1
|
Kumari A, Pandav K, Nath M, Barthwal R, Peddinti RK. Recognition of human telomeric G-quadruplex DNA by 1,5-disubstituted diethyl-amido anthraquinone derivative in different ion environments causing thermal stabilization and apoptosis. J Biomol Struct Dyn 2024:1-17. [PMID: 38174595 DOI: 10.1080/07391102.2023.2298733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024]
Abstract
Ligand binding to G-quadruplex (G4) structures at human telomeric DNA ends promotes thermal stabilization, disrupting the interaction of the telomerase enzyme, which is found active in 80-85% of cancers and serves as a molecular marker. Anthraquinone compounds are well-known G-quadruplex (G4) binders that inhibit telomerase and induce apoptosis in cancer cells. Our current investigation is based on 1,5-bis[3-(diethylamino)propionamido]anthracene-9,10-dione, a derivative of anthraquinone and its binding characterization with two different human telomeric DNA structures, wHTel26 and HTel22, in the effect of K+ and Na+ by using an array of biophysical, calorimetry, molecular docking and cell viability assay techniques. Binding constants (Kb) in the range of ∼105-107 M-1 and stoichiometries of 1:1, 2:1 & 4:1 were obtained from the absorbance, fluorescence, and circular dichroism study. Remarkable hypochromism (55, 97%) and ∼17 nm shift in absorbance, fluorescence quenching (95, 97%), the unaltered value of fluorescence lifetime, restoration of Circular Dichroism bands, absence of ICD band, indicated the external groove binding/binding somewhere at loops. This is also evident in molecular docking results, the ligand binds to groove forming base (G4, G5, G24, T25) and in the vicinity to TTA loop (G14, G15, T17) bases of wHTel26 and HTel22, respectively. Thermal stabilization induced by ligand was found greater in Na+ ion (27.5 °C) than (19.1 °C) in K+ ion. Ligand caused cell toxicity in MCF-7 cancer cell lines with an IC50 value of ∼8.4 µM. The above findings suggest the ligand, 1,5-bis[3-(diethylamino)propionamido]anthracene-9,10-dione could be a potent anticancer drug candidate and has great therapeutic implications.Binding of disubstituted amido anthraquinone derivative, 1,5-bis[3-(diethylamino)propionamido]anthracene-9,10-dione to human telomere HTel22 antiparallel conformation induced thermal stabilization.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Anjana Kumari
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Kumud Pandav
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Mala Nath
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Ritu Barthwal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Rama Krishna Peddinti
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| |
Collapse
|
2
|
Ranjan N, Arya DP. Parallel G-quadruplex recognition by neomycin. Front Chem 2023; 11:1232514. [PMID: 37671393 PMCID: PMC10475565 DOI: 10.3389/fchem.2023.1232514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/25/2023] [Indexed: 09/07/2023] Open
Abstract
G-quadruplex-forming nucleic acids have evolved to have applications in biology, drug design, sensing, and nanotechnology, to name a few. Together with the structural understanding, several attempts have been made to discover and design new classes of chemical agents that target these structures in the hope of using them as future therapeutics. Here, we report the binding of aminoglycosides, in particular neomycin, to parallel G-quadruplexes that exist as G-quadruplex monomers, dimers, or compounds that have the propensity to form dimeric G-quadruplex structures. Using a combination of calorimetric and spectroscopic studies, we show that neomycin binds to the parallel G-quadruplex with affinities in the range of Ka ∼ 105-108 M-1, which depends on the base composition, ability to form dimeric G-quadruplex structures, salt, and pH of the buffer used. At pH 7.0, the binding of neomycin was found to be electrostatically driven potentially through the formation of ion pairs formed with the quadruplex. Lowering the pH resulted in neomycin's association constants in the range of Ka ∼ 106-107 M-1 in a salt dependent manner. Circular dichroism (CD) studies showed that neomycin's binding does not cause a change in the parallel conformation of the G-quadruplex, yet some binding-induced changes in the intensity of the CD signals were seen. A comparative binding study of neomycin and paromomycin using d(UG4T) showed paromomycin binding to be much weaker than neomycin, highlighting the importance of ring I in the recognition process. In toto, our results expanded the binding landscape of aminoglycosides where parallel G-quadruplexes have been discovered as one of the high-affinity sites. These results may offer a new understanding of some of the undesirable functions of aminoglycosides and help in the design of aminoglycoside-based G-quadruplex binders of high affinity.
Collapse
Affiliation(s)
| | - Dev P. Arya
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, SC, United States
| |
Collapse
|
3
|
Teloxantron inhibits the processivity of telomerase with preferential DNA damage on telomeres. Cell Death Dis 2022; 13:1005. [PMID: 36437244 PMCID: PMC9701690 DOI: 10.1038/s41419-022-05443-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022]
Abstract
Telomerase reactivation is one of the hallmarks of cancer, which plays an important role in cellular immortalization and the development and progression of the tumor. Chemical telomerase inhibitors have been shown to trigger replicative senescence and apoptotic cell death both in vitro and in vivo. Due to its upregulation in various cancers, telomerase is considered a potential target in cancer therapy. In this study, we identified potent, small-molecule telomerase inhibitors using a telomerase repeat amplification protocol assay. The results of the assay are the first evidence of telomerase inhibition by anthraquinone derivatives that do not exhibit G-quadruplex-stabilizing properties. The stability of telomerase in the presence of its inhibitor was evaluated under nearly physiological conditions using a cellular thermal shift assay. Our data showed that the compound induced aggregation of the catalytic subunit (hTERT) of human telomerase, and molecular studies confirmed the binding of the hit compound with the active site of the enzyme. The ability of new derivatives to activate DNA double-strand breaks (DSBs) was determined by high-resolution microscopy and flow cytometry in tumor cell lines differing in telomere elongation mechanism. The compounds triggered DSBs in TERT-positive A549 and H460 lung cancer cell lines, but not in TERT-negative NHBE normal human bronchial epithelial and ALT-positive U2OS osteosarcoma cell lines, which indicates that the induction of DSBs was dependent on telomerase inhibition. The observed DNA damage activated DNA damage response pathways involving ATM/Chk2 and ATR/Chk1 cascades. Additionally, the compounds induced apoptotic cell death through extrinsic and intrinsic pathways in lung cancer cells. Taken together, our study demonstrated that anthraquinone derivatives can be further developed into novel telomerase-related anticancer agents.
Collapse
|
4
|
Aksenov AV, Arutiunov NA, Aksenov DA, Samovolov AV, Kurenkov IA, Aksenov NA, Aleksandrova EA, Momotova DS, Rubin M. A Convenient Way to Quinoxaline Derivatives through the Reaction of 2-(3-Oxoindolin-2-yl)-2-phenylacetonitriles with Benzene-1,2-diamines. Int J Mol Sci 2022; 23:ijms231911120. [PMID: 36232422 PMCID: PMC9570350 DOI: 10.3390/ijms231911120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/10/2022] [Accepted: 09/16/2022] [Indexed: 11/23/2022] Open
Abstract
Microwave-assisted reaction between 2-(3-oxoindolin-2-yl)-2-phenylacetonitriles andbenzene-1,2-diamines leads to the high-yielding formation of the corresponding quinoxalines as sole, easily isolaable products. The featured transformation involves unusual extrusion of phenylacetonitrile molecule and could be performed in a short sequence starting from commonly available indoles and nitroolefins.
Collapse
Affiliation(s)
- Alexander V. Aksenov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., 355017 Stavropol, Russia
- Correspondence: (A.V.A.); (M.R.)
| | - Nikolai A. Arutiunov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., 355017 Stavropol, Russia
| | - Dmitrii A. Aksenov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., 355017 Stavropol, Russia
| | - Artem V. Samovolov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., 355017 Stavropol, Russia
| | - Igor A. Kurenkov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., 355017 Stavropol, Russia
| | - Nicolai A. Aksenov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., 355017 Stavropol, Russia
| | - Elena A. Aleksandrova
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., 355017 Stavropol, Russia
| | - Daria S. Momotova
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., 355017 Stavropol, Russia
| | - Michael Rubin
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., 355017 Stavropol, Russia
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, KS 66045, USA
- Correspondence: (A.V.A.); (M.R.)
| |
Collapse
|
5
|
Li ML, Yuan JM, Yuan H, Wu BH, Huang SL, Li QJ, Ou TM, Wang HG, Tan JH, Li D, Chen SB, Huang ZS. Design, Synthesis, and Evaluation of New Sugar-Substituted Imidazole Derivatives as Selective c-MYC Transcription Repressors Targeting the Promoter G-Quadruplex. J Med Chem 2022; 65:12675-12700. [PMID: 36121464 DOI: 10.1021/acs.jmedchem.2c00467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
c-MYC is a key driver of tumorigenesis. Repressing the transcription of c-MYC by stabilizing the G-quadruplex (G4) structure with small molecules is a potential strategy for cancer therapy. Herein, we designed and synthesized 49 new derivatives by introducing carbohydrates to our previously developed c-MYC G4 ligand 1. Among these compounds, 19a coupled with a d-glucose 1,2-orthoester displayed better c-MYC G4 binding, stabilization, and protein binding disruption abilities than 1. Our further evaluation indicated that 19a blocked c-MYC transcription by targeting the promoter G4, leading to c-MYC-dependent cancer cell death in triple-negative breast cancer cell MDA-MB-231. Also, 19a significantly inhibited tumor growth in the MDA-MB-231 mouse xenograft model accompanied by c-MYC downregulation. Notably, the safety of 19a was dramatically improved compared to 1. Our findings indicated that 19a could become a promising anticancer candidate, which suggested that introducing carbohydrates to improve the G4-targeting and antitumor activity is a feasible option.
