1
|
Horin I, Slovak S, Cohen Y. Harnessing Pillar[5]arene Host-Guest Complexation To Improve pH Stability and Affect Enzymatic Degradation of the Anticancer Prodrug Capecitabine: A 19 F NMR Study. Chemistry 2023; 29:e202301628. [PMID: 37303257 DOI: 10.1002/chem.202301628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/13/2023]
Abstract
Cancer is a global health problem, and supramolecular chemotherapy is emerging as a novel strategy to battle the disease. Here, we first evaluated the thermodynamic and kinetic stability of the complexes formed between several water-soluble per-substituted pillar[5]arene derivatives and capecitabine (1), a widely used oral chemotherapeutic prodrug. The exchange rate was studied, for the first time in pillararene chemistry, by the 19 F guest exchange saturation transfer (GEST) NMR technique. Importantly, when we evaluated the effect of complexation on the characteristics of 1, we found that the complexation of 1 with such pillar[5]arene hosts increased capecitabine stability at acidic pH very significantly and slowed its enzymatic degradation by the carboxylesterase enzyme in a manner that depended on the host. These interesting findings could have implications on the clinical use of this heavily used prodrug and might affect the management of cancer patients.
Collapse
Affiliation(s)
- Inbar Horin
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 6977801, Tel Aviv, Israel
| | - Sarit Slovak
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 6977801, Tel Aviv, Israel
| | - Yoram Cohen
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 6977801, Tel Aviv, Israel
- Sagol School of Neurosciences, Tel Aviv University, Ramat Aviv, 6977801, Tel Aviv, Israel
| |
Collapse
|
2
|
Saul P, Schröder L, Schmidt AB, Hövener JB. Nanomaterials for hyperpolarized nuclear magnetic resonance and magnetic resonance imaging. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023:e1879. [PMID: 36781151 DOI: 10.1002/wnan.1879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 01/03/2023] [Accepted: 01/07/2023] [Indexed: 02/15/2023]
Abstract
Nanomaterials play an important role in the development and application of hyperpolarized materials for magnetic resonance imaging (MRI). In this context they can not only act as hyperpolarized materials which are directly imaged but also play a role as carriers for hyperpolarized gases and catalysts for para-hydrogen induced polarization (PHIP) to generate hyperpolarized substrates for metabolic imaging. Those three application possibilities are discussed, focusing on carbon-based materials for the directly imaged particles. An overview over recent developments in all three fields is given, including the early developments in each field as well as important steps towards applications in MRI, such as making the initially developed methods more biocompatible and first imaging experiments with spatial resolution in either phantoms or in vivo studies. Focusing on the important features nanomaterials need to display to be applicable in the MRI context, a wide range of different approaches to that extent is covered, giving the reader a general idea of different possibilities as well as recent developments in those different fields of hyperpolarized magnetic resonance. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Philip Saul
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, Kiel University, Kiel, Germany
| | - Leif Schröder
- Division of Translational Molecular Imaging, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany.,Molecular Imaging, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Andreas B Schmidt
- Intergrative Biosciences (Ibio), Department of Chemistry, Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan, USA.,German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Division of Medical Physics, Department of Radiology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, Kiel University, Kiel, Germany
| |
Collapse
|
3
|
Tang ZD, Sun XM, Huang TT, Liu J, Shi B, Yao H, Zhang YM, Wei TB, Lin Q. Pillar[n]arenes-based materials for detection and separation of pesticides. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.07.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Mitschang L, Korchak S, Kilian W, Riemer T. Comprehensive Quantitative and Calibration-Free Evaluation of Hyperpolarized Xenon-Host Interaction by Multiparametric NMR. Anal Chem 2022; 94:2561-2568. [PMID: 35089685 DOI: 10.1021/acs.analchem.1c04482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The probing of microscopic environments by hyperpolarized xenon NMR has spurred investigations in supramolecular chemistry as well as important biosensing and molecular imaging applications. While xenon exchange with host structures at micromolar concentrations and below can be readily detected, a quantitative analysis is limited, requiring complementary experimentation by different methodologies and thus lacking completeness and compromising the validity and comparability of numerical results. Here, a new NMR measurement and data analysis approach is introduced for the comprehensive characterization of the host-xenon binding dynamics. The application of chemical exchange saturation transfer of hyperpolarized 129Xe under parametric modulation of the saturation RF amplitude and xenon gas saturation of the solution enables a delineation of exchange mechanisms and, through modeling, a numerical estimation of the various reaction rate constants (and thus magnetization exchange rate constants), the xenon affinity, and the total host molecule concentration. Only the numerical xenon solubility is additionally required for input, a quantity that has a low impact on the measurement uncertainty and is derivable from metrological data collections. Signal calibration by a reference material may thus be avoided, qualifying the method as calibration-free. For demonstration a xenon exchange with the host cucurbit[6]uril at low concentration is investigated, with the numerical results being validated by standard quantitative NMR data obtained at high concentration. The readiness to evaluate xenon exchange for the one sample at hand and in a single experimental attempt by the proposed method may allow comprehensive quantitative studies in supramolecular chemistry, biomacromolecular structure and dynamics, and sensing.
Collapse
Affiliation(s)
- Lorenz Mitschang
- Physikalisch-Technische Bundesanstalt Braunschweig und Berlin (PTB), Abbestraße 2-12, 10587 Berlin, Germany
| | - Sergey Korchak
- Physikalisch-Technische Bundesanstalt Braunschweig und Berlin (PTB), Abbestraße 2-12, 10587 Berlin, Germany
| | - Wolfgang Kilian
- Physikalisch-Technische Bundesanstalt Braunschweig und Berlin (PTB), Abbestraße 2-12, 10587 Berlin, Germany
| | - Thomas Riemer
- University of Leipzig, Institute of Medical Physics and Biophysics, Medical Department, Härtelstraße 16-18, 04107 Leipzig, Germany
| |
Collapse
|
5
|
Zeng Q, Guo Q, Yuan Y, Wang B, Sui M, Lou X, Bouchard LS, Zhou X. Ultrasensitive molecular building block for biothiol NMR detection at picomolar concentrations. iScience 2021; 24:103515. [PMID: 34934931 PMCID: PMC8661548 DOI: 10.1016/j.isci.2021.103515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/02/2021] [Accepted: 11/22/2021] [Indexed: 10/19/2022] Open
Abstract
Magnetic resonance imaging (MRI) provides structural and functional information, but it did not probe chemistry. Chemical information could help improve specificity of detection. Herein, we introduce a general method based on a modular design to construct a molecular building block Xe probe to help image intracellular biothiols (glutathione (GSH), cysteine (Cys) and homocysteine (Hcy)), the abnormal content of which is related to various diseases. This molecular building block possesses a high signal-to-noise ratio and no background signal effects. Its detection threshold was 100 pM, which enabled detection of intracellular biothiols in live cells. The construction strategy can be easily extended to the detection of any other biomolecule or biomarker. This modular design strategy promotes efficiency of development of low-cost multifunctional probes that can be combined with other readout parameters, such as optical readouts, to complement 129Xe MRI to usher in new capabilities for molecular imaging.
