1
|
Appavoo SD, Heller NW, van Campenhout CT, Saunders GJ, Yudin AK. Identification of "Structural Pin" Interactions and their Significance for the Conformational Control of Macrocyclic Scaffolds. Angew Chem Int Ed Engl 2024; 63:e202402372. [PMID: 38499461 DOI: 10.1002/anie.202402372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 03/20/2024]
Abstract
While peptide macrocycles with rigidified conformations have proven to be useful in the design of chemical probes of protein targets, conformational flexibility and rapid interconversion can be equally vital for biological activity and favorable physicochemical properties. This study introduces the concept of "structural pin", which describes a hydrogen bond that is largely responsible for stabilizing the entire macrocycle backbone conformation. Structural analysis of macrocycles using nuclear magnetic resonance (NMR), molecular modelling and X-ray diffraction indicates that disruption of the structural pin can drastically influence the conformation of the entire ring, resulting in novel states with increased flexibility. This finding provides a new tool to interrogate dynamic behaviour of macrocycles. Identification of structural pins offers a useful conceptual framework to understand positions that can either be modified to give flexible structures or retained to maintain the rigidity of the scaffold.
Collapse
Affiliation(s)
- Solomon D Appavoo
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, Canada, M5S 3H6
| | - Nicholas W Heller
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, Canada, M5S 3H6
| | - Christian T van Campenhout
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, Canada, M5S 3H6
| | - George J Saunders
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, Canada, M5S 3H6
| | - Andrei K Yudin
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, Canada, M5S 3H6
| |
Collapse
|
2
|
Schneider H, Englert S, Macarrón Palacios A, Lerma Romero JA, Ali A, Avrutina O, Kolmar H. Synthetic Integrin-Targeting Dextran-Fc Hybrids Efficiently Inhibit Tumor Proliferation In Vitro. Front Chem 2021; 9:693097. [PMID: 34368077 PMCID: PMC8339797 DOI: 10.3389/fchem.2021.693097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/21/2021] [Indexed: 11/13/2022] Open
Abstract
Herein, we present the design, synthesis, and biological evaluation of novel integrin-targeting molecular hybrids combining RGD peptides and a potent cytotoxin presented on dextran polysaccharides. Based on an aglycosylated Fc as a centerpiece, endosomal-cleavable cytotoxic agent monomethyl auristatin E (MMAE) and dextran as multimerization site were covalently connected by two bioorthogonal enzyme-mediated reactions site-specifically. Decoration of dextran with cyclic RGD peptides, introduced by copper “click” reaction, resulted in the final constructs with the potential to kill integrin-overexpressing tumor cells. We found that these modifications had little impact on the stability of the Fc scaffold and the RGD-bearing construct showed good binding properties of αvβ3-expressing U87MG cells. Furthermore, the construct showed a remarkable antiproliferative activity. These results demonstrate the general capability of our design to provoke receptor-mediated endocytosis upon binding to the cellular surface, followed by endosomal cleavage of the linkage between Fc-dextran and MMAE and its subsequent release. Our approach opens new avenues to transcribe small molecule binders into tailor-made multimeric molecular hybrids with antitumor potential.