Collapse
Affiliation(s)
- Mao-Lin Li
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Jing-Mei Yuan
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Hao Yuan
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Bi-Han Wu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Shi-Liang Huang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Qing-Jiang Li
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Tian-Miao Ou
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Hong-Gen Wang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Jia-Heng Tan
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Ding Li
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Shuo-Bin Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhi-Shu Huang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
6
|
Dey A, Pandav K, Nath M, Barthwal R, Prasad R. Molecular rec§ognition of telomere DNA sequence by 2, 6 anthraquinone derivatives leads to thermal stabilization and induces apoptosis in cancer cells. Int J Biol Macromol 2022; 221:355-370. [PMID: 36041576 DOI: 10.1016/j.ijbiomac.2022.08.156] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022]
Abstract
According to current research, anti-cancer anthraquinones impact telomere disruption and may interact with G-quadruplex DNA that triggers signaling to apoptosis. The present study represents the biophysical investigation of oxidative stress, late apoptosis, and induced senescence among cancer cells after binding laboratory synthesized piperidine-based anthraquinone derivatives, 2, 6- Bis [(3-piperidino)acetamido)]anthracene-9,10-dione (N1P) and 2, 6-Bis [piperidino)propionamido]anthracene-9,10-dione (N2P), with G-quadruplex DNA. We employed biophysical approaches to explore the interaction of synthetic anthraquinone derivatives with quadruplex DNA sequences to influence biological activities in the presence of K+ and Na+ cations. The binding affinity for N2P and N1P are Kb = 5.8 × 106 M-1 and Kb = 1.0 × 106 M-1, respectively, leading to hypo-/hyper-chromism with 5-7 nm red shift and significant fluorescence quenching and changes in ellipticity resulting in external binding of both the ligands to G-quadruplex DNA. Ligand binding induced enhancement of thermostability of G4 DNA is greater in Na+ environment (ΔTm = 34 °C) as compared to that in K+ environment (ΔTm = 21 °C), thereby restricting telomerase binding access to telomeres. Microscopic images of treated cells indicated cellular shape, nuclear condensation, and fragmentation alterations. The findings pave the path for therapeutic research, given the great potential of modifying anthraquinone substituent groups towards improved efficacy, ROS generation, and G-quadruplex DNA selectivity.
Collapse
Affiliation(s)
- Arpita Dey
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Kumud Pandav
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Mala Nath
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Ritu Barthwal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India.
| | - Ramasare Prasad
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India.
| |
Collapse
|
7
|
Recognition of ATT Triplex and DNA:RNA Hybrid Structures by Benzothiazole Ligands. Biomolecules 2022; 12:biom12030374. [PMID: 35327566 PMCID: PMC8945811 DOI: 10.3390/biom12030374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 11/17/2022] Open
Abstract
Interactions of an array of nucleic acid structures with a small series of benzothiazole ligands (bis-benzothiazolyl-pyridines—group 1, 2-thienyl/2-benzothienyl-substituted 6-(2-imidazolinyl)benzothiazoles—group 2, and three 2-aryl/heteroaryl-substituted 6-(2-imidazolinyl)benzothiazoles—group 3) were screened by competition dialysis. Due to the involvement of DNA:RNA hybrids and triplex helices in many essential functions in cells, this study’s main aim is to detect benzothiazole-based moieties with selective binding or spectroscopic response to these nucleic structures compared to regular (non-hybrid) DNA and RNA duplexes and single-stranded forms. Complexes of nucleic acids and benzothiazoles, selected by this method, were characterized by UV/Vis, fluorescence and circular dichroism (CD) spectroscopy, isothermal titration calorimetry, and molecular modeling. Two compounds (1 and 6) from groups 1 and 2 demonstrated the highest affinities against 13 nucleic acid structures, while another compound (5) from group 2, despite lower affinities, yielded higher selectivity among studied compounds. Compound 1 significantly inhibited RNase H. Compound 6 could differentiate between B- (binding of 6 dimers inside minor groove) and A-type (intercalation) helices by an induced CD signal, while both 5 and 6 selectively stabilized ATT triplex in regard to AT duplex. Compound 3 induced strong condensation-like changes in CD spectra of AT-rich DNA sequences.
Collapse
|
8
|
Summart R, Thaichana P, Supan J, Meepowpan P, Lee TR, Tuntiwechapikul W. Superiority of an Asymmetric Perylene Diimide in Terms of Hydrosolubility, G-Quadruplex Binding, Cellular Uptake, and Telomerase Inhibition in Prostate Cancer Cells. ACS OMEGA 2020; 5:29733-29745. [PMID: 33251409 PMCID: PMC7689663 DOI: 10.1021/acsomega.0c03505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/05/2020] [Indexed: 05/11/2023]
Abstract
Perylene diimide (PDI) derivatives have been studied as G-quadruplex ligands that suppress telomerase activity by facilitating G-quadruplex formation of telomeric DNA and the hTERT promoter. PIPER, the prototypical PDI, reduces telomerase activity in lung and prostate cancer cells, leading to telomere shortening and cellular senescence of these cells. However, PIPER suffers from poor hydrosolubility and the propensity to aggregate at neutral pH. In this report, we synthesized a new asymmetric PDI, aPDI-PHis, which maintains one N-ethyl piperidine side chain of PIPER and has histidine as another side chain. The results show that aPDI-PHis is superior to its symmetric counterparts, PIPER and PDI-His, in terms of hydrosolubility, G-quadruplex binding, cellular uptake, and telomerase inhibition in prostate cancer cells. These results suggest that one N-ethyl piperidine side chain of PDI is sufficient for G-quadruplex binding, while another side chain can be tuned to elicit desirable properties. These findings might lead to better PDIs for use as anticancer drugs.
Collapse
Affiliation(s)
- Ratasark Summart
- Department
of Biochemistry, Faculty of Medicine, Chiang
Mai University, 110 Intavaroros Road, Chiang Mai 50200, Thailand
| | - Pak Thaichana
- Department
of Biochemistry, Faculty of Medicine, Chiang
Mai University, 110 Intavaroros Road, Chiang Mai 50200, Thailand
| | - Jutharat Supan
- Department
of Biochemistry, Faculty of Medicine, Chiang
Mai University, 110 Intavaroros Road, Chiang Mai 50200, Thailand
| | - Puttinan Meepowpan
- Department
of Chemistry, Faculty of Science, Chiang
Mai University, Chiang
Mai 50200, Thailand
| | - T. Randall Lee
- Department
of Chemistry and the Texas Center for Superconductivity, University of Houston, Houston, Texas 77204-5003, United States
| | - Wirote Tuntiwechapikul
- Department
of Biochemistry, Faculty of Medicine, Chiang
Mai University, 110 Intavaroros Road, Chiang Mai 50200, Thailand
- . Tel: +66-53-945323.
Fax: +66-53-894031
| |
Collapse
|
9
|
Singh M, Wang S, Joo H, Ye Z, Christison KM, Hekman R, Vierra C, Xue L. Use of neomycin as a structured amino-containing side chain motif for phenanthroline-based G-quadruplex ligands and telomerase inhibitors. Chem Biol Drug Des 2020; 96:1292-1304. [PMID: 32516846 DOI: 10.1111/cbdd.13741] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/05/2020] [Accepted: 05/31/2020] [Indexed: 01/05/2023]
Abstract
In this paper, we report the synthesis of a phenanthroline and neomycin conjugate (7). Compound 7 binds to a human telomeric G-quadruplex (G1) with a higher affinity compared with its parent compounds (phenanthroline and neomycin), which is determined by several biophysical studies. Compound 7 shows good selectivity for G-quadruplex (G4) DNA over duplex DNA. The binding of 7 with G1 is predominantly enthalpy-driven, and the binding stoichiometry of 7 with G1 is one for the tight-binding event as determined by ESI mass spectrometry. A plausible binding mode is a synergistic effect of end-stacking and groove interactions, as indicated by docking studies. Compound 7 can inhibit human telomerase activity at low micromolar concentrations, which is more potent than previously reported 5-substituted phenanthroline derivatives.