Collapse
Affiliation(s)
- Qingbin Zeng
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qianni Guo
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yaping Yuan
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Baolong Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China
| | - Meiju Sui
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xin Lou
- Department of Radiology, Chinese PLA General Hospital, Beijing 100853, P. R. China
| | - Louis-S. Bouchard
- California Nano Systems Institute, Jonsson Comprehensive Cancer Center, The Molecular Biology Institute, Departments of Chemistry and Biochemistry and of Bioengineering, University of California, Los Angeles 90095, USA
| | - Xin Zhou
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
6
|
Shi C, Li H, Shi X, Zhao L, Qiu H. Chiral pillar[n]arenes: Conformation inversion, material preparation and applications. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.12.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
7
|
Horin I, Shalev O, Cohen Y. Aggregation Mode, Host-Guest Chemistry in Water, and Extraction Capability of an Uncharged, Water-Soluble, Liquid Pillar[5]arene Derivative. ChemistryOpen 2021; 10:1111-1115. [PMID: 34730286 PMCID: PMC8564886 DOI: 10.1002/open.202100206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/10/2021] [Indexed: 11/05/2022] Open
Abstract
An uncharged, water-soluble per-ethylene-glycol pillar[5]arene derivative (1) was synthesized and its aggregation mode, host-guest chemistry in water and extraction ability was explored. Compound 1 is a liquid at room temperature; in water, limited self-aggregation occurred at high concentrations as deduced from diffusion NMR and dynamic light scattering. Compound 1 forms pseudo-rotaxane-like 1 : 1 host-guest complexes with 1,ω-di-substituted alkanes with association constants on the order of 103 -104 m-1 . Interestingly, NMR experiments showed that the guest location relative to the host ring system differs among the different complexes. In proof-of-concept experiments, compound 1 was shown to extract structurally related organic compounds from benzene into water with significant selectivity. Compound 1, which is a liquid at room temperature and has only limited interactions with its side arms, can, in principle, be regarded as a complement to or as a kind of type I porous liquid.
Collapse
Affiliation(s)
- Inbar Horin
- School of Chemistry, Sackler Faculty of Exact SciencesTel Aviv University Ramat Aviv69978Tel AvivIsrael
| | - Ori Shalev
- School of Chemistry, Sackler Faculty of Exact SciencesTel Aviv University Ramat Aviv69978Tel AvivIsrael
| | - Yoram Cohen
- School of Chemistry, Sackler Faculty of Exact SciencesTel Aviv University Ramat Aviv69978Tel AvivIsrael
| |
Collapse
|
8
|
Cohen Y, Slovak S, Avram L. Solution NMR of synthetic cavity containing supramolecular systems: what have we learned on and from? Chem Commun (Camb) 2021; 57:8856-8884. [PMID: 34486595 DOI: 10.1039/d1cc02906a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
NMR has been instrumental in studies of both the structure and dynamics of molecular systems for decades, so it is not surprising that NMR has played a pivotal role in the study of host-guest complexes and supramolecular systems. In this mini-review, selected examples will be used to demonstrate the added value of using (multiparametric) NMR for studying macrocycle-based host-guest and supramolecular systems. We will restrict the discussion to synthetic host systems having a cavity that can engulf their guests thus restricting them into confined spaces. So discussion of selected examples of cavitands, cages, capsules and their complexes, aggregates and polymers as well as organic cages and porous liquids and other porous materials will be used to demonstrate the insights that have been gathered from the extracted NMR parameters when studying such systems emphasizing the information obtained from somewhat less routine NMR methods such as diffusion NMR, diffusion ordered spectroscopy (DOSY) and chemical exchange saturation transfer (CEST) and their variants. These selected examples demonstrate the impact that the results and findings from these NMR studies have had on our understanding of such systems and on the developments in various research fields.
Collapse
Affiliation(s)
- Yoram Cohen
- School of Chemistry, The Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 699781, Tel Aviv, Israel.
| | - Sarit Slovak
- School of Chemistry, The Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 699781, Tel Aviv, Israel.
