillary aggregates with a high affinity (Kd = 143 ± 12 nM). Finally, the VBD reduces the cellular toxic H2O2 as proven by the CCA assay and DCFDA assay and the binding affinity of VBD-1 was confirmed by using in vitro histological staining in 8- and 18-month-old triple transgenic AD (3xTg-AD) mice brain slices.
Collapse
Affiliation(s)
- Prabir Kumar Gharai
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, WB, India.,Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, NH 65, Surpura Bypass Road, Karwar, Rajasthan 342037, India
| | - Juhee Khan
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, WB, India.,Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, NH 65, Surpura Bypass Road, Karwar, Rajasthan 342037, India
| | - Rathnam Mallesh
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, WB, India.,Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, NH 65, Surpura Bypass Road, Karwar, Rajasthan 342037, India.,National Institute of Pharmaceutical Education and Research, Kolkata, Chunilal Bhawan 168, Maniktala Main Road, Kolkata 700054, India
| | - Shubham Garg
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, NH 65, Surpura Bypass Road, Karwar, Rajasthan 342037, India
| | - Abhijit Saha
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, India
| | - Subhajit Ghosh
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, WB, India
| | - Surajit Ghosh
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, WB, India.,Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, NH 65, Surpura Bypass Road, Karwar, Rajasthan 342037, India.,National Institute of Pharmaceutical Education and Research, Kolkata, Chunilal Bhawan 168, Maniktala Main Road, Kolkata 700054, India
| |
Collapse
|
3
|
Saha J, Bose P, Dhakal S, Ghosh P, Rangachari V. Ganglioside-Enriched Phospholipid Vesicles Induce Cooperative Aβ Oligomerization and Membrane Disruption. Biochemistry 2022; 61:2206-2220. [PMID: 36173882 PMCID: PMC9840156 DOI: 10.1021/acs.biochem.2c00495] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A major hallmark of Alzheimer's disease (AD) is the accumulation of extracellular aggregates of amyloid-β (Aβ). Structural polymorphism observed among Aβ fibrils in AD brains seem to correlate with the clinical subtypes suggesting a link between fibril polymorphism and pathology. Since fibrils emerge from a templated growth of low-molecular-weight oligomers, understanding the factors affecting oligomer generation is important. Membrane lipids are key factors to influence early stages of Aβ aggregation and oligomer generation, which cause membrane disruption. We have previously demonstrated that conformationally discrete Aβ oligomers can be generated by modulating the charge, composition, and chain length of lipids and surfactants. Here, we extend our studies into liposomal models by investigating Aβ oligomerization on large unilamellar vesicles (LUVs) of total brain extracts (TBE), reconstituted lipid rafts (LRs), or 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). Varying the vesicle composition by specifically increasing the amount of GM1 gangliosides as a constituent, we found that only GM1-enriched liposomes induce the formation of toxic, low-molecular-weight oligomers. Furthermore, we found that the aggregation on liposome surface and membrane disruption are highly cooperative and sensitive to membrane surface characteristics. Numerical simulations confirm such a cooperativity and reveal that GM1-enriched liposomes form twice as many pores as those formed in the absence GM1. Overall, this study uncovers mechanisms of cooperativity between oligomerization and membrane disruption under controlled lipid compositional bias, and refocuses the significance of the early stages of Aβ aggregation in polymorphism, propagation, and toxicity in AD.