Collapse
Affiliation(s)
- Hendrik Schneider
- Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt, Darmstadt, Germany
| | - Simon Englert
- Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt, Darmstadt, Germany
| | - Arturo Macarrón Palacios
- Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt, Darmstadt, Germany
| | | | - Ataurehman Ali
- Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt, Darmstadt, Germany
| | - Olga Avrutina
- Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt, Darmstadt, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt, Darmstadt, Germany
| |
Collapse
|
3
|
Cuevas F, Saavedra CJ, Romero‐Estudillo I, Boto A, Ordóñez M, Vergara I. Structural Diversity using Hyp
“Customizable Units”
:
Proof‐of‐Concept
Synthesis of Sansalvamide‐Related Antitumoral Peptides. European J Org Chem 2021. [DOI: 10.1002/ejoc.202001427] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Fernando Cuevas
- Centro de Investigaciones Químicas-IICBA Universidad Autónoma del Estado de Morelos Av. Universidad 1001 Cuernavaca Morelos 62209 México
| | - Carlos J. Saavedra
- Instituto de Productos Naturales y Agrobiología del CSIC Avda. Astrofísico Francisco Sánchez 3 38206- La Laguna Tenerife Spain
- BIOSIGMA SL c/Antonio Dominguez Afonso 16 38003- S/C Tenerife Spain
| | - Ivan Romero‐Estudillo
- Centro de Investigaciones Químicas-IICBA Universidad Autónoma del Estado de Morelos Av. Universidad 1001 Cuernavaca Morelos 62209 México
- Catedrático CONACYT-CIQ-UAEM México
| | - Alicia Boto
- Instituto de Productos Naturales y Agrobiología del CSIC Avda. Astrofísico Francisco Sánchez 3 38206- La Laguna Tenerife Spain
| | - Mario Ordóñez
- Centro de Investigaciones Químicas-IICBA Universidad Autónoma del Estado de Morelos Av. Universidad 1001 Cuernavaca Morelos 62209 México
| | - Irene Vergara
- Departamento de Ciencias Químico-Biológicas Universidad de las Américas Puebla, ExHda Sta. Catarina Mártir s/n San Andrés Cholula Puebla 72820 México
| |
Collapse
|
4
|
Ganiu MO, Nepal B, Van Houten JP, Kartika R. A decade review of triphosgene and its applications in organic reactions. Tetrahedron 2020; 76:131553. [PMID: 33883783 PMCID: PMC8054975 DOI: 10.1016/j.tet.2020.131553] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
This review article highlights selected advances in triphosgene-enabled organic synthetic reactions that were reported in the decade of 2010-2019. Triphosgene is a versatile reagent in organic synthesis. It serves as a convenient substitute for the toxic phosgene gas. Despite its first known preparation in the late 19th interestingly began only three decades ago. Despite the relatively short history, triphosgene has been proven to be very useful in facilitating the preparation of a vast scope of value-added compounds, such as organohalides, acid chlorides, isocyanates, carbonyl addition adducts, heterocycles, among others. Furthermore, applications of triphosgene in complex molecules synthesis, polymer synthesis, and other techniques, such as flow chemistry and solid phase synthesis, have also emerged in the literature.
Collapse
Affiliation(s)
| | | | | | - Rendy Kartika
- Department of Chemistry, 232 Choppin Hall, Louisiana State University, Baton Rouge, LA 70803 United States
| |
Collapse
|
5
|
Morimoto J, Sando S. Peptoids with Substituents on the Backbone Carbons as Conformationally Constrained Synthetic Oligoamides. J SYN ORG CHEM JPN 2020. [DOI: 10.5059/yukigoseikyokaishi.78.1076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Shinsuke Sando
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo
| |
Collapse
|
6
|
Jwad R, Weissberger D, Hunter L. Strategies for Fine-Tuning the Conformations of Cyclic Peptides. Chem Rev 2020; 120:9743-9789. [PMID: 32786420 DOI: 10.1021/acs.chemrev.0c00013] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cyclic peptides are promising scaffolds for drug development, attributable in part to their increased conformational order compared to linear peptides. However, when optimizing the target-binding or pharmacokinetic properties of cyclic peptides, it is frequently necessary to "fine-tune" their conformations, e.g., by imposing greater rigidity, by subtly altering certain side chain vectors, or by adjusting the global shape of the macrocycle. This review systematically examines the various types of structural modifications that can be made to cyclic peptides in order to achieve such conformational control.