| | - Liat Avram
- Faculty of Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
9
|
Chen Y, Fu L, Sun B, Qian C, Pangannaya S, Zhu H, Ma J, Jiang J, Ni Z, Wang R, Lu X, Wang L. Selection of Planar Chiral Conformations between Pillar[5,6]arenes Induced by Amino Acid Derivatives in Aqueous Media. Chemistry 2021; 27:5890-5896. [DOI: 10.1002/chem.202004003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Yuan Chen
- Key Laboratory of Mesoscopic Chemistry of MOE Jiangsu, Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Lulu Fu
- Key Laboratory of Mesoscopic Chemistry of MOE Jiangsu, Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Baobao Sun
- Key Laboratory of Mesoscopic Chemistry of MOE Jiangsu, Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Cheng Qian
- Key Laboratory of Mesoscopic Chemistry of MOE Jiangsu, Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Srikala Pangannaya
- Key Laboratory of Mesoscopic Chemistry of MOE Jiangsu, Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Hong Zhu
- Key Laboratory of Mesoscopic Chemistry of MOE Jiangsu, Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Jing Ma
- Key Laboratory of Mesoscopic Chemistry of MOE Jiangsu, Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Juli Jiang
- Key Laboratory of Mesoscopic Chemistry of MOE Jiangsu, Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Zhigang Ni
- College of Materials Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou 311121 P. R. China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences University of Macau Taipa Macau P. R. China
| | - Xiancai Lu
- School of Earth Science and Engineering Nanjing University Nanjing 210023 P. R. China
| | - Leyong Wang
- Key Laboratory of Mesoscopic Chemistry of MOE Jiangsu, Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
- Advanced Materials Institute Qilu University of Technology, (Shandong Academy of Sciences) Jinan 250014 P. R. China
| |
Collapse
|
10
|
Kaizerman-Kane D, Hadar M, Joseph R, Logviniuk D, Zafrani Y, Fridman M, Cohen Y. Design Guidelines for Cationic Pillar[n]arenes that Prevent Biofilm Formation by Gram-Positive Pathogens. ACS Infect Dis 2021; 7:579-585. [PMID: 33657813 PMCID: PMC8041275 DOI: 10.1021/acsinfecdis.0c00662] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
![]()
Bacterial biofilms are a major threat
to human health, causing
persistent infections that lead to millions of fatalities worldwide
every year. Biofilms also cause billions of dollars of damage annually
by interfering with industrial processes. Recently, cationic pillararenes
were found to be potent inhibitors of biofilm formation in Gram-positive
bacteria. To identify the structural features of pillararenes that
result in antibiofilm activity, we evaluated the activity of 16 cationic
pillar[5]arene derivatives including that of the first cationic water-soluble
pillar[5]arene-based rotaxane. Twelve of the derivatives were potent
inhibitors of biofilm formation by Gram-positive pathogens. Structure
activity analyses of our pillararene derivatives indicated that positively
charged head groups are critical for the observed antibiofilm activity.
Although certain changes in the lipophilicity of the substituents
on the positively charged head groups are tolerated, dramatic elevation
in the hydrophobicity of the substituents or an increase in steric
bulk on these positive charges abolishes the antibiofilm activity.
An increase in the overall positive charge from 10 to 20 did not affect
the activity significantly, but pillararenes with 5 positive charges
and 5 long alkyl chains had reduced activity. Surprisingly, the cavity
of the pillar[n]arene is not essential for the observed activity,
although the macrocyclic structure of the pillar[n]arene core, which
facilitates the clustering of the positive charges, appears important.
Interestingly, the compounds found to be efficient inhibitors of biofilm
formation were nonhemolytic at concentrations that are ∼100-fold
of their MBIC50 (the minimal concentration of a compound
at which at least 50% inhibition of biofilm formation was observed
compared to untreated cells). The structure–activity relationship
guidelines established here pave the way for a rational design of
potent cationic pillar[n]arene-based antibiofilm agents.
Collapse
Affiliation(s)
- Dana Kaizerman-Kane
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Maya Hadar
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Roymon Joseph
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Dana Logviniuk
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Yossi Zafrani
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
- Department of Organic Chemistry, Israel Institute for Biological Research, Ness-Ziona 74000, Israel
| | - Micha Fridman
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Yoram Cohen
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| |
Collapse
|
11
|
Kunth M, Witte C, Schröder L. Mapping of Absolute Host Concentration and Exchange Kinetics of Xenon Hyper-CEST MRI Agents. Pharmaceuticals (Basel) 2021; 14:79. [PMID: 33494166 PMCID: PMC7909792 DOI: 10.3390/ph14020079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/11/2021] [Accepted: 01/16/2021] [Indexed: 12/14/2022] Open
Abstract
Xenon magnetic resonance imaging (MRI) provides excellent sensitivity through the combination of spin hyperpolarization and chemical exchange saturation transfer (CEST). To this end, molecular hosts such as cryptophane-A or cucurbit[n]urils provide unique opportunities to design switchable MRI reporters. The concentration determination of such xenon binding sites in samples of unknown dilution remains, however, challenging. Contrary to 1H CEST agents, an internal reference of a certain host (in this case, cryptophane-A) at micromolar concentration is already sufficient to resolve the entire exchange kinetics information, including an unknown host concentration and the xenon spin exchange rate. Fast echo planar imaging (EPI)-based Hyper-CEST MRI in combination with Bloch-McConnell analysis thus allows quantitative insights to compare the performance of different emerging ultra-sensitive MRI reporters.
Collapse
Affiliation(s)
- Martin Kunth
- Molecular Imaging, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Campus Berlin-Buch, Robert-Roessle-Str. 10, 13125 Berlin, Germany;
| | - Christopher Witte
- Molecular Imaging, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Campus Berlin-Buch, Robert-Roessle-Str. 10, 13125 Berlin, Germany;
| | - Leif Schröder
- Molecular Imaging, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Campus Berlin-Buch, Robert-Roessle-Str. 10, 13125 Berlin, Germany;
- Translational Molecular Imaging, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
12
|
Fernando PUI, Shepelytskyi Y, Cesana PT, Wade A, Grynko V, Mendieta AM, Seveney LE, Brown JD, Hane FT, Albert MS, DeBoef B. Decacationic Pillar[5]arene: A New Scaffold for the Development of 129Xe MRI Imaging Agents. ACS OMEGA 2020; 5:27783-27788. [PMID: 33163761 PMCID: PMC7643082 DOI: 10.1021/acsomega.0c02565] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 10/07/2020] [Indexed: 05/16/2023]
Abstract
A decacationic water-soluble pillar[5]arene possessing a nonsolvated hydrophobic core has been designed and synthesized. This supramolecular host is capable of binding xenon, as evidenced by hyperCEST depletion experiments. Fluorescence-based studies also demonstrate that xenon binds into the cavity of the pillararene with an association constant of 4.6 × 103 M-1. These data indicate that the water-soluble pillararene is a potential scaffold for building contrast agents that can be detected by xenon-129 magnetic resonance imaging.
Collapse
Affiliation(s)
- P. U.
Ashvin I. Fernando
- Department
of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
- U.S.