Collapse
Affiliation(s)
- Mandeep Singh
- Department of Chemistry, University of the Pacific, Stockton, CA, USA
| | - Siwen Wang
- Department of Chemistry, University of the Pacific, Stockton, CA, USA
| | - Hyun Joo
- Department of Chemistry, University of the Pacific, Stockton, CA, USA
| | - Zhihan Ye
- Department of Chemistry, University of the Pacific, Stockton, CA, USA
| | | | - Ryan Hekman
- Department of Biological Sciences, University of the Pacific, Stockton, CA, USA
| | - Craig Vierra
- Department of Biological Sciences, University of the Pacific, Stockton, CA, USA
| | - Liang Xue
- Department of Chemistry, University of the Pacific, Stockton, CA, USA
| |
Collapse
|
10
|
Roy S, Ali A, Kamra M, Muniyappa K, Bhattacharya S. Specific stabilization of promoter G-Quadruplex DNA by 2,6-disubstituted amidoanthracene-9,10-dione based dimeric distamycin analogues and their selective cancer cell cytotoxicity. Eur J Med Chem 2020; 195:112202. [PMID: 32302880 DOI: 10.1016/j.ejmech.2020.112202] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/19/2020] [Accepted: 03/01/2020] [Indexed: 10/24/2022]
Abstract
We have designed and synthesized anthraquinone containing compounds which have oligopyrrole side chains of varying lengths. These compounds stabilized the G-quadruplex DNA formed in the promoter regions of c-MYC oncogenes selectively over the duplex DNA. These observations were recorded using UV-vis spectroscopic titrations, fluorescence measurements and circular dichroism (CD) spectral titrations. The potency of the compounds to stabilize the G4 DNA has been shown from the thermal denaturation experiments. The compound interacts with c-MYC G-quadruplex DNA through stacking mode as obtained from ethidium bromide displacement assay, cyclic voltammetric titration, and docking experiments. Molecular modeling studies suggested that the stacking of the anthraquinone moiety over the G-tetrad of the G4 structures are responsible for the stability of such quadruplex secondary structure. Furthermore, polymerase stop assay also supported the formation of stable G4 structures in the presence of the above-mentioned compounds. The compounds have shown selective cancer cell (HeLa and HEK293T) cytotoxicity over normal cells (NIH3T3 and HDFa) under in vitro conditions as determined from MTT based cell viability assay. Apoptosis was found to be the mechanistic pathway underlying the cancer cell cytotoxicity as obtained from Annexin V-FITC and PI dual staining assay which was further substantiated by nuclear morphological changes as observed by AO/EB dual staining assay. Cellular morphological changes, as well as nuclear condensation and fragmentation upon treatment with these compounds, were observed under bright field and confocal microscopy.
Collapse
Affiliation(s)
- Soma Roy
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Asfa Ali
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Mohini Kamra
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Kalappa Muniyappa
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Santanu Bhattacharya
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India; School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata, 700032, India.
| |
Collapse
|
11
|
Ranjan N, Andreasen KF, Arora Y, Xue L, Arya DP. Surface Dependent Dual Recognition of a G-quadruplex DNA With Neomycin-Intercalator Conjugates. Front Chem 2020; 8:60. [PMID: 32117884 PMCID: PMC7028757 DOI: 10.3389/fchem.2020.00060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 01/20/2020] [Indexed: 01/17/2023] Open
Abstract
G-quadruplexes have been characterized as structures of vital importance in the cellular functioning of several life forms. They have subsequently been established to serve as a therapeutic target of several diseases including cancer, HIV, tuberculosis and malaria. In this paper, we report the binding of aminosugar-intercalator conjugates with a well-studied anti-parallel G-quadruplex derived from Oxytricha Nova G-quadruplex DNA. Of the four neomycin-intercalator conjugates studied with varying surface areas, BQQ-neomycin conjugate displayed the best binding to this DNA G-quadruplex structure with an association constant of Ka = (1.01 ±0.03) × 107 M−1 which is nearly 100-fold higher than the binding of neomycin to this quadruplex. The binding of BQQ-neomycin displays a binding stoichiometry of 1:1 indicating the presence of a single and unique binding site for this G-quadruplex. In contrast, the BQQ-neomycin displays very weak binding to the bacterial A-site rRNA sequence showing that BQQ-does not enhance the neomycin binding to its natural target, the bacterial rRNA A-site. The BQQ-neomycin conjugate is prone to aggregation even at low micromolar concentrations (4 μM) leading to some ambiguities in the analysis of thermal denaturation profiles. Circular dichroism experiments showed that binding of BQQ-neomycin conjugate causes some structural changes in the quadruplex while still maintaining the overall anti-parallel structure. Finally, the molecular docking experiments suggest that molecular surface plays an important role in the recognition of a second site on the G-quadruplex. Overall, these results show that molecules with more than one binding moieties can be made to specifically recognize G-quadruplexes with high affinities. The dual binding molecules comprise of quadruplex groove binding and intercalator units, and the molecular surface of the intercalator plays an important part in enhancing binding interaction to the G-quadruplex structure.
Collapse
Affiliation(s)
- Nihar Ranjan
- Laboratory for Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, SC, United States.,Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Raebareli, India
| | - Katrine F Andreasen
- Laboratory for Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, SC, United States
| | - Yashaswina Arora
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Raebareli, India
| | - Liang Xue
- Laboratory for Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, SC, United States
| | - Dev P Arya
- Laboratory for Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, SC, United States
| |
Collapse
|
12
|
Raje S, Barthwal R. Molecular recognition of 3+1 hybrid human telomeric G-quadruplex DNA d-[AGGG(TTAGGG) 3] by anticancer drugs epirubicin and adriamycin leads to thermal stabilization. Int J Biol Macromol 2019; 139:1272-1287. [PMID: 31421170 DOI: 10.1016/j.ijbiomac.2019.08.109] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/12/2019] [Accepted: 08/12/2019] [Indexed: 11/30/2022]
Abstract
Recent reports suggest influence of anti-cancer anthracyclines on telomere dysfunction and their possible interaction with G-quadruplex (G4) DNA as an alternate pathway to apoptosis. We have investigated interaction of epirubicin and adriamycin with G4 DNA [d-AGGG(TTAGGG)3] comprising human telomeric DNA sequence by surface plasmon resonance, absorption, fluorescence, circular dichroism and thermal denaturation. Epirubicin and adriamycin bind with affinity, Kb, = 2.5×105 and 5.2×105M-1, respectively in monomeric form leading to decrease in absorbance, fluorescence quenching and ellipticity changes without any significant shift in absorption emission maxima with corresponding induced thermal stabilization by 13.0 and 11.6°C in K+ rich solution. Na+ ions did not induce any thermal stabilization. Molecular docking confirmed external binding at grooves and loops of G4 DNA involving 4OCH3 of ring D, 9COCH2OH of ring A, 4'OH/H and 3'NH3+ of daunosamine sugar. Thermal stabilization induced by specific interactions is likely to hamper telomere association with telomerase enzyme and contribute to drug-induced apoptosis in cancer cell lines besides causing damage to duplex DNA. The findings pave the way for drug designing in view of immense possibilities of altering substituent groups on anthracyclines for enhancement of efficacy, reduced cell toxicity as well as specificity towards G-quadruplex DNA.
Collapse
Affiliation(s)
- Shailja Raje
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Ritu Barthwal
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India.
| |
Collapse
|
13
|
Verma S, Ghuge SA, Ravichandiran V, Ranjan N. Spectroscopic studies of Thioflavin-T binding to c-Myc G-quadruplex DNA. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 212:388-395. [PMID: 30703662 DOI: 10.1016/j.saa.2018.12.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 11/16/2018] [Accepted: 12/22/2018] [Indexed: 05/29/2023]
Abstract
G-quadruplexes are well-known DNA secondary structures which can be formed both within the DNA and the RNA sequences of the human genome. While many functions of G-quadruplex during cell regulatory events are still unknown, a number of reports have established their role in finding new cancer therapies. In this report, we provide a detailed account of Thioflavin T (ThT) interacting with a promoter gene (c-Myc) which has relevance in several types of human cancers. Using a variety of spectroscopic techniques, we have shown that the binding of ThT is selective to c-Myc G-quadruplex only, having poor interactions with the duplex DNA sequences. UV-Visible titration experiments show that binding involves stacking interactions which were further corroborated by CD experiments. Fluorescence studies showed that the binding of ThT to c-Myc G-quadruplex results in a large increase in the fluorescence emission spectrum of c-Myc G-quadruplex while the same to duplex DNAs was much poor. Binding of ThT to c-Myc G-quadruplex results in thermal stabilization of the quadruplex DNA by up to 7.4 °C and Job plot experiments demonstrated the presence of 1:1 and 2:1 ligand to quadruplex complexes. Finally, the docking study suggested that ThT stacks with the guanine bases in one of the grooves which is in agreement with the CD studies. These results are expected to provide leads into the design of new ThT analogs and derivatives for enhancing the stability and selectivity of new G-quadruplex targeting ligands.