Collapse
Affiliation(s)
- Rasha Jwad
- Department of Chemistry, College of Science, Al-Nahrain University, Baghdad, Iraq
| | - Daniel Weissberger
- School of Chemistry, University of New South Wales (UNSW) Sydney, New South Wales 2052, Australia
| | - Luke Hunter
- School of Chemistry, University of New South Wales (UNSW) Sydney, New South Wales 2052, Australia
| |
Collapse
|
7
|
Morimoto J, Fukuda Y, Kuroda D, Watanabe T, Yoshida F, Asada M, Nakamura T, Senoo A, Nagatoishi S, Tsumoto K, Sando S. A Peptoid with Extended Shape in Water. J Am Chem Soc 2019; 141:14612-14623. [DOI: 10.1021/jacs.9b04371] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jumpei Morimoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yasuhiro Fukuda
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Daisuke Kuroda
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takumu Watanabe
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Fumihiko Yoshida
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Mizue Asada
- Department of Materials Molecular Science, Institute for Molecular Science, 38 Nishigo-naka, Myodaiji, Okazaki 444-8585, Japan
| | - Toshikazu Nakamura
- Department of Materials Molecular Science, Institute for Molecular Science, 38 Nishigo-naka, Myodaiji, Okazaki 444-8585, Japan
| | - Akinobu Senoo
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Satoru Nagatoishi
- Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Kouhei Tsumoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Shinsuke Sando
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
8
|
Saavedra CJ, Carro C, Hernández D, Boto A. Conversion of “Customizable Units” into N-Alkyl Amino Acids and Generation of N-Alkyl Peptides. J Org Chem 2019; 84:8392-8410. [DOI: 10.1021/acs.joc.9b00114] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Carlos J. Saavedra
- Instituto de Productos Naturales y Agrobiología del CSIC, Avda. Astrofísico Francisco Sánchez 3, 38206 La Laguna, Tenerife, Spain
- BIOSIGMA, Antonio Domı́nguez Alfonso 16, 38003-Sta. Cruz de Tenerife, Tenerife, Spain
| | - Carmen Carro
- Instituto de Productos Naturales y Agrobiología del CSIC, Avda. Astrofísico Francisco Sánchez 3, 38206 La Laguna, Tenerife, Spain
- BIOSIGMA, Antonio Domı́nguez Alfonso 16, 38003-Sta. Cruz de Tenerife, Tenerife, Spain
| | - Dácil Hernández
- Instituto de Productos Naturales y Agrobiología del CSIC, Avda. Astrofísico Francisco Sánchez 3, 38206 La Laguna, Tenerife, Spain
| | - Alicia Boto
- Instituto de Productos Naturales y Agrobiología del CSIC, Avda. Astrofísico Francisco Sánchez 3, 38206 La Laguna, Tenerife, Spain
| |
Collapse
|
9
|
Tezgel Ö, Noinville S, Bennevault V, Illy N, Guégan P. An alternative approach to create N-substituted cyclic dipeptides. Polym Chem 2019. [DOI: 10.1039/c8py01552j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
N-Modified peptide backbones are promising peptidomimetics which offer several advantages in terms of improved biological activity and stability.
Collapse
Affiliation(s)
- Özgül Tezgel
- Sorbonne Université
- CNRS
- Institut Parisien de Chimie Moléculaire
- Equipe Chimie des Polymères
- F-75005 Paris
| | | | - Véronique Bennevault
- Sorbonne Université
- CNRS
- Institut Parisien de Chimie Moléculaire
- Equipe Chimie des Polymères
- F-75005 Paris
| | - Nicolas Illy
- Sorbonne Université
- CNRS
- Institut Parisien de Chimie Moléculaire
- Equipe Chimie des Polymères
- F-75005 Paris
| | - Philippe Guégan
- Sorbonne Université
- CNRS
- Institut Parisien de Chimie Moléculaire
- Equipe Chimie des Polymères
- F-75005 Paris
| |
Collapse
|
10
|
Kaminker* R, Anastasaki A, Gutekunst WR, Luo Y, Lee S, Hawker* CJ. Tuning of protease resistance in oligopeptides through N-alkylation. Chem Commun (Camb) 2018; 54:9631-9634. [PMID: 30095837 PMCID: PMC6141190 DOI: 10.1039/c8cc04407d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
N-Methylation of amino acids is an effective way to create protease resistance in both natural and synthetic peptides. However, alkyl substituents other than N-methyl have not been extensively studied. Here, we prepare and examine a series of N-substituted peptides in which the size and length of the alkyl group is modulated. These design insights provide a unique and modular handle for tuning proteolysis in oligopeptides.