Army Corps of Engineers, Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, Mississippi 39180, United States
| | - Yurii Shepelytskyi
- Department
of Chemistry, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 6V4, Canada
| | - Paul T. Cesana
- Department
of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Alanna Wade
- Department
of Chemistry, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 6V4, Canada
| | - Vira Grynko
- Department
of Chemistry, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 6V4, Canada
| | - Adriana M. Mendieta
- Department
of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Lauren E. Seveney
- Department
of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Joseph D. Brown
- Department
of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
- United
States Coast Guard Academy, 31 Mohegan Avenue, New London, Connecticut 06320, United States
| | - Francis T. Hane
- Thunder
Bay Regional Research Institute, 980 Oliver Road, Thunder
Bay, Ontario P7B 6V4, Canada
| | - Mitchell S. Albert
- Department
of Chemistry, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 6V4, Canada
- Thunder
Bay Regional Research Institute, 980 Oliver Road, Thunder
Bay, Ontario P7B 6V4, Canada
| | - Brenton DeBoef
- Department
of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| |
Collapse
|
13
|
Jayapaul J, Schröder L. Molecular Sensing with Host Systems for Hyperpolarized 129Xe. Molecules 2020; 25:E4627. [PMID: 33050669 PMCID: PMC7587211 DOI: 10.3390/molecules25204627] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/27/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
Hyperpolarized noble gases have been used early on in applications for sensitivity enhanced NMR. 129Xe has been explored for various applications because it can be used beyond the gas-driven examination of void spaces. Its solubility in aqueous solutions and its affinity for hydrophobic binding pockets allows "functionalization" through combination with host structures that bind one or multiple gas atoms. Moreover, the transient nature of gas binding in such hosts allows the combination with another signal enhancement technique, namely chemical exchange saturation transfer (CEST). Different systems have been investigated for implementing various types of so-called Xe biosensors where the gas binds to a targeted host to address molecular markers or to sense biophysical parameters. This review summarizes developments in biosensor design and synthesis for achieving molecular sensing with NMR at unprecedented sensitivity. Aspects regarding Xe exchange kinetics and chemical engineering of various classes of hosts for an efficient build-up of the CEST effect will also be discussed as well as the cavity design of host molecules to identify a pool of bound Xe. The concept is presented in the broader context of reporter design with insights from other modalities that are helpful for advancing the field of Xe biosensors.
Collapse
Affiliation(s)
| | - Leif Schröder
- Molecular Imaging, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany;
| |
Collapse
|
14
|
Hadar M, Kaizerman-Kane D, Zafrani Y, Cohen Y. Temperature-Dependent and pH-Responsive Pillar[5]arene-Based Complexes and Hydrogen-Bond-Based Supramolecular Pentagonal Boxes in Water. Chemistry 2020; 26:11250-11255. [PMID: 32259332 DOI: 10.1002/chem.202000972] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Indexed: 01/02/2023]
Abstract
Supramolecular systems in water are of paramount importance and those based on hydrogen bonds are both intriguing and scarce. Here, after studying the peculiar host-guest complexes formed between per-dimethylamino-pillar[5]arene (1) and the bis-sulfonates 2 a-c, we describe the formation of the first hydrogen-bond-based supramolecular pentagonal boxes (SPBs), which are stable in water. These pH-responsive SPBs are constructed from 1 as a body, benzene polycarboxylic acids 3 a,b as lid compounds, and 2 a-c as guests. We demonstrate that encapsulation of 2 a-c in pillar[5]arene 1 and in the highly stable water-soluble SPBs, that is, 1(3 a)2 and 1(3 b)2 , is both temperature and pH dependent and, quite interestingly, depends, on the nature of the lid compounds used for capping the boxes even at high pH. We also highlight the difference in the 1 H NMR characteristics of 2 b and 2 c in the cavity of 1 and the SPBs.
Collapse
Affiliation(s)
- Maya Hadar
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Dana Kaizerman-Kane
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Yossi Zafrani
- Department of Organic Chemistry, Israel Institute for Biological Research, Ness-Ziona, 74000, Israel
| | - Yoram Cohen
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| |
Collapse
|
15
|
Jayapaul J, Schröder L. Probing Reversible Guest Binding with Hyperpolarized 129Xe-NMR: Characteristics and Applications for Cucurbit[ n]urils. Molecules 2020; 25:E957. [PMID: 32093412 PMCID: PMC7070628 DOI: 10.3390/molecules25040957] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/14/2020] [Accepted: 02/18/2020] [Indexed: 01/01/2023] Open
Abstract
Cucurbit[n]urils (CB[n]s) are a family of macrocyclic host molecules that find various applications in drug delivery, molecular switching, and dye displacement assays. The CB[n]s with n = 5-7 have also been studied with 129Xe-NMR. They bind the noble gas with a large range of exchange rates. Starting with insights from conventional direct detection of bound Xe, this review summarizes recent achievements with chemical exchange saturation transfer (CEST) detection of efficiently exchanging Xe in various CB[n]-based supramolecular systems. Unprecedented sensitivity has been reached by combining the CEST method with hyperpolarized Xe, the production of which is also briefly described. Applications such as displacement assays for enzyme activity detection and rotaxanes as emerging types of Xe biosensors are likewise discussed in the context of biomedical applications and pinpoint future directions for translating this field to preclinical studies.
Collapse
Affiliation(s)
| | - Leif Schröder
- Molecular Imaging, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany;
| |
Collapse
|
16
|
Jayapaul J, Schröder L. Nanoparticle-Based Contrast Agents for 129Xe HyperCEST NMR and MRI Applications. CONTRAST MEDIA & MOLECULAR IMAGING 2019; 2019:9498173. [PMID: 31819739 PMCID: PMC6893250 DOI: 10.1155/2019/9498173] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/15/2019] [Indexed: 02/06/2023]
Abstract
Spin hyperpolarization techniques have enabled important advancements in preclinical and clinical MRI applications to overcome the intrinsic low sensitivity of nuclear magnetic resonance. Functionalized xenon biosensors represent one of these approaches. They combine two amplification strategies, namely, spin exchange optical pumping (SEOP) and chemical exchange saturation transfer (CEST). The latter one requires host structures that reversibly bind the hyperpolarized noble gas. Different nanoparticle approaches have been implemented and have enabled molecular MRI with 129Xe at unprecedented sensitivity. This review gives an overview of the Xe biosensor concept, particularly how different nanoparticles address various critical aspects of gas binding and exchange, spectral dispersion for multiplexing, and targeted reporter delivery. As this concept is emerging into preclinical applications, comprehensive sensor design will be indispensable in translating the outstanding sensitivity potential into biomedical molecular imaging applications.