Collapse
Affiliation(s)
- Smita Verma
- National Institute of Pharmaceutical Education and Research, ITI Compound, Raebareli 229010, India; National Institute of Pharmaceutical Education and Research, Kolkata, Maniktala Main Road, Kolkata 700054, India
| | - Sandip A Ghuge
- TERI-Deakin Nanobiotechnology Research Center, Sustainable Agriculture Division, The Energy and Resources Institute, New Delhi 110003, India
| | - V Ravichandiran
- National Institute of Pharmaceutical Education and Research, Kolkata, Maniktala Main Road, Kolkata 700054, India
| | - Nihar Ranjan
- National Institute of Pharmaceutical Education and Research, ITI Compound, Raebareli 229010, India.
| |
Collapse
|
14
|
Saha P, Panda D, Dash J. The application of click chemistry for targeting quadruplex nucleic acids. Chem Commun (Camb) 2019; 55:731-750. [PMID: 30489575 DOI: 10.1039/c8cc07107a] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Cu(i)-catalyzed azide and alkyne 1,3-dipolar cycloaddition (CuAAC), commonly known as the "click reaction", has emerged as a powerful and versatile synthetic tool that finds a broad spectrum of applications in chemistry, biology and materials science. The efficiency, selectivity and versatility of the CuAAC reactions have enabled the preparation of vast arrays of triazole compounds with biological and pharmaceutical applications. In this feature article, we outline the applications and future prospects of click chemistry in the synthesis and development of small molecules that target G-quadruplex nucleic acids and show promising biological activities. Furthermore, this article highlights the template-assisted in situ click chemistry for developing G-quadruplex specific ligands and the use of click chemistry for enhancing drug specificity as well as designing imaging and sensor systems to elucidate the biological functions of G-quadruplex nucleic acids in live cells.
Collapse
Affiliation(s)
- Puja Saha
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India.
| | | | | |
Collapse
|
15
|
Ma Y, Iida K, Sasaki S, Hirokawa T, Heddi B, Phan AT, Nagasawa K. Synthesis and Telomeric G-Quadruplex-Stabilizing Ability of Macrocyclic Hexaoxazoles Bearing Three Side Chains. Molecules 2019; 24:molecules24020263. [PMID: 30642002 PMCID: PMC6358838 DOI: 10.3390/molecules24020263] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/04/2019] [Accepted: 01/10/2019] [Indexed: 01/02/2023] Open
Abstract
G-quadruplexes (G4s), which are structures formed in guanine-rich regions of DNA, are involved in a variety of significant biological functions, and therefore “sequence-dependent” selective G4-stabilizing agents are required as tools to investigate and modulate these functions. Here, we describe the synthesis of a new series of macrocyclic hexaoxazole-type G4 ligand (6OTD) bearing three side chains. One of these ligands, 5b, stabilizes telomeric G4 preferentially over the G4-forming DNA sequences of c-kit and K-ras, due to the interaction of its piperazinylalkyl side chain with the groove of telomeric G4.
Collapse
Affiliation(s)
- Yue Ma
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.
| | - Keisuke Iida
- Department of Chemistry, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan.
| | - Shogo Sasaki
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.
| | - Takatsugu Hirokawa
- Transborder Medical Reserch Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan.
- Division of Biomedical Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan.
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto-ward, Tokyo 135-0064, Japan.
| | - Brahim Heddi
- Laboratoire de Biologie et Pharmacologie appliquée, CNRS UMR 8113, ENS paris-saclay 60 avenue du president Wilson, 94230 Cachan, France.
- Division of Physics and Applied Physics, Nanyang Technological University, Singapore 637371, Singapore.
| | - Anh Tuân Phan
- Division of Physics and Applied Physics, Nanyang Technological University, Singapore 637371, Singapore.
| | - Kazuo Nagasawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.
| |
Collapse
|
16
|
Watkins D, Maiti K, Arya DP. Aminoglycoside Functionalization as a Tool for Targeting Nucleic Acids. Methods Mol Biol 2019; 1973:147-162. [PMID: 31016700 DOI: 10.1007/978-1-4939-9216-4_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Aminoglycoside functionalization as a tool for targeting natural and unnatural nucleic acids holds great promise in their development as diagnostic probes and medicinally relevant compounds. Simple synthetic procedures designed to easily and quickly manipulate amino sugar (neomycin, kanamycin) to more powerful and selective ligands are presented in this chapter. We describe representative procedures for (a) aminoglycoside conjugation and (b) preliminary screening for their nucleic acid binding and selectivity.
Collapse
Affiliation(s)
- Derrick Watkins
- Department of Chemistry, Clemson University, Clemson, SC, USA
| | | | - Dev P Arya
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, SC, USA.
| |
Collapse
|
17
|
Tripathi S, Barthwal R. NMR based structure reveals groove binding of mitoxantrone to two sites of [d-(TTAGGGT)]4 having human telomeric DNA sequence leading to thermal stabilization of G-quadruplex. Int J Biol Macromol 2018; 111:326-341. [DOI: 10.1016/j.ijbiomac.2017.12.134] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 12/18/2017] [Accepted: 12/27/2017] [Indexed: 01/03/2023]
|
18
|
A dinuclear ruthenium(II) complex as an inducer and potential luminescent switch-on probe for G-quadruplex DNA. TRANSIT METAL CHEM 2018. [DOI: 10.1007/s11243-018-0240-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
19
|
Thamban Chandrika N, Garneau-Tsodikova S. Comprehensive review of chemical strategies for the preparation of new aminoglycosides and their biological activities. Chem Soc Rev 2018; 47:1189-1249. [PMID: 29296992 PMCID: PMC5818290 DOI: 10.1039/c7cs00407a] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A systematic analysis of all synthetic and chemoenzymatic methodologies for the preparation of aminoglycosides for a variety of applications (therapeutic and agricultural) reported in the scientific literature up to 2017 is presented. This comprehensive analysis of derivatization/generation of novel aminoglycosides and their conjugates is divided based on the types of modifications used to make the new derivatives. Both the chemical strategies utilized and the biological results observed are covered. Structure-activity relationships based on different synthetic modifications along with their implications for activity and ability to avoid resistance against different microorganisms are also presented.
Collapse
Affiliation(s)
- Nishad Thamban Chandrika
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596, USA.
| | | |
Collapse
|
20
|
Deshmukh SK, Prakash V, Ranjan N. Marine Fungi: A Source of Potential Anticancer Compounds. Front Microbiol 2018; 8:2536. [PMID: 29354097 PMCID: PMC5760561 DOI: 10.3389/fmicb.2017.02536] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 12/06/2017] [Indexed: 11/13/2022] Open
Abstract
Metabolites from marine fungi have hogged the limelight in drug discovery because of their promise as therapeutic agents. A number of metabolites related to marine fungi have been discovered from various sources which are known to possess a range of activities as antibacterial, antiviral and anticancer agents. Although, over a thousand marine fungi based metabolites have already been reported, none of them have reached the market yet which could partly be related to non-comprehensive screening approaches and lack of sustained lead optimization. The origin of these marine fungal metabolites is varied as their habitats have been reported from various sources such as sponge, algae, mangrove derived fungi, and fungi from bottom sediments. The importance of these natural compounds is based on their cytotoxicity and related activities that emanate from the diversity in their chemical structures and functional groups present on them. This review covers the majority of anticancer compounds isolated from marine fungi during 2012-2016 against specific cancer cell lines.
Collapse
Affiliation(s)
- Sunil K. Deshmukh
- TERI–Deakin Nano Biotechnology Centre, The Energy and Resources Institute, New Delhi, India
| | - Ved Prakash
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, India
| | - Nihar Ranjan
- TERI–Deakin Nano Biotechnology Centre, The Energy and Resources Institute, New Delhi, India
| |
Collapse
|
21
|
Ranjan N, Kellish P, King A, Arya DP. Impact of Linker Length and Composition on Fragment Binding and Cell Permeation: Story of a Bisbenzimidazole Dye Fragment. Biochemistry 2017; 56:6434-6447. [PMID: 29131946 DOI: 10.1021/acs.biochem.7b00929] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Small molecules that modulate biological functions are targets of modern day drug discovery efforts. In a common platform fragment-based drug discovery, two fragments that bind to adjacent sites on a target are identified and are then linked together using different linkers to identify the linkage for optimum activity. What are not known from these studies are the effects these linkers, which typically contain C, H, and O atoms, have on the properties of the individual fragment. Herein, we investigate such effects in a bisbenzimidazole fragment whose derivatives have a wide range of therapeutic applications in nucleic acid recognition, sensing, and photodynamic therapy and as cellular probes. We report a dramatic effect of linker length and composition of alkynyl (clickable) Hoechst 33258 derivatives in target binding and cell uptake. We show that the binding of Hoechst 33258-modeled bisbenzimidazoles (1-9) that contain linkers of varying lengths (3-21 atoms) display length- and composition-dependent variation in B-DNA stabilization using a variety of spectroscopic methods. For a dodecamer DNA duplex, the thermal stabilization varied from 0.3 to 9.0 °C as the linker length increased from 3 to 21 atoms, respectively. Compounds with linker lengths of ≤11 atoms (such as compounds 1 and 5) are localized in the nucleus, while compounds with long linkers (such as compounds 8 and 9) are distributed in the extranuclear space, as well, with possible interactions with extranuclear targets. These findings provide insights into future drug design by revealing how linkers can influence the biophysical and cellular properties of individual drug fragments.