Collapse
Affiliation(s)
- R. Kaminker*
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States. ;
| | - A. Anastasaki
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States. ;
| | - W. R. Gutekunst
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States. ;
| | - Y. Luo
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States. ;
| | - S. Lee
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States. ;
| | - C. J. Hawker*
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States. ;
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United Sates
| |
Collapse
|
11
|
Paradís-Bas M, Tulla-Puche J, Albericio F. The road to the synthesis of "difficult peptides". Chem Soc Rev 2015; 45:631-54. [PMID: 26612670 DOI: 10.1039/c5cs00680e] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The last decade has witnessed a renaissance of peptides as drugs. This progress, together with advances in the structural behavior of peptides, has attracted the interest of the pharmaceutical industry in these molecules as potential APIs. In the past, major peptide-based drugs were inspired by sequences extracted from natural structures of low molecular weight. In contrast, nowadays, the peptides being studied by academic and industrial groups comprise more sophisticated sequences. For instance, they consist of long amino acid chains and show a high tendency to form aggregates. Some researchers have claimed that preparing medium-sized proteins is now feasible with chemical ligation techniques, in contrast to medium-sized peptide syntheses. The complexity associated with the synthesis of certain peptides is exemplified by the so-called "difficult peptides", a concept introduced in the 80's. This refers to sequences that show inter- or intra-molecular β-sheet interactions significant enough to form aggregates during peptide synthesis. These structural associations are stabilized and mediated by non-covalent hydrogen bonds that arise on the backbone of the peptide and-depending on the sequence-are favored. The tendency of peptide chains to aggregate is translated into a list of common behavioral features attributed to "difficult peptides" which hinder their synthesis. In this regard, this manuscript summarizes the strategies used to overcome the inherent difficulties associated with the synthesis of known "difficult peptides". Here we evaluate several external factors, as well as methods to incorporate chemical modifications into sequences, in order to describe the strategies that are effective for the synthesis of "difficult peptides". These approaches have been classified and ordered to provide an extensive guide for achieving the synthesis of peptides with the aforementioned features.
Collapse
Affiliation(s)
- Marta Paradís-Bas
- Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, 08028 Barcelona, Spain.
| | | | | |
Collapse
|
12
|
Fernández-Llamazares AI, Spengler J, Albericio F. Review backboneN-modified peptides: How to meet the challenge of secondary amine acylation. Biopolymers 2015; 104:435-52. [DOI: 10.1002/bip.22696] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 05/21/2015] [Accepted: 05/26/2015] [Indexed: 12/29/2022]
Affiliation(s)
- Ana I. Fernández-Llamazares
- Institute for Research in Biomedicine; Deparment of Chemistry and Molecular Pharmacology, Barcelona Science Park; Baldiri Reixac 10 Barcelona 08028 Spain
- CIBER-BBN; Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona Science Park; Baldiri Reixac 10 Barcelona 08028 Spain
| | - Jan Spengler
- Institute for Research in Biomedicine; Deparment of Chemistry and Molecular Pharmacology, Barcelona Science Park; Baldiri Reixac 10 Barcelona 08028 Spain
- CIBER-BBN; Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona Science Park; Baldiri Reixac 10 Barcelona 08028 Spain
| | - Fernando Albericio
- Institute for Research in Biomedicine; Deparment of Chemistry and Molecular Pharmacology, Barcelona Science Park; Baldiri Reixac 10 Barcelona 08028 Spain
- CIBER-BBN; Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona Science Park; Baldiri Reixac 10 Barcelona 08028 Spain
- Department of Organic Chemistry; University of Barcelona; Martí i Franquès 1-11 Barcelona 08028 Spain
- School of Chemistry and Physics; University of KwaZulu-Natal; 4001 Durban South Africa
- School of Life Sciences, Department of Chemistry, Yachay Tech, Yachay City of Knowledge; Urcuquι 100119 Ecuador. Department of Chemistry; College of Science, King Saud University; P.O. Box 2455 Riyadh 11451 Saudi Arabia
| |
Collapse
|
13
|
Cherkupally P, Ramesh S, de la Torre BG, Govender T, Kruger HG, Albericio F. Immobilized coupling reagents: synthesis of amides/peptides. ACS COMBINATORIAL SCIENCE 2014; 16:579-601. [PMID: 25330282 DOI: 10.1021/co500126y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The primary idea of using immobilized reagents in organic synthetic chemistry is to simplify the downstream process, product workup and isolation, and therefore avoiding time-consuming and expensive chromatographic separations, which are intrinsic to every synthetic process. Numerous polymer-bounded reagents are commercially available and applicable to almost all kinds of synthetic chemistry conversions. Herein, we have covered all known supported-coupling reagents and bases which have had a great impact in amide/peptide bond formation. These coupling reagents have been used for the activation of a carboxyl moiety; thus generating an active acylating species that is ready to couple with an amine nucleophile liberating the amide/peptide and polymeric support which can be regenerated for reuse. This also addresses a large variety of anchored coupling reagents, additives, and bases that have only been employed in amide/peptide syntheses during the last six decades.