Collapse
Affiliation(s)
- Jabadurai Jayapaul
- Molecular Imaging, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Leif Schröder
- Molecular Imaging, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| |
Collapse
|
17
|
Kaizerman-Kane D, Hadar M, Tal N, Dobrovetsky R, Zafrani Y, Cohen Y. pH-Responsive Pillar[6]arene-based Water-Soluble Supramolecular Hexagonal Boxes. Angew Chem Int Ed Engl 2019; 58:5302-5306. [PMID: 30786135 DOI: 10.1002/anie.201900217] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/14/2019] [Indexed: 01/08/2023]
Abstract
We describe the preparation of the first water-soluble pH-responsive supramolecular hexagonal boxes (SHBs) based on multiple charge-assisted hydrogen bonds between peramino-pillar[6]arenes 2 with the molecular "lid" mellitic acid (1 a). The interaction between 2 and 1 a, as well as the other "lids" pyromellitic and trimesic acids (1 b and 1 c, respecively) were studied by a combination of experimental and computational methods. Interestingly, the addition of 1 a to the complexes of the protonated form of pillar[6]arene 2, that is, 3, with bis-sulfonate 4 a or 4 b, immediately led to guest escape along with the formation of closed 1 a2 2 supramolecular boxes. Moreover, the process of the openning and closing of the supramolecular boxes along with threading and escaping of the guests, respectively, was found to be reversible and pH-responsive. This study paves the way for the easy and modular preparation of different SHBs that may have myriad applications.
Collapse
Affiliation(s)
- Dana Kaizerman-Kane
- School of Chemistry, Sackler Faculty of Exact sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Maya Hadar
- School of Chemistry, Sackler Faculty of Exact sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Noam Tal
- School of Chemistry, Sackler Faculty of Exact sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Roman Dobrovetsky
- School of Chemistry, Sackler Faculty of Exact sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Yossi Zafrani
- School of Chemistry, Sackler Faculty of Exact sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel.,Department of Organic Chemistry, Israel Institute for Biological Research, Ness-Ziona, 740000, Israel
| | - Yoram Cohen
- School of Chemistry, Sackler Faculty of Exact sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| |
Collapse
|
18
|
Kaizerman‐Kane D, Hadar M, Tal N, Dobrovetsky R, Zafrani Y, Cohen Y. pH‐Responsive Pillar[6]arene‐based Water‐Soluble Supramolecular Hexagonal Boxes. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900217] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Dana Kaizerman‐Kane
- School of ChemistrySackler Faculty of Exact sciencesTel Aviv University Ramat Aviv 69978 Tel Aviv Israel
| | - Maya Hadar
- School of ChemistrySackler Faculty of Exact sciencesTel Aviv University Ramat Aviv 69978 Tel Aviv Israel
| | - Noam Tal
- School of ChemistrySackler Faculty of Exact sciencesTel Aviv University Ramat Aviv 69978 Tel Aviv Israel
| | - Roman Dobrovetsky
- School of ChemistrySackler Faculty of Exact sciencesTel Aviv University Ramat Aviv 69978 Tel Aviv Israel
| | - Yossi Zafrani
- School of ChemistrySackler Faculty of Exact sciencesTel Aviv University Ramat Aviv 69978 Tel Aviv Israel
- Department of Organic ChemistryIsrael Institute for Biological Research Ness-Ziona 740000 Israel
| | - Yoram Cohen
- School of ChemistrySackler Faculty of Exact sciencesTel Aviv University Ramat Aviv 69978 Tel Aviv Israel
| |
Collapse
|
19
|
Da Pian M, Schalley CA, Fabris F, Scarso A. Insights into the synthesis of pillar[5]arene and its conversion into pillar[6]arene. Org Chem Front 2019. [DOI: 10.1039/c9qo00176j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of pillar[5]arenes from p-dialkoxybenzene and formaldehyde in the presence of iron(iii) chloride and tetramethylammonium chloride under mild reaction conditions was investigated in detail.
Collapse
Affiliation(s)
- Marta Da Pian
- Dipartimento di Scienze Molecolari e Nanosistemi
- Università Ca’ Foscari Venezia
- 30172 Venezia Mestre
- Italy
| | - Christoph A. Schalley
- Institut für Chemie und Biochemie
- Organische Chemie
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | - Fabrizio Fabris
- Dipartimento di Scienze Molecolari e Nanosistemi
- Università Ca’ Foscari Venezia
- 30172 Venezia Mestre
- Italy
| | - Alessandro Scarso
- Dipartimento di Scienze Molecolari e Nanosistemi
- Università Ca’ Foscari Venezia
- 30172 Venezia Mestre
- Italy
| |
Collapse
|
20
|
Cohen Y, Slovak S. Diffusion NMR for the characterization, in solution, of supramolecular systems based on calixarenes, resorcinarenes, and other macrocyclic arenes. Org Chem Front 2019. [DOI: 10.1039/c9qo00329k] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The use of diffusion NMR in studying calixarenes and other arene-based supramolecular systems is described, emphasizing the pivotal role played by the calixarene community in transforming the methods into a routine tool used in supramolecular chemistry.
Collapse
Affiliation(s)
- Yoram Cohen
- School of Chemistry
- The Sackler Faculty of Exact Sciences
- Tel Aviv University
- Tel Aviv
- Israel
| | - Sarit Slovak
- School of Chemistry
- The Sackler Faculty of Exact Sciences
- Tel Aviv University
- Tel Aviv
- Israel
| |
Collapse
|
21
|
Kaizerman-Kane D, Hadar M, Granot E, Patolsky F, Zafrani Y, Cohen Y. Shape induced sorting via rim-to-rim complementarity in the formation of pillar[5, 6]arene-based supramolecular organogels. Org Chem Front 2019. [DOI: 10.1039/c9qo00717b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The first two-component rim-to-rim pillar[6]arene-based supramolecular organogels were prepared. Shape complementarity was found to be an important determinant in the formation of such gels which also show shape-induced sorting in their formation.