Collapse
Affiliation(s)
- Nihar Ranjan
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University , Clemson, South Carolina 29634, United States
| | - Patrick Kellish
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University , Clemson, South Carolina 29634, United States
| | - Ada King
- NUBAD LLC , 900 B West Faris Road, Greenville, South Carolina 29605, United States
| | - Dev P Arya
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University , Clemson, South Carolina 29634, United States.,NUBAD LLC , 900 B West Faris Road, Greenville, South Carolina 29605, United States
| |
Collapse
|
22
|
Degtyareva NN, Gong C, Story S, Levinson NS, Oyelere AK, Green KD, Garneau-Tsodikova S, Arya DP. Antimicrobial Activity, AME Resistance, and A-Site Binding Studies of Anthraquinone-Neomycin Conjugates. ACS Infect Dis 2017; 3:206-215. [PMID: 28103015 PMCID: PMC5971063 DOI: 10.1021/acsinfecdis.6b00176] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The antibacterial effects of aminoglycosides are based on their association with the A-site of bacterial rRNA and interference with the translational process in the bacterial cell, causing cell death. The clinical use of aminoglycosides is complicated by resistance and side effects, some of which arise from their interactions with the human mitochondrial 12S rRNA and its deafness-associated mutations, C1494U and A1555G. We report a rapid assay that allows screening of aminoglycoside compounds to these classes of rRNAs. These screening tools are important to find antibiotics that selectively bind to the bacterial A-site rather than human, mitochondrial A-sites and its mutant homologues. Herein, we report our preliminary work on the optimization of this screen using 12 anthraquinone-neomycin (AMA-NEO) conjugates against molecular constructs representing five A-site homologues, Escherichia coli, human cytosolic, mitochondrial, C1494U, and A1555G, using a fluorescent displacement screening assay. These conjugates were also tested for inhibition of protein synthesis, antibacterial activity against 14 clinically relevant bacterial strains, and the effect on enzymes that inactivate aminoglycosides. The AMA-NEO conjugates demonstrated significantly improved resistance against aminoglycoside-modifying enzymes (AMEs), as compared with NEO. Several compounds exhibited significantly greater inhibition of prokaryotic protein synthesis as compared to NEO and were extremely poor inhibitors of eukaryotic translation. There was significant variation in antibacterial activity and MIC of selected compounds between bacterial strains, with Escherichia coli, Enteroccocus faecalis, Citrobacter freundii, Shigella flexneri, Serratia marcescens, Proteus mirabilis, Enterobacter cloacae, Staphylococcus epidermidis, and Listeria monocytogenes exhibiting moderate to high sensitivity (50-100% growth inhibition) whereas Acinetobacter baumannii, Pseudomonas aeruginosa, Klebsiellla pneumoniae, and MRSA strains expressed low sensitivity, as compared to the parent aminoglycoside NEO.
Collapse
Affiliation(s)
| | - Changjun Gong
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Sandra Story
- NUBAD, LLC, Greenville, South Carolina 29605, United States
| | - Nathanael S. Levinson
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | - Adegboyega K. Oyelere
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | - Keith D. Green
- College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536-0596, United States
| | | | - Dev P. Arya
- NUBAD, LLC, Greenville, South Carolina 29605, United States
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
23
|
Padmapriya K, Barthwal R. NMR based structural studies decipher stacking of the alkaloid coralyne to terminal guanines at two different sites in parallel G-quadruplex DNA, [d(TTGGGGT)]4 and [d(TTAGGGT)]4. Biochim Biophys Acta Gen Subj 2017; 1861:37-48. [DOI: 10.1016/j.bbagen.2016.11.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/13/2016] [Accepted: 11/08/2016] [Indexed: 01/15/2023]
|
24
|
Arévalo-Ruiz M, Doria F, Belmonte-Reche E, De Rache A, Campos-Salinas J, Lucas R, Falomir E, Carda M, Pérez-Victoria JM, Mergny JL, Freccero M, Morales JC. Synthesis, Binding Properties, and Differences in Cell Uptake of G-Quadruplex Ligands Based on Carbohydrate Naphthalene Diimide Conjugates. Chemistry 2017; 23:2157-2164. [PMID: 27925323 DOI: 10.1002/chem.201604886] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Indexed: 11/06/2022]
Abstract
The G-quadruplexes (G4s) are currently being explored as therapeutic targets in cancer and other pathologies. Six carbohydrate naphthalene diimide conjugates (carb-NDIs) have been synthesized as G4 ligands to investigate their potential selectivity in G4 binding and cell penetration. Carb-NDIs have shown certain selectivity for G4 structures against DNA duplexes, but different sugar moieties do not induce a preference for a specific G4 topology. Interestingly, when monosaccharides were attached through a short ethylene linker to the NDI scaffold, their cellular uptake was two- to threefold more efficient than that when the sugar was directly attached through its anomeric position. Moreover, a correlation between more efficient cell uptake of these carb-NDIs and their higher toxicity in cancerous cell lines has been observed. Carb-NDIs seem to be mainly translocated into cancer cells through glucose transporters (GLUT), of which GLUT4 plays a major role.
Collapse
Affiliation(s)
- Matilde Arévalo-Ruiz
- Department of Biochemistry and Molecular Pharmacology, Instituto de Parasitología y Biomedicina, CSIC, Parque Tecnológico Ciencias de la Salud, Avenida del Conocimiento, s/n, 18016, Armilla, Granada, Spain
| | - Filippo Doria
- Department of Chemistry, University of Pavia, V.le Taramelli 10, 27100, Pavia, Italy
| | - Efres Belmonte-Reche
- Department of Biochemistry and Molecular Pharmacology, Instituto de Parasitología y Biomedicina, CSIC, Parque Tecnológico Ciencias de la Salud, Avenida del Conocimiento, s/n, 18016, Armilla, Granada, Spain
| | - Aurore De Rache
- Institut Européen de Chimie Biologie (IECB), ARNA Laboratory, Université de Bordeaux, Inserm U1212, CNRS UMR5320, 2, rue Robert Escarpit, Pessac, France
| | - Jenny Campos-Salinas
- Department of Biochemistry and Molecular Pharmacology, Instituto de Parasitología y Biomedicina, CSIC, Parque Tecnológico Ciencias de la Salud, Avenida del Conocimiento, s/n, 18016, Armilla, Granada, Spain
| | - Ricardo Lucas
- Department of Biochemistry and Molecular Pharmacology, Instituto de Parasitología y Biomedicina, CSIC, Parque Tecnológico Ciencias de la Salud, Avenida del Conocimiento, s/n, 18016, Armilla, Granada, Spain
| | - Eva Falomir
- Department of Inorganic and Organic Chemistry, University Jaume I, 12071, Castellón, Spain
| | - Miguel Carda
- Department of Inorganic and Organic Chemistry, University Jaume I, 12071, Castellón, Spain
| | - José María Pérez-Victoria
- Department of Biochemistry and Molecular Pharmacology, Instituto de Parasitología y Biomedicina, CSIC, Parque Tecnológico Ciencias de la Salud, Avenida del Conocimiento, s/n, 18016, Armilla, Granada, Spain
| | - Jean-Louis Mergny
- Institut Européen de Chimie Biologie (IECB), ARNA Laboratory, Université de Bordeaux, Inserm U1212, CNRS UMR5320, 2, rue Robert Escarpit, Pessac, France
| | - Mauro Freccero
- Department of Chemistry, University of Pavia, V.le Taramelli 10, 27100, Pavia, Italy
| | - Juan Carlos Morales
- Department of Biochemistry and Molecular Pharmacology, Instituto de Parasitología y Biomedicina, CSIC, Parque Tecnológico Ciencias de la Salud, Avenida del Conocimiento, s/n, 18016, Armilla, Granada, Spain
| |
Collapse
|
25
|
Ranjan N, Arya DP. Linker dependent intercalation of bisbenzimidazole-aminosugars in an RNA duplex; selectivity in RNA vs. DNA binding. Bioorg Med Chem Lett 2016; 26:5989-5994. [PMID: 27884695 PMCID: PMC6201841 DOI: 10.1016/j.bmcl.2016.10.076] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 10/24/2016] [Accepted: 10/25/2016] [Indexed: 01/08/2023]
Abstract
Neomycin and Hoechst 33258 are two well-known nucleic acid binders that interact with RNA and DNA duplexes with high affinities respectively. In this manuscript, we report that covalent attachment of bisbenzimidazole unit derived from Hoechst 33258 to neomycin leads to intercalative binding of the bisbenzimidazole unit (oriented at 64-74° with respected to the RNA helical axis) in a linker length dependent manner. The dual binding and intercalation of conjugates were supported by thermal denaturation, CD, LD and UV-Vis absorption experiments. These studies highlight the importance of linker length in dual recognition by conjugates, for effective RNA recognition, which can lead to novel ways of recognizing RNA structures. Additionally, the ligand library screens also identify DNA and RNA selective compounds, with compound 9, containing a long linker, showing a 20.3°C change in RNA duplex Tm with only a 13.0°C change in Tm for the corresponding DNA duplex. Significantly, the shorter linker in compound 3 shows almost the reverse trend, a 23.8°C change in DNA Tm, with only a 9.1°C change in Tm for the corresponding RNA duplex.