Collapse
Affiliation(s)
- Jhinuk Saha
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Priyankar Bose
- Department of Computer Science, Virginia Commonwealth University, Richmond, Virginia 23220, United States
| | - Shailendra Dhakal
- Center for Molecular and Cellular Biosciences, University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Preetam Ghosh
- Department of Computer Science, Virginia Commonwealth University, Richmond, Virginia 23220, United States
| | - Vijayaraghavan Rangachari
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States; Center for Molecular and Cellular Biosciences, University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| |
Collapse
|
4
|
Vázquez-González M, Wang C, Willner I. Biocatalytic cascades operating on macromolecular scaffolds and in confined environments. Nat Catal 2020. [DOI: 10.1038/s41929-020-0433-1] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
5
|
Witter S, Samoson A, Vilu R, Witter R. Screening of Nutraceuticals and Plant Extracts for Inhibition of Amyloid-β Fibrillation. J Alzheimers Dis 2020; 73:1003-1012. [DOI: 10.3233/jad-190758] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Steffi Witter
- School of Information Technologies, Department of Health Technologies, Tallinn University of Technology, Tallinn, Estonia
- School of Science, Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Ago Samoson
- School of Information Technologies, Department of Health Technologies, Tallinn University of Technology, Tallinn, Estonia
| | - Raivo Vilu
- Competence Center of Food and Fermentation Technology (TFTAK), Tallinn, Estonia
| | - Raiker Witter
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
6
|
Kapadia A, Patel A, Sharma KK, Maurya IK, Singh V, Khullar M, Jain R. Effect of C-terminus amidation of Aβ39–42fragment derived peptides as potential inhibitors of Aβ aggregation. RSC Adv 2020; 10:27137-27151. [PMID: 35515767 PMCID: PMC9055537 DOI: 10.1039/d0ra04788k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 07/10/2020] [Indexed: 11/21/2022] Open
Abstract
The C-terminus fragment (Val-Val-Ile-Ala) of amyloid-β is reported to inhibit the aggregation of the parent peptide. In an attempt to investigate the effect of sequential amino-acid scan and C-terminus amidation on the biological profile of the lead sequence, a series of tetrapeptides were synthesized using MW-SPPS. Peptide D-Phe-Val-Ile-Ala-NH2 (12c) exhibited high protection against β-amyloid-mediated-neurotoxicity by inhibiting Aβ aggregation in the MTT cell viability and ThT-fluorescence assay. Circular dichroism studies illustrate the inability of Aβ42 to form β-sheet in the presence of 12c, further confirmed by the absence of Aβ42 fibrils in electron microscopy experiments. The peptide exhibits enhanced BBB permeation, no cytotoxicity along with prolonged proteolytic stability. In silico studies show that the peptide interacts with the key amino acids in Aβ, which potentiate its fibrillation, thereby arresting aggregation propensity. This structural class of designed scaffolds provides impetus towards the rational development of peptide-based-therapeutics for Alzheimer's disease (AD). Amidated C-terminal fragment, Aβ39–42 derived non-cytotoxic β-sheet breaker peptides exhibit excellent potency, enhanced bioavailability and improved proteolytic stability.![]()
Collapse
Affiliation(s)
- Akshay Kapadia
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research
- India
| | - Aesan Patel
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research
- India
| | - Krishna K. Sharma
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research
- India
| | | | - Varinder Singh
- Post Graduate Institute of Medical Education and Research
- Chandigarh
- India
| | - Madhu Khullar
- Post Graduate Institute of Medical Education and Research
- Chandigarh
- India
| | - Rahul Jain
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research
- India
| |
Collapse
|
7
|
Mondal P, Chowdhury R, Nandi S, Amin MA, Bhattacharyya K, Ghosh S. Probing Deviation of Adhered Membrane Dynamics between Reconstituted Liposome and Cellular System. Chem Asian J 2019; 14:4616-4624. [PMID: 31210021 DOI: 10.1002/asia.201900588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/10/2019] [Indexed: 01/22/2023]
Abstract
The dynamics of cell-cell adhesion are complicated due to complexities in cellular interactions and intra-membrane interactions. In the present work, we have reconstituted a liposome-based model system to mimic the cell-cell adhesion process. Our model liposome system consists of one fluorescein-tagged and one TRITC (tetramethyl-rhodamine isothiocyanate)-tagged liposome, adhered through biotin-neutravidin interaction. We monitored the adhesion process in liposomes using Förster Resonance Energy Transfer (FRET) between fluorescein (donor) and TRITC (acceptor). Occurrence of FRET is confirmed by the decrease in donor lifetime as well as distinct rise time of the acceptor fluorescence. Interestingly, the acceptor's emission exhibits fluctuations in the range of ≈3±1 s. This may be attributed to structural oscillations associated in two adhered liposomes arising from the flexible nature of biotin-neutravidin interaction. We have compared the dynamics in a cell-mimicking liposome system with that in an in vitro live cell system. In the adhered live cell system, we used CPM (7-diethylamino-3-(4-maleimido-phenyl)-4-methylcoumarin, donor) and nile red (acceptor), which are known to stain the membrane of CHO (Chinese Hamster Ovary) cells. The dynamics of the adhered membranes of two live CHO cells were observed through FRET between CPM and nile red. The acceptor fluorescence intensity exhibits an oscillation in the time-scale of ≈1±0.75 s, which is faster compared to the reconstituted liposome system, indicating the contributions and involvement of multiple dynamic protein complexes around the cell membrane. This study offers simple reconstituted model systems to understand the complex membrane dynamics using a FRET-based physical chemistry approach.