Collapse
Affiliation(s)
- Dana Kaizerman-Kane
- School of Chemistry
- The Sackler Faculty of Exact Sciences
- Tel Aviv University
- Tel Aviv
- Israel
| | - Maya Hadar
- School of Chemistry
- The Sackler Faculty of Exact Sciences
- Tel Aviv University
- Tel Aviv
- Israel
| | - Eran Granot
- School of Chemistry
- The Sackler Faculty of Exact Sciences
- Tel Aviv University
- Tel Aviv
- Israel
| | - Fernando Patolsky
- School of Chemistry
- The Sackler Faculty of Exact Sciences
- Tel Aviv University
- Tel Aviv
- Israel
| | - Yossi Zafrani
- School of Chemistry
- The Sackler Faculty of Exact Sciences
- Tel Aviv University
- Tel Aviv
- Israel
| | - Yoram Cohen
- School of Chemistry
- The Sackler Faculty of Exact Sciences
- Tel Aviv University
- Tel Aviv
- Israel
| |
Collapse
|
22
|
Shu X, Xu K, Hou D, Li C. Molecular Recognition of Water-soluble Pillar[n
]arenes Towards Biomolecules and Drugs. Isr J Chem 2018. [DOI: 10.1002/ijch.201800115] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xiaoyan Shu
- School of Life Science and Engineering; Southwest University of Science and Technology; Mianyang 621010 Sichuan P. R. China
- Department of Chemistry; Center for Supramolecular Chemistry and Catalysis; Shanghai University; Shanghai 200444 P. R. China
| | - Kaidi Xu
- Department of Chemistry; Center for Supramolecular Chemistry and Catalysis; Shanghai University; Shanghai 200444 P. R. China
| | - Dabin Hou
- School of Life Science and Engineering; Southwest University of Science and Technology; Mianyang 621010 Sichuan P. R. China
| | - Chunju Li
- School of Life Science and Engineering; Southwest University of Science and Technology; Mianyang 621010 Sichuan P. R. China
- Department of Chemistry; Center for Supramolecular Chemistry and Catalysis; Shanghai University; Shanghai 200444 P. R. China
| |
Collapse
|
23
|
Schnurr M, Joseph R, Naugolny-Keisar A, Kaizerman-Kane D, Bogdanoff N, Schuenke P, Cohen Y, Schröder L. High Exchange Rate Complexes of 129 Xe with Water-Soluble Pillar[5]arenes for Adjustable Magnetization Transfer MRI. Chemphyschem 2018; 20:246-251. [PMID: 30079552 DOI: 10.1002/cphc.201800618] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Indexed: 01/16/2023]
Abstract
Macrocyclic host structures for generating transiently bound 129 Xe have been used in various ultra-sensitive NMR and MRI applications for molecular sensing of biochemical analytes. They are based on hyperpolarized nuclei chemical exchange saturation transfer (Hyper-CEST). Here, we tested a set of water-soluble pillar[5]arenes with different counterions in order to compare their potential contrast agent abilities with that of cryptophane-A (CrA), the most widely used host for such purposes. The exchange of Xe with such compounds was found to be sensitive to the type of ions present in solution and can be used for switchable magnetization transfer (MT) contrast that arises from off-resonant pre-saturation. We demonstrate that the adjustable MT magnitude depends on the interplay of saturation parameters and found that the optimum MT contrast surpasses the CrA CEST performance at moderate saturation power. Since modification of such water-soluble pillar[5]arenes is straightforward, these compounds can be considered a promising platform for designing various sensors that may complement the field of Xe HyperCEST-based biosensing MRI.
Collapse
Affiliation(s)
- Matthias Schnurr
- Molecular Imaging, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Roymon Joseph
- School of Chemistry, The Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel
| | - Alissa Naugolny-Keisar
- School of Chemistry, The Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel
| | - Dana Kaizerman-Kane
- School of Chemistry, The Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel
| | - Nils Bogdanoff
- Molecular Imaging, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Patrick Schuenke
- Molecular Imaging, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Yoram Cohen
- School of Chemistry, The Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel
| | - Leif Schröder
- Molecular Imaging, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| |
Collapse
|
24
|
Zafrani Y, Kaizerman D, Hadar M, Bigan N, Granot E, Ghosh M, Adler-Abramovich L, Patolsky F, Cohen Y. Pillararene-Based Two-Component Thixotropic Supramolecular Organogels: Complementarity and Multivalency as Prominent Motifs. Chemistry 2018; 24:15750-15755. [PMID: 29745993 DOI: 10.1002/chem.201801418] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/09/2018] [Indexed: 02/05/2023]
Abstract
Rationally designed two-component supramolecular organogels based on multiple chemical interactions between percarboxylato- and peramino-pillararenes are described. Mixing low concentration solutions (<1 % w/v) of decacarboxylato-pillar[5]arene (1) with decaamino-pillar[5]arenes (2 b-d) affords, rapidly and without heating, organogels displaying an exceptional combination of properties. These supramolecular organogels, the characteristics of which are tunable, were found to be thixotropic and thermally stable, with Tgel values in some cases exceeding the boiling point of the embedded solvent. It is demonstrated that both structural complementarity and multivalency are important determinants in the gelation process of these attractive soft materials.
Collapse
Affiliation(s)
- Yossi Zafrani
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel.,Department of Organic Chemistry, Israel Institute for Biological Research, Ness-Ziona, 740000, Israel
| | - Dana Kaizerman
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Maya Hadar
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Nitzan Bigan
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Eran Granot
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Moumita Ghosh
- Department of Oral Biology, Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Lihi Adler-Abramovich
- Department of Oral Biology, Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Fernando Patolsky
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Yoram Cohen
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| |
Collapse
|
25
|
Affiliation(s)
- Peter J. Cragg
- School of Pharmacy and Biomolecular Sciences; University of Brighton, Huxley Building, Moulsecoomb.; Brighton East Sussex BN2 4GJ UK
| |
Collapse
|
26
|
Sathiyajith C, Shaikh RR, Han Q, Zhang Y, Meguellati K, Yang YW. Biological and related applications of pillar[n]arenes. Chem Commun (Camb) 2018; 53:677-696. [PMID: 27942626 DOI: 10.1039/c6cc08967d] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pillar[n]arenes are a new class of synthetic supramolecular macrocycles streamlined by their particular pillar-shaped architecture which consists of an electron-rich cavity and two fine-tuneable rims. The ease and diversity of the functionalization of the two rims open possibilities for the design of new architectures, topological isomers, and scaffolds. Significantly, this emerging class of macrocyclic receptors offers a unique platform for biological purposes. This review article covers the most recent contributions from the pillar[n]arene field in terms of artificial membrane transport systems, controlled drug delivery systems, biomedical imaging, biosensors, cell adhesion, fluorescent sensing, and pesticide detection based on host-guest interactions. The review also uniquely describes the properties of sub-units that make pillar[n]arenes suitable for biological applications and it provides a detailed outline for the design of new innovative pillar-like structures with specific properties to open up a new avenue for pillar[n]arene chemistry.