Collapse
Affiliation(s)
- Nihar Ranjan
- Laboratory of Bioorganic and Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, SC 29634, United States
| | - Dev P Arya
- Laboratory of Bioorganic and Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, SC 29634, United States.
| |
Collapse
|
26
|
Probing A-form DNA: A fluorescent aminosugar probe and dual recognition by anthraquinone-neomycin conjugates. Bioorg Med Chem 2016; 25:1309-1319. [PMID: 28129992 DOI: 10.1016/j.bmc.2016.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/30/2016] [Accepted: 11/01/2016] [Indexed: 12/19/2022]
Abstract
Nucleic acids adopt a broad array of hydrogen-bonded structures that enable their diverse roles in the cell; even the familiar DNA double helix displays subtle architectural nuances that are sequence dependent. While there have been many approaches for recognition of B-form nucleic acids, A-form DNA recognition has lagged behind. Here, using a tight binding fluorescein-neomycin (F-neo) conjugate that can probe the electrostatic environment of A-form DNA major groove, we developed a fluorescent displacement assay to be used as a screen for DNA duplex-binding compounds. As opposed to intercalating dyes that can significantly perturb DNA structure, the groove binding F-neo allows the probing of native DNA conformation. In combination with the assay development and probing of DNA grooves, we also report the synthesis and binding of a series of neomycin-anthraquinone conjugates, two units with a known preference for binding GC rich DNA. The assay can be used to identify duplex DNA-binding compounds, as well as probe structural features of a target DNA duplex, and can easily be scaled up for high throughput screening of compound libraries.
Collapse
|
27
|
Agrawal S, Adholeya A, Deshmukh SK. The Pharmacological Potential of Non-ribosomal Peptides from Marine Sponge and Tunicates. Front Pharmacol 2016; 7:333. [PMID: 27826240 PMCID: PMC5078478 DOI: 10.3389/fphar.2016.00333] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 09/07/2016] [Indexed: 12/18/2022] Open
Abstract
Marine biodiversity is recognized by a wide and unique array of fascinating structures. The complex associations of marine microorganisms, especially with sponges, bryozoans, and tunicates, make it extremely difficult to define the biosynthetic source of marine natural products or to deduce their ecological significance. Marine sponges and tunicates are important source of novel compounds for drug discovery and development. Majority of these compounds are nitrogen containing and belong to non-ribosomal peptide (NRPs) or mixed polyketide-NRP natural products. Several of these peptides are currently under trial for developing new drugs against various disease areas, including inflammatory, cancer, neurodegenerative disorders, and infectious disease. This review features pharmacologically active NRPs from marine sponge and tunicates based on their biological activities.
Collapse
Affiliation(s)
| | | | - Sunil K. Deshmukh
- TERI–Deakin Nano Biotechnology Centre, The Energy and Resources InstituteNew Delhi, India
| |
Collapse
|
28
|
Kumar S, Ranjan N, Kellish P, Gong C, Watkins D, Arya DP. Multivalency in the recognition and antagonism of a HIV TAR RNA-TAT assembly using an aminoglycoside benzimidazole scaffold. Org Biomol Chem 2016; 14:2052-6. [PMID: 26765486 DOI: 10.1039/c5ob02016f] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recognition of RNA by high-affinity binding small molecules is crucial for expanding existing approaches in RNA recognition, and for the development of novel RNA binding drugs. A novel neomycin dimer benzimidazole conjugate 5 (DPA 83) was synthesized by conjugating a neomycin-dimer with a benzimidazole alkyne using click chemistry to target multiple binding sites on HIV TAR RNA. Ligand 5 significantly enhances the thermal stability of HIV TAR RNA and interacts stoichiometrically with HIV TAR RNA with a low nanomolar affinity. 5 displayed enhanced binding compared to its individual building blocks including the neomycin dimer azide and benzimidazole alkyne. In essence, a high affinity multivalent ligand was designed and synthesized to target HIV TAR RNA.
Collapse
Affiliation(s)
- Sunil Kumar
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, SC 29634, USA.
| | - Nihar Ranjan
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, SC 29634, USA. and Nubad LLC, 900 B West Faris Road, Greenville, SC 29630, USA
| | - Patrick Kellish
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, SC 29634, USA.
| | - Changjun Gong
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, SC 29634, USA.
| | | | - Dev P Arya
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, SC 29634, USA.
| |
Collapse
|
29
|
Pradeep TP, Barthwal R. A 4:1 stoichiometric binding and stabilization of mitoxantrone-parallel stranded G-quadruplex complex established by spectroscopy techniques. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 162:106-114. [DOI: 10.1016/j.jphotobiol.2016.06.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 06/10/2016] [Accepted: 06/11/2016] [Indexed: 12/30/2022]
|
30
|
Pradeep TP, Barthwal R. NMR structure of dual site binding of mitoxantrone dimer to opposite grooves of parallel stranded G-quadruplex [d-(TTGGGGT)]4. Biochimie 2016; 128-129:59-69. [DOI: 10.1016/j.biochi.2016.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 07/11/2016] [Indexed: 12/27/2022]
|
31
|
Costa G, Rocca R, Moraca F, Talarico C, Romeo I, Ortuso F, Alcaro S, Artese A. A Comparative Docking Strategy to Identify Polyphenolic Derivatives as Promising Antineoplastic Binders of G-quadruplex DNAc-mycandbcl-2Sequences. Mol Inform 2016; 35:391-402. [DOI: 10.1002/minf.201501040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 05/19/2016] [Indexed: 12/29/2022]
Affiliation(s)
- Giosuè Costa
- Università degli Studi “Magna Graecia” di Catanzaro, Dipartimento di Scienze della Salute; Campus “Salvatore Venuta”, Viale Europa 88100 Catanzaro Italy
| | - Roberta Rocca
- Università degli Studi “Magna Graecia” di Catanzaro, Dipartimento di Scienze della Salute; Campus “Salvatore Venuta”, Viale Europa 88100 Catanzaro Italy
| | - Federica Moraca
- Università degli Studi “Magna Graecia” di Catanzaro, Dipartimento di Scienze della Salute; Campus “Salvatore Venuta”, Viale Europa 88100 Catanzaro Italy
| | - Carmine Talarico
- Università degli Studi “Magna Graecia” di Catanzaro, Dipartimento di Scienze della Salute; Campus “Salvatore Venuta”, Viale Europa 88100 Catanzaro Italy
| | - Isabella Romeo
- Università degli Studi “Magna Graecia” di Catanzaro, Dipartimento di Scienze della Salute; Campus “Salvatore Venuta”, Viale Europa 88100 Catanzaro Italy
| | - Francesco Ortuso
- Università degli Studi “Magna Graecia” di Catanzaro, Dipartimento di Scienze della Salute; Campus “Salvatore Venuta”, Viale Europa 88100 Catanzaro Italy
| | - Stefano Alcaro
- Università degli Studi “Magna Graecia” di Catanzaro, Dipartimento di Scienze della Salute; Campus “Salvatore Venuta”, Viale Europa 88100 Catanzaro Italy
| | - Anna Artese
- Università degli Studi “Magna Graecia” di Catanzaro, Dipartimento di Scienze della Salute; Campus “Salvatore Venuta”, Viale Europa 88100 Catanzaro Italy
| |
Collapse
|
32
|
Maji B, Kumar K, Muniyappa K, Bhattacharya S. New dimeric carbazole-benzimidazole mixed ligands for the stabilization of human telomeric G-quadruplex DNA and as telomerase inhibitors. A remarkable influence of the spacer. Org Biomol Chem 2016; 13:8335-48. [PMID: 26149178 DOI: 10.1039/c5ob00675a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The development of G-quadruplex (G4) DNA binding small molecules has become an important strategy for selectively targeting cancer cells. Herein, we report the design and evolution of a new kind of carbazole-based benzimidazole dimers for their efficient telomerase inhibition activity. Spectroscopic titrations reveal the ligands high affinity toward the G4 DNA with significantly higher selectivity over duplex-DNA. The electrophoretic mobility shift assay shows that the ligands efficiently promote the formation of G4 DNA even at a lower concentration of the stabilizing K(+) ions. The TRAP-LIG assay demonstrates the ligand's potential telomerase inhibition activity and also establishes that the activity proceeds via G4 DNA stabilization. An efficient nuclear internalization of the ligands in several common cancer cells (HeLa, HT1080, and A549) also enabled differentiation between normal HFF cells in co-cultures of cancer and normal ones. The ligands induce significant apoptotic response and antiproliferative activity toward cancer cells selectively when compared to the normal cells.