Collapse
Affiliation(s)
- Prasenjit Mondal
- Organic & Medicinal Chemistry Division, Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata-, 700032, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-, 201002, India
| | - Rajdeep Chowdhury
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-, 700032, India.,Present Address: Texas A&M Health Science Center, College of Medicine, Bryan, TX 77807, USA
| | - Somen Nandi
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-, 700032, India
| | - Md Asif Amin
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-, 700032, India
| | | | - Surajit Ghosh
- Organic & Medicinal Chemistry Division, Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata-, 700032, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-, 201002, India
| |
Collapse
|
8
|
Saha A, Reches M. Multiplex optical detection and quantification of DNA fragments by metallo-peptide assemblies. Sci Rep 2019; 9:8789. [PMID: 31217459 PMCID: PMC6584589 DOI: 10.1038/s41598-019-45124-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/31/2019] [Indexed: 11/24/2022] Open
Abstract
Rapid detection of infectious agents such as bacteria and viruses are important for proper health management, agriculture and homeland security. This paper presents a multiplex DNA detection system self-assembled by a metallo-peptide complex. Within five minutes, the system can simultaneously detect multiple DNA fragments, without any need for their separation. The presence of proteins in the sample does not harm the detection capabilities of the system, which can discriminate even between one base-pair mismatch and can perform at concentrations as low as 200 pM.
Collapse
Affiliation(s)
- Abhijit Saha
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 9190401, Israel
- The center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Meital Reches
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 9190401, Israel.
- The center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel.
| |
Collapse
|
9
|
de Matos MBC, Miranda BS, Rizky Nuari Y, Storm G, Leneweit G, Schiffelers RM, Kok RJ. Liposomes with asymmetric bilayers produced from inverse emulsions for nucleic acid delivery. J Drug Target 2019; 27:681-689. [DOI: 10.1080/1061186x.2019.1579819] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Maria B. C. de Matos
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | | | - Yudha Rizky Nuari
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Gert Storm
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | | | - Raymond M. Schiffelers
- Laboratory Clinical Chemistry & Haematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Robbert J. Kok
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
10
|
Amin MA, Nandi S, Mondal P, Mahata T, Ghosh S, Bhattacharyya K. Physical chemistry in a single live cell: confocal microscopy. Phys Chem Chem Phys 2017; 19:12620-12627. [DOI: 10.1039/c7cp02228j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A confocal microscope can be used to differentiate between cancer and non-cancer cells, and to enrich our knowledge of 3D tumor spheroids and drug delivery.