Collapse
Affiliation(s)
- CuhaWijay Sathiyajith
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Rafik Rajjak Shaikh
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Qian Han
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Yue Zhang
- The First Clinical College, Harbin Medical University, 23 Youzheng Street, Harbin, 150001, P. R. China.
| | - Kamel Meguellati
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Ying-Wei Yang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| |
Collapse
|
27
|
Hane FT, Fernando A, Prete BRJ, Peloquin B, Karas S, Chaudhuri S, Chahal S, Shepelytskyi Y, Wade A, Li T, DeBoef B, Albert MS. Cyclodextrin-Based Pseudorotaxanes: Easily Conjugatable Scaffolds for Synthesizing Hyperpolarized Xenon-129 Magnetic Resonance Imaging Agents. ACS OMEGA 2018; 3:677-681. [PMID: 31457922 PMCID: PMC6641221 DOI: 10.1021/acsomega.7b01744] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/04/2018] [Indexed: 05/28/2023]
Abstract
Hyperpolarized (HP) xenon-129 (Xe) magnetic resonance (MR) imaging has the potential to detect biological analytes with high sensitivity and high resolution when coupled with xenon-encapsulating molecular probes. Despite the development of numerous HP Xe probes, one of the challenges that has hampered the translation of these agents from in vitro demonstration to in vivo testing is the difficulty in synthesizing the Xe-encapsulating cage molecule. In this study, we demonstrate that a pseudorotaxane, based on a γ-cyclodextrin macrocycle, is easily synthesized in one step and is detectable using HyperCEST-enhanced 129Xe MR spectroscopy.
Collapse
Affiliation(s)
- Francis T. Hane
- Department
of Chemistry, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
- Thunder
Bay Regional Research Institute, 980 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
| | - Ashvin Fernando
- Department
of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Braedan R. J. Prete
- Department
of Chemistry, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
| | - Brianna Peloquin
- Department
of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Scott Karas
- Department
of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Sauradip Chaudhuri
- Department
of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Simrun Chahal
- Department
of Chemistry, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
| | - Yurii Shepelytskyi
- Department
of Chemistry, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
| | - Alanna Wade
- Department
of Chemistry, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
| | - Tao Li
- Department
of Chemistry, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
| | - Brenton DeBoef
- Department
of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Mitchell S. Albert
- Department
of Chemistry, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
- Thunder
Bay Regional Research Institute, 980 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
| |
Collapse
|
28
|
Mari E, Berthault P. 129Xe NMR-based sensors: biological applications and recent methods. Analyst 2017; 142:3298-3308. [DOI: 10.1039/c7an01088e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Molecular systems that target analytes of interest and host spin-hyperpolarized xenon lead to powerful 129Xe NMR-based sensors.
Collapse
Affiliation(s)
- E. Mari
- NIMBE
- CEA
- CNRS
- Université de Paris Saclay
- CEA Saclay
| | - P. Berthault
- NIMBE
- CEA
- CNRS
- Université de Paris Saclay
- CEA Saclay
| |
Collapse
|
29
|
Ogoshi T, Yamagishi TA, Nakamoto Y. Pillar-Shaped Macrocyclic Hosts Pillar[n]arenes: New Key Players for Supramolecular Chemistry. Chem Rev 2016; 116:7937-8002. [PMID: 27337002 DOI: 10.1021/acs.chemrev.5b00765] [Citation(s) in RCA: 992] [Impact Index Per Article: 110.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In 2008, we reported a new class of pillar-shaped macrocyclic hosts, known as "pillar[n]arenes". Today, pillar[n]arenes are recognized as key players in supramolecular chemistry because of their facile synthesis, unique pillar shape, versatile functionality, interesting host-guest properties, and original supramolecular assembly characteristics, which have resulted in numerous electrochemical and biomedical material applications. In this Review, we have provided historical background to macrocyclic chemistry, followed by a detailed discussion of the fundamental properties of pillar[n]arenes, including their synthesis, structure, and host-guest properties. Furthermore, we have discussed the applications of pillar[n]arenes to materials science, as well as their applications in supramolecular chemistry, in terms of their fundamental properties. Finally, we have described the future perspectives of pillar[n]arene chemistry. We hope that this Review will provide a useful reference for researchers working in the field and inspire discoveries concerning pillar[n]arene chemistry.