Collapse
Affiliation(s)
- Basudeb Maji
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, India.
| | | | | | | |
Collapse
|
33
|
Tripathi S, Pradeep TP, Barthwal R. Molecular Recognition of Parallel DNA Quadruplex d(TTAGGGT)4by Mitoxantrone: Binding with 1:2 Stoichiometry Leading to Thermal Stabilization and Telomerase Inhibition. Chembiochem 2016; 17:554-60. [DOI: 10.1002/cbic.201500588] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Indexed: 01/28/2023]
Affiliation(s)
- Sweta Tripathi
- Department of Biotechnology; Indian Institute of Technology Roorkee; Roorkee 247667 India
| | | | - Ritu Barthwal
- Department of Biotechnology; Indian Institute of Technology Roorkee; Roorkee 247667 India
| |
Collapse
|
34
|
Pradeep TP, Tripathi S, Barthwal R. Molecular recognition of parallel quadruplex [d-(TTGGGGT)]4 by mitoxantrone: binding with 1 : 4 stoichiometry leads to telomerase inhibition. RSC Adv 2016. [DOI: 10.1039/c6ra05266e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
NMR and CD studies show that anti-cancer drug mitoxantrone (MTX) binds to parallel G-quadruplex DNA [d-(TTGGGGT)4] as stacked dimer at grooves leading to increase in thermal stabilization of DNA by ~25 °C and inhibits telomerase with IC50 = 2 μM.
Collapse
Affiliation(s)
| | - Sweta Tripathi
- Department of Biotechnology
- Indian Institute of Technology Roorkee
- Roorkee 247667
- India
| | - Ritu Barthwal
- Department of Biotechnology
- Indian Institute of Technology Roorkee
- Roorkee 247667
- India
| |
Collapse
|
35
|
Konda SK, Kelso C, Pumuye PP, Medan J, Sleebs BE, Cutts SM, Phillips DR, Collins JG. Reversible and formaldehyde-mediated covalent binding of a bis-amino mitoxantrone analogue to DNA. Org Biomol Chem 2016; 14:4728-38. [DOI: 10.1039/c6ob00561f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ability of the anthracenedione anticancer drug WEHI-150 to form covalent adducts with DNA, after activation by formaldehyde, has been studied by mass spectrometry, HPLC and NMR spectroscopy.
Collapse
Affiliation(s)
- Shyam K. Konda
- School of Physical
- Environmental and Mathematical Sciences
- University of New South Wales
- Australian Defence Force Academy
- Campbell
| | - Celine Kelso
- School of Chemistry
- University of Wollongong
- Wollongong
- Australia
| | - Paul P. Pumuye
- Biochemistry Department
- La Trobe University
- Bundoora
- Australia
| | - Jelena Medan
- Biochemistry Department
- La Trobe University
- Bundoora
- Australia
- Chemical Biology Division and Infection and Immunity Division
| | - Brad E. Sleebs
- Chemical Biology Division and Infection and Immunity Division
- The Walter and Eliza Hall Institute of Medical Research
- Parkville
- Australia
- Department of Medical Biology
| | | | | | - J. Grant Collins
- School of Physical
- Environmental and Mathematical Sciences
- University of New South Wales
- Australian Defence Force Academy
- Campbell
| |
Collapse
|
36
|
Bera S, Mondal D, Palit S, Schweizer F. Structural modifications of the neomycin class of aminoglycosides. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00079g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review encompasses comprehensive literature on synthetic modification and biological activities of clinically used neomycin-class aminoglycoside antibiotics to alleviate dose-related toxicity and pathogenic resistance.
Collapse
Affiliation(s)
- Smritilekha Bera
- School of Chemical Sciences
- Central University of Gujarat
- Gandhinagar-382030
- India
| | - Dhananjoy Mondal
- School of Chemical Sciences
- Central University of Gujarat
- Gandhinagar-382030
- India
| | - Subhadeep Palit
- Organic and Medicinal Chemistry Division
- CSIR-Indian Institute of Chemical Biology Campus
- Kolkata-700 032
- India
| | - Frank Schweizer
- Department of Chemistry and Medical Microbiology
- University of Manitoba
- Winnipeg
- Canada
| |
Collapse
|
37
|
A pH Sensitive High-Throughput Assay for miRNA Binding of a Peptide-Aminoglycoside (PA) Library. PLoS One 2015; 10:e0144251. [PMID: 26656788 PMCID: PMC4699463 DOI: 10.1371/journal.pone.0144251] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 11/16/2015] [Indexed: 11/19/2022] Open
Abstract
MicroRNAs (miRNA) are small RNAs that have a regulatory role in gene expression. Because of this regulatory role, miRNAs have become a new target for therapeutic compounds. Here, we outline an approach to target specific miRNAs using a high throughput capable assay and a 215 compound peptidic-aminosugar (PA) library. Aminosugars have been shown in a number of recent reports as important lead compounds that bind miRNA. In order to screen for compounds that bind miRNA, we have developed a high throughput displacement assay using a fluorescein-neomycin conjugated molecule (F-neo) as a probe for competitive miRNA binding compounds. We have applied the F-neo assay to four different miRNA constructs and the assay is applicable to most miRNAs, at various stages of processing. The results of the screen were validated by the determination of the IC50 for a select group of compounds from the library. For example, we identified eight compounds that bind to hsa-miR 504 with higher affinity than the parent neomycin. From the F-neo displacement assay we found that the number of binding sites differs for each miRNA, and the binding sites appear to differ both physically and chemically, with different affinity of the compounds resulting from the size of the molecule as well as the chemical structure. Additionally, the affinity of the compounds was dependent on the identity and position of the amino acid position of conjugation and the affinity of the compounds relative to other compounds in the library was miRNA dependent with the introduction of a second amino acid.
Collapse
|
38
|
Chandrika NT, Garneau-Tsodikova S. A review of patents (2011-2015) towards combating resistance to and toxicity of aminoglycosides. MEDCHEMCOMM 2015; 7:50-68. [PMID: 27019689 PMCID: PMC4806794 DOI: 10.1039/c5md00453e] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Since the discovery of the first aminoglycoside (AG), streptomycin, in 1943, these broad-spectrum antibiotics have been extensively used for the treatment of Gram-negative and Gram-positive bacterial infections. The inherent toxicity (ototoxicity and nephrotoxicity) associated with their long-term use as well as the emergence of resistant bacterial strains have limited their usage. Structural modifications of AGs by AG-modifying enzymes, reduced target affinity caused by ribosomal modification, and decrease in their cellular concentration by efflux pumps have resulted in resistance towards AGs. However, the last decade has seen a renewed interest among the scientific community for AGs as exemplified by the recent influx of scientific articles and patents on their therapeutic use. In this review, we use a non-conventional approach to put forth this renaissance on AG development/application by summarizing all patents filed on AGs from 2011-2015 and highlighting some related publications on the most recent work done on AGs to overcome resistance and improving their therapeutic use while reducing ototoxicity and nephrotoxicity. We also present work towards developing amphiphilic AGs for use as fungicides as well as that towards repurposing existing AGs for potential newer applications.
Collapse
Affiliation(s)
- Nishad Thamban Chandrika
- University of Kentucky, Department of Pharmaceutical Sciences, 789 South Limestone Street, Lexington, KY, USA. Fax: 859-257-7585; Tel: 859-218-1686
| | - Sylvie Garneau-Tsodikova
- University of Kentucky, Department of Pharmaceutical Sciences, 789 South Limestone Street, Lexington, KY, USA. Fax: 859-257-7585; Tel: 859-218-1686
| |
Collapse
|
39
|
Paolantoni D, Cantel S, Dumy P, Ulrich S. A dynamic combinatorial approach for identifying side groups that stabilize DNA-templated supramolecular self-assemblies. Int J Mol Sci 2015; 16:3609-25. [PMID: 25667976 PMCID: PMC4346916 DOI: 10.3390/ijms16023609] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 01/16/2015] [Accepted: 01/23/2015] [Indexed: 12/16/2022] Open
Abstract
DNA-templated self-assembly is an emerging strategy for generating functional supramolecular systems, which requires the identification of potent multi-point binding ligands. In this line, we recently showed that bis-functionalized guanidinium compounds can interact with ssDNA and generate a supramolecular complex through the recognition of the phosphodiester backbone of DNA. In order to probe the importance of secondary interactions and to identify side groups that stabilize these DNA-templated self-assemblies, we report herein the implementation of a dynamic combinatorial approach. We used an in situ fragment assembly process based on reductive amination and tested various side groups, including amino acids. The results reveal that aromatic and cationic side groups participate in secondary supramolecular interactions that stabilize the complexes formed with ssDNA.