Collapse
Affiliation(s)
- Prabhakar Cherkupally
- Catalysis and Peptide Research Unit, School of Health Sciences, University of Kwazulu-Natal, Durban 4001, South Africa
| | - Suhas Ramesh
- Catalysis and Peptide Research Unit, School of Health Sciences, University of Kwazulu-Natal, Durban 4001, South Africa
| | - Beatriz G. de la Torre
- Catalysis and Peptide Research Unit, School of Health Sciences, University of Kwazulu-Natal, Durban 4001, South Africa
- School of Chemistry, Yachay Tech, Yachay City of Knowledge, 100119 Urcuqui, Ecuador
| | - Thavendran Govender
- Catalysis and Peptide Research Unit, School of Health Sciences, University of Kwazulu-Natal, Durban 4001, South Africa
| | - Hendrik G. Kruger
- Catalysis and Peptide Research Unit, School of Health Sciences, University of Kwazulu-Natal, Durban 4001, South Africa
| | - Fernando Albericio
- Catalysis and Peptide Research Unit, School of Health Sciences, University of Kwazulu-Natal, Durban 4001, South Africa
- School of Chemistry, Yachay Tech, Yachay City of Knowledge, 100119 Urcuqui, Ecuador
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa
- Institute for Research in Biomedicine-Barcelona (IRB-Barcelona), 08028 Barcelona, Spain
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona Science Park, 08028 Barcelona, Spain
| |
Collapse
|
14
|
Culf AS, Čuperlović-Culf M, Léger DA, Decken A. Small head-to-tail macrocyclic α-peptoids. Org Lett 2014; 16:2780-3. [PMID: 24797336 DOI: 10.1021/ol501102b] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A convenient and efficient methodology for the head-to-tail macrocyclization of small 3-mer, 4-mer, and 5-mer α-peptoid acids (9-, 12-, and 15-atom N-substituted glycine oligomers) is described. The cyclic trimer has a ccc amide sequence in the crystal structure, whereas the tetramer has ctct and the pentamer has ttccc stereochemistry. NMR analysis reveals rigid structures in solution. These synthetic macrocycles may prove useful in medicinal and materials applications.
Collapse
Affiliation(s)
- Adrian S Culf
- Atlantic Cancer Research Institute , 35 Providence Street, Moncton, NB E1C 8X3, Canada
| | | | | | | |
Collapse
|
15
|
Ahmed MI, Harper JB, Hunter L. Incrementally increasing the length of a peptide backbone: effect on macrocyclisation efficiency. Org Biomol Chem 2014; 12:4598-601. [DOI: 10.1039/c4ob00492b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Fernández-Llamazares AI, Adan J, Mitjans F, Spengler J, Albericio F. Tackling Lipophilicity of Peptide Drugs: Replacement of the Backbone N-Methyl Group of Cilengitide by N-Oligoethylene Glycol (N-OEG) Chains. Bioconjug Chem 2013; 25:11-7. [DOI: 10.1021/bc4003844] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | | | - Fernando Albericio
- Department
of Organic Chemistry, University of Barcelona, Martí i Franqués 1-11, 08028 Barcelona, Spain
- School of Chemistry & Physics, University of KwaZulua-Natal, 4001 Durban, South Africa
| |
Collapse
|