Collapse
Affiliation(s)
- Md. Asif Amin
- Department of Physical Chemistry
- Indian Association for the Cultivation of Science (IACS)
- Jadavpur
- India
| | - Somen Nandi
- Department of Physical Chemistry
- Indian Association for the Cultivation of Science (IACS)
- Jadavpur
- India
| | - Prasenjit Mondal
- Organic and Medicinal Chemistry Division
- Indian Institute of Chemical Biology
- Jadavpur
- India
| | - Tanushree Mahata
- Organic and Medicinal Chemistry Division
- Indian Institute of Chemical Biology
- Jadavpur
- India
| | - Surajit Ghosh
- Organic and Medicinal Chemistry Division
- Indian Institute of Chemical Biology
- Jadavpur
- India
| | - Kankan Bhattacharyya
- Department of Chemistry
- Indian Institute of Science Education and Research Bhopal
- Bhauri
- India
| |
Collapse
|
11
|
Rajasekhar K, Madhu C, Govindaraju T. Natural Tripeptide-Based Inhibitor of Multifaceted Amyloid β Toxicity. ACS Chem Neurosci 2016; 7:1300-10. [PMID: 27355515 DOI: 10.1021/acschemneuro.6b00175] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Accumulation of amyloid beta (Aβ) peptide and its aggregates in the human brain is considered as one of the hallmarks of Alzheimer's disease (AD). The polymorphic oligomers and fully grown fibrillar aggregates of Aβ exhibit different levels of neuronal toxicity. Moreover, aggregation of Aβ in the presence of redox-active metal ions like Cu(2+) is responsible for the additional trait of cellular toxicity induced by the generation of reactive oxygen species (ROS). Herein, a multifunctional peptidomimetic inhibitor (P6) has been presented, based on a naturally occurring metal chelating tripeptide (GHK) and the inhibitor of Aβ aggregation. It was shown by employing various biophysical studies that P6 interact with Aβ and prevent the formation of toxic Aβ forms like oligomeric species and fibrillar aggregates. Further, P6 successfully sequestered Cu(2+) from the Aβ-Cu(2+) complex and maintained it in a redox-dormant state to prevent the generation of ROS. P6 inhibited membrane disruption by Aβ oligomers and efficiently prevented DNA damage caused by the Aβ-Cu(2+) complex. PC12 cells were rescued from multifaceted Aβ toxicity when treated with P6, and the amount of ROS generated in cells was reduced. These attributes make P6 a potential therapeutic candidate to ameliorate the multifaceted Aβ toxicity in AD.
Collapse
Affiliation(s)
- K. Rajasekhar
- Bioorganic Chemistry Laboratory,
New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur
P. O., Bengaluru 560064, Karnataka, India
| | - Chilakapati Madhu
- Bioorganic Chemistry Laboratory,
New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur
P. O., Bengaluru 560064, Karnataka, India
| | - T. Govindaraju
- Bioorganic Chemistry Laboratory,
New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur
P. O., Bengaluru 560064, Karnataka, India
| |
Collapse
|
12
|
Narayanaswamy N, Nair RR, Suseela YV, Saini DK, Govindaraju T. A molecular beacon-based DNA switch for reversible pH sensing in vesicles and live cells. Chem Commun (Camb) 2016; 52:8741-4. [DOI: 10.1039/c6cc02705a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The DNA switch based on a molecular beacon (closed state) to A-motif (open state) structural transformation is developed as an efficient and reversible pH sensor in synthetic vesicles and live cells.
Collapse
Affiliation(s)
- Nagarjun Narayanaswamy
- Bioorganic Chemistry Laboratory
- New Chemistry Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bengaluru 560064
- India
| | - Raji R. Nair
- Department of Molecular Reproduction
- Development and Genetics
- Indian Institute of Science
- Bengaluru 560012
- India
| | - Y. V. Suseela
- Bioorganic Chemistry Laboratory
- New Chemistry Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bengaluru 560064
- India
| | - Deepak Kumar Saini
- Department of Molecular Reproduction
- Development and Genetics
- Indian Institute of Science
- Bengaluru 560012
- India
| | - T. Govindaraju
- Bioorganic Chemistry Laboratory
- New Chemistry Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bengaluru 560064
- India
| |
Collapse
|
13
|
Nandi S, Mondal P, Chowdhury R, Saha A, Ghosh S, Bhattacharyya K. Amyloid beta peptides inside a reconstituted cell-like liposomal system: aggregation, FRET, fluorescence oscillations and solvation dynamics. Phys Chem Chem Phys 2016; 18:30444-30451. [DOI: 10.1039/c6cp06143e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aggregation dynamics of Aβ peptides were studied inside a reconstituted cell-mimic liposomal system using FRET and FCS at various depths starting from the membrane to the core of the liposome.