Collapse
Affiliation(s)
- Delphine Paolantoni
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS-Université de Montpellier, ENSCM, Ecole Nationale Supérieure de Chimie de Montpellier, 8 Rue de l'Ecole Normale, Montpellier Cedex 5 34296, France.
| | - Sonia Cantel
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS-Université de Montpellier, ENSCM, Ecole Nationale Supérieure de Chimie de Montpellier, 8 Rue de l'Ecole Normale, Montpellier Cedex 5 34296, France.
| | - Pascal Dumy
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS-Université de Montpellier, ENSCM, Ecole Nationale Supérieure de Chimie de Montpellier, 8 Rue de l'Ecole Normale, Montpellier Cedex 5 34296, France.
| | - Sébastien Ulrich
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS-Université de Montpellier, ENSCM, Ecole Nationale Supérieure de Chimie de Montpellier, 8 Rue de l'Ecole Normale, Montpellier Cedex 5 34296, France.
| |
Collapse
|
40
|
Xu L, Chen X, Wu J, Wang J, Ji L, Chao H. Dinuclear Ruthenium(II) Complexes That Induce and Stabilise G-Quadruplex DNA. Chemistry 2015; 21:4008-20. [DOI: 10.1002/chem.201405991] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Indexed: 11/08/2022]
|
41
|
Yu HJ, Zhao Y, Mo WJ, Hao ZF, Yu L. Ru-indoloquinoline complex as a selective and effective human telomeric G-quadruplex binder. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 132:84-90. [PMID: 24858349 DOI: 10.1016/j.saa.2014.04.160] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 04/26/2014] [Accepted: 04/28/2014] [Indexed: 06/03/2023]
Abstract
Indoloquinoline and its derivatives have been reported to be a kind of efficient G-quadruplex binder and have been found to interact preferentially to intramolecular G-quadruplex and inhibit telomerase activity in human K562 cells and SW620 cells. In contrast to indoloquinoline derivatives, much less is known about the metal complex based on indoloquinoline or its derivative. In this report, we studied the interaction of ruthenium complex [Ru(bpy)2(itatp)]2+ containing indoloquinoline moiety with human telomeric G-quadruplex DNA (Telo22) and c-myc G-quadruplex DNA (Pu27) by UV-visible (UV-Vis), fluorescence spectroscopy, fluorescent intercalator displacement (FID), thermal denaturation studies and CD spectroscopy. The results suggest that [Ru(bpy)2(itatp)]2+ displays a strong π-π stacking interaction with human telomeric G-quadruplex with a high binding constant (∼10(7) M(-1)), but just exhibits moderate binding affinity to c-myc G-quadruplex, thus showing significant selectivity to human telomeric G-quadruplex. The CD titration results indicate that [Ru(bpy)2(itatp)]2+ could effectively convert Telo22 into antiparallel G-quadruplex conformation, while in the c-myc G-quadruplex case, instead of promoting Pu27 to fold into G-quadruplex, [Ru(bpy)2(itatp)]2+ destroys the parallel G-quadruplex structure of Pu27.
Collapse
Affiliation(s)
- Hui-juan Yu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Ying Zhao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Wei-jie Mo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Zhi-feng Hao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Lin Yu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
42
|
Mirihana Arachchilage G, Morris MJ, Basu S. A library screening approach identifies naturally occurring RNA sequences for a G-quadruplex binding ligand. Chem Commun (Camb) 2014; 50:1250-2. [PMID: 24336356 DOI: 10.1039/c3cc47381c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
An RNA G-quadruplex library was synthesised and screened against kanamycin A as the ligand. Naturally occurring G-quadruplex forming sequences that differentially bind to kanamycin A were identified and characterized. This provides a simple and effective strategy for identification of potential intracellular G-quadruplex targets for a ligand.
Collapse
|
43
|
Maji B, Kumar K, Kaulage M, Muniyappa K, Bhattacharya S. Design and Synthesis of New Benzimidazole–Carbazole Conjugates for the Stabilization of Human Telomeric DNA, Telomerase Inhibition, and Their Selective Action on Cancer Cells. J Med Chem 2014; 57:6973-88. [DOI: 10.1021/jm500427n] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Basudeb Maji
- Department of Organic
Chemistry, Indian Institute of Science, Bangalore, Karnataka 560 012, India
| | - Krishan Kumar
- Department of Organic
Chemistry, Indian Institute of Science, Bangalore, Karnataka 560 012, India
| | - Mangesh Kaulage
- Department of Organic
Chemistry, Indian Institute of Science, Bangalore, Karnataka 560 012, India
- Department
of Biochemistry, Indian Institute of Science, Bangalore, Karnataka 560 012, India
| | - K. Muniyappa
- Department
of Biochemistry, Indian Institute of Science, Bangalore, Karnataka 560 012, India
| | - Santanu Bhattacharya
- Department of Organic
Chemistry, Indian Institute of Science, Bangalore, Karnataka 560 012, India
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, Karnataka 560 012, India
| |
Collapse
|
44
|
Small-molecule quadruplex-targeted drug discovery. Bioorg Med Chem Lett 2014; 24:2602-12. [DOI: 10.1016/j.bmcl.2014.04.029] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/06/2014] [Accepted: 04/08/2014] [Indexed: 01/24/2023]
|
45
|
Willis B, Arya DP. Recognition of RNA duplex by a neomycin–Hoechst 33258 conjugate. Bioorg Med Chem 2014; 22:2327-32. [DOI: 10.1016/j.bmc.2014.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 01/27/2014] [Accepted: 02/06/2014] [Indexed: 01/01/2023]
|
46
|
Maji B, Bhattacharya S. Advances in the molecular design of potential anticancer agents via targeting of human telomeric DNA. Chem Commun (Camb) 2014; 50:6422-38. [DOI: 10.1039/c4cc00611a] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Telomerase is an attractive drug target to develop new generation drugs against cancer.
Collapse
Affiliation(s)
- Basudeb Maji
- Department of Organic Chemistry
- Indian Institute of Science
- Bangalore-560012, India
| | - Santanu Bhattacharya
- Department of Organic Chemistry
- Indian Institute of Science
- Bangalore-560012, India
- Chemical Biology Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
| |
Collapse
|
47
|
Percivalle C, Sissi C, Greco ML, Musetti C, Mariani A, Artese A, Costa G, Perrore ML, Alcaro S, Freccero M. Aryl ethynyl anthraquinones: a useful platform for targeting telomeric G-quadruplex structures. Org Biomol Chem 2014; 12:3744-54. [DOI: 10.1039/c4ob00220b] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
2,7-Diaryl ethynyl anthraquinones have been synthesized by Sonogashira cross-coupling and evaluated as telomeric G-quadruplex ligands, with good G-quadruplex/duplex selectivity.
Collapse
Affiliation(s)
| | - Claudia Sissi
- Department of Pharmaceutical and Pharmacological Sciences
- 35131 Padova, Italy
| | - Maria Laura Greco
- Department of Pharmaceutical and Pharmacological Sciences
- 35131 Padova, Italy
| | - Caterina Musetti
- Department of Pharmaceutical and Pharmacological Sciences
- 35131 Padova, Italy
| | | | - Anna Artese
- Dipartimento di Scienze della Salute
- Universitá di Catanzaro
- 88100 Catanzaro, Italy
| | - Giosuè Costa
- Dipartimento di Scienze della Salute
- Universitá di Catanzaro
- 88100 Catanzaro, Italy
| | | | - Stefano Alcaro
- Dipartimento di Scienze della Salute
- Universitá di Catanzaro
- 88100 Catanzaro, Italy
| | | |
Collapse
|
48
|
Liao G, Chen X, Wu J, Qian C, Wang H, Ji L, Chao H. Novel ruthenium(ii) polypyridyl complexes as G-quadruplex stabilisers and telomerase inhibitors. Dalton Trans 2014; 43:7811-9. [DOI: 10.1039/c3dt53547a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
49
|
The effect of pyridyl substituents on the thermodynamics of porphyrin binding to G-quadruplex DNA. Bioorg Med Chem 2013; 21:7515-22. [DOI: 10.1016/j.bmc.2013.09.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 09/07/2013] [Accepted: 09/14/2013] [Indexed: 11/22/2022]
|
50
|
Targeting C-myc G-quadruplex: dual recognition by aminosugar-bisbenzimidazoles with varying linker lengths. Molecules 2013; 18:14228-40. [PMID: 24252993 PMCID: PMC6270413 DOI: 10.3390/molecules181114228] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 11/04/2013] [Accepted: 11/08/2013] [Indexed: 12/01/2022] Open
Abstract
G-quadruplexes are therapeutically important biological targets. In this report, we present biophysical studies of neomycin-Hoechst 33258 conjugates binding to a G-quadruplex derived from the C-myc promoter sequence. Our studies indicate that conjugation of neomycin to a G-quadruplex binder, Hoechst 33258, enhances its binding. The enhancement in G-quadruplex binding of these conjugates varies with the length and composition of the linkers joining the neomycin and Hoechst 33258 units.
Collapse
|