Collapse
Affiliation(s)
- Somen Nandi
- Department of Physical Chemistry
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| | - Prasenjit Mondal
- Organic and Medicinal Chemistry Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata-700032
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Rajdeep Chowdhury
- Department of Physical Chemistry
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| | - Abhijit Saha
- Organic and Medicinal Chemistry Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata-700032
- India
| | - Surajit Ghosh
- Organic and Medicinal Chemistry Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata-700032
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Kankan Bhattacharyya
- Department of Physical Chemistry
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| |
Collapse
|
14
|
Boltz HH, Kierfeld J. Shapes of sedimenting soft elastic capsules in a viscous fluid. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:033003. [PMID: 26465552 DOI: 10.1103/physreve.92.033003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Indexed: 06/05/2023]
Abstract
Soft elastic capsules which are driven through a viscous fluid undergo shape deformation coupled to their motion. We introduce an iterative solution scheme which couples hydrodynamic boundary integral methods and elastic shape equations to find the stationary axisymmetric shape and the velocity of an elastic capsule moving in a viscous fluid at low Reynolds numbers. We use this approach to systematically study dynamical shape transitions of capsules with Hookean stretching and bending energies and spherical rest shape sedimenting under the influence of gravity or centrifugal forces. We find three types of possible axisymmetric stationary shapes for sedimenting capsules with fixed volume: a pseudospherical state, a pear-shaped state, and buckled shapes. Capsule shapes are controlled by two dimensionless parameters, the Föppl-von-Kármán number characterizing the elastic properties and a Bond number characterizing the driving force. For increasing gravitational force the spherical shape transforms into a pear shape. For very large bending rigidity (very small Föppl-von-Kármán number) this transition is discontinuous with shape hysteresis. The corresponding transition line terminates, however, in a critical point, such that the discontinuous transition is not present at typical Föppl-von-Kármán numbers of synthetic capsules. In an additional bifurcation, buckled shapes occur upon increasing the gravitational force. This type of instability should be observable for generic synthetic capsules. All shape bifurcations can be resolved in the force-velocity relation of sedimenting capsules, where up to three capsule shapes with different velocities can occur for the same driving force. All three types of possible axisymmetric stationary shapes are stable with respect to rotation during sedimentation. Additionally, we study capsules pushed or pulled by a point force, where we always find capsule shapes to transform smoothly without bifurcations.
Collapse
Affiliation(s)
| | - Jan Kierfeld
- Physics Department, TU Dortmund University, 44221 Dortmund, Germany
| |
Collapse
|
15
|
Zhao Y, Zhang S, Zhang Y, Cui S, Chen H, Zhi D, Zhen Y, Zhang S, Huang L. Tri-peptide cationic lipids for gene delivery. J Mater Chem B 2015; 3:119-126. [PMID: 25580248 PMCID: PMC4285367 DOI: 10.1039/c4tb01312c] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Several novel tri-peptide cationic lipids were designed and synthesized for delivering DNA and siRNA. They have tri-lysine and tri-ornithine as head groups, carbamate group as linker and 12 and 14 carbon atom alkyl groups as tails. These tri-peptide cationic lipids were prepared into cationic liposomes for the study of the physicochemical properties and gene delivery. Their particle size, Zeta potential and DNA-binding were characterized to show that they were suitable for gene transfection. The further results indicate that these lipids can transfer DNA and siRNA very efficiently into NCI-H460 and Hep-2 tumor cells. The selected lipid, CDO14, was able to deliver combined siRNAs against c-Myc and VEGF for silencing distinct oncogenic pathways in lung tumors of mice, with little in vitro and in vivo toxicity.
Collapse
Affiliation(s)
- Yinan Zhao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116021, Liaoning, China
- SEAC-ME Key Laboratory of Biotechnology and Bio-resources Utilization, Dalian Nationalities University, Dalian 116600, Liaoning, China
| | - Shubiao Zhang
- SEAC-ME Key Laboratory of Biotechnology and Bio-resources Utilization, Dalian Nationalities University, Dalian 116600, Liaoning, China
| | - Yuan Zhang
- Department of Materials Science and Engineering, Department of Biological Engineering, The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Shaohui Cui
- SEAC-ME Key Laboratory of Biotechnology and Bio-resources Utilization, Dalian Nationalities University, Dalian 116600, Liaoning, China
| | - Huiying Chen
- SEAC-ME Key Laboratory of Biotechnology and Bio-resources Utilization, Dalian Nationalities University, Dalian 116600, Liaoning, China
| | - Defu Zhi
- SEAC-ME Key Laboratory of Biotechnology and Bio-resources Utilization, Dalian Nationalities University, Dalian 116600, Liaoning, China
| | - Yuhong Zhen
- College of Phamacy, Dalian Medical University, Dalian 116044, Liaoning, China
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116021, Liaoning, China
| | - Leaf Huang
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|