Collapse
Affiliation(s)
- Tomoki Ogoshi
- Graduate School of Natural Science and Technology, Kanazawa University , Kakuma-machi, Kanazawa 920-1192, Japan.,Japan Science and Technology Agency, PRESTO , 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Tada-Aki Yamagishi
- Graduate School of Natural Science and Technology, Kanazawa University , Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yoshiaki Nakamoto
- Graduate School of Natural Science and Technology, Kanazawa University , Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
30
|
Yang S, Jiang W, Ren L, Yuan Y, Zhang B, Luo Q, Guo Q, Bouchard LS, Liu M, Zhou X. Biothiol Xenon MRI Sensor Based on Thiol-Addition Reaction. Anal Chem 2016; 88:5835-40. [DOI: 10.1021/acs.analchem.6b00403] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Shengjun Yang
- Key
Laboratory of Magnetic Resonance in Biological Systems, State Key
Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Weiping Jiang
- Key
Laboratory of Magnetic Resonance in Biological Systems, State Key
Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Lili Ren
- Key
Laboratory of Magnetic Resonance in Biological Systems, State Key
Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yaping Yuan
- Key
Laboratory of Magnetic Resonance in Biological Systems, State Key
Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Bin Zhang
- Key
Laboratory of Magnetic Resonance in Biological Systems, State Key
Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Qing Luo
- Key
Laboratory of Magnetic Resonance in Biological Systems, State Key
Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Qianni Guo
- Key
Laboratory of Magnetic Resonance in Biological Systems, State Key
Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Louis-S. Bouchard
- Department
of Chemistry and Biochemistry, California NanoSystems Institute, The
Molecular Biology Institute, University of California, Los Angeles, California 90095, United States
| | - Maili Liu
- Key
Laboratory of Magnetic Resonance in Biological Systems, State Key
Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xin Zhou
- Key
Laboratory of Magnetic Resonance in Biological Systems, State Key
Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| |
Collapse
|
31
|
Joseph R, Naugolny A, Feldman M, Herzog IM, Fridman M, Cohen Y. Cationic Pillararenes Potently Inhibit Biofilm Formation without Affecting Bacterial Growth and Viability. J Am Chem Soc 2016; 138:754-7. [PMID: 26745311 DOI: 10.1021/jacs.5b11834] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
It is estimated that up to 80% of bacterial infections are accompanied by biofilm formation. Since bacteria in biofilms are less susceptible to antibiotics than are bacteria in the planktonic state, biofilm-associated infections pose a major health threat, and there is a pressing need for antibiofilm agents. Here we report that water-soluble cationic pillararenes differing in the quaternary ammonium groups efficiently inhibited the formation of biofilms by clinically important Gram-positive pathogens. Biofilm inhibition did not result from antimicrobial activity; thus, the compounds should not inhibit growth of natural bacterial flora. Moreover, none of the cationic pillararenes caused detectable membrane damage to red blood cells or toxicity to human cells in culture. The results indicate that cationic pillararenes have potential for use in medical applications in which biofilm formation is a problem.
Collapse
Affiliation(s)
- Roymon Joseph
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University , Tel Aviv 69978, Israel
| | - Alissa Naugolny
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University , Tel Aviv 69978, Israel
| | - Mark Feldman
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University , Tel Aviv 69978, Israel
| | - Ido M Herzog
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University , Tel Aviv 69978, Israel
| | - Micha Fridman
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University , Tel Aviv 69978, Israel
| | - Yoram Cohen
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University , Tel Aviv 69978, Israel
| |
Collapse
|
32
|
Li C, Wu L, Chen L, Yuan X, Cai Y, Feng W, Liu N, Ren Y, Sengupta A, Murali MS, Mohapatra PK, Tao G, Zeng H, Ding S, Yuan L. Highly efficient extraction of actinides with pillar[5]arene-derived diglycolamides in ionic liquids via a unique mechanism involving competitive host–guest interactions. Dalton Trans 2016; 45:19299-19310. [DOI: 10.1039/c6dt04229e] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel extraction mechanism is described.
Collapse
|
33
|
Wang Y, Ping G, Li C. Efficient complexation between pillar[5]arenes and neutral guests: from host–guest chemistry to functional materials. Chem Commun (Camb) 2016; 52:9858-72. [DOI: 10.1039/c6cc03999e] [Citation(s) in RCA: 223] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This feature article covers the molecular recognition of pillar[5]arenes and neutral guests, and its application in making supramolecular structures, polymers and functional materials.
Collapse
Affiliation(s)
- Yiliang Wang
- Department of Chemistry
- Shanghai University
- Shanghai
- P. R. China
| | - Guchuan Ping
- Department of Chemistry
- Shanghai University
- Shanghai
- P. R. China
| | - Chunju Li
- Department of Chemistry
- Shanghai University
- Shanghai
- P. R. China
| |
Collapse
|
34
|
Ma Y, Chen L, Li C, Müllen K. A fishing rod-like conjugated polymer bearing pillar[5]arenes. Chem Commun (Camb) 2016; 52:6662-4. [DOI: 10.1039/c6cc02059c] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A novel diethynyl functionalized pillar[5]arene, that is a pentabenzenacyclodecaphane derivative, has been synthesized and polymerized with p-dihalobenzene to form a fishing rod-like conjugated polymer, where one of the benzenes in the pillar[5]arene rings is incorporated into a poly(arylene ethynylene) backbone.
Collapse
Affiliation(s)
- Yingjie Ma
- Max Planck Institute for Polymer Research
- 55128 Mainz
- Germany
| | - Long Chen
- Department of Chemistry
- School of Science
- Tianjin University
- 300072 Tianjin
- People's Republic of China
| | - Chen Li
- Max Planck Institute for Polymer Research
- 55128 Mainz
- Germany
| | - Klaus Müllen
- Max Planck Institute for Polymer Research
- 55128 Mainz
- Germany
| |
Collapse
|
35
|
Joseph R, Kaizerman D, Herzog IM, Hadar M, Feldman M, Fridman M, Cohen Y. Phosphonium pillar[5]arenes as a new class of efficient biofilm inhibitors: importance of charge cooperativity and the pillar platform. Chem Commun (Camb) 2016; 52:10656-9. [DOI: 10.1039/c6cc05170g] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Inhibition of biofilm formation (MBIC50 = 0.67–1.66 μM) by pillar[5]arene congugates.
Collapse
Affiliation(s)
- Roymon Joseph
- School of Chemistry
- Raymond and Beverly Sackler Faculty of Exact Sciences
- Tel Aviv University
- Tel Aviv 69978
- Israel
| | - Dana Kaizerman
- School of Chemistry
- Raymond and Beverly Sackler Faculty of Exact Sciences
- Tel Aviv University
- Tel Aviv 69978
- Israel
| | - Ido M. Herzog
- School of Chemistry
- Raymond and Beverly Sackler Faculty of Exact Sciences
- Tel Aviv University
- Tel Aviv 69978
- Israel
| | - Maya Hadar
- School of Chemistry
- Raymond and Beverly Sackler Faculty of Exact Sciences
- Tel Aviv University
- Tel Aviv 69978
- Israel
| | - Mark Feldman
- School of Chemistry
- Raymond and Beverly Sackler Faculty of Exact Sciences
- Tel Aviv University
- Tel Aviv 69978
- Israel
| | - Micha Fridman
- School of Chemistry
- Raymond and Beverly Sackler Faculty of Exact Sciences
- Tel Aviv University
- Tel Aviv 69978
- Israel
| | - Yoram Cohen
- School of Chemistry
- Raymond and Beverly Sackler Faculty of Exact Sciences
- Tel Aviv University
- Tel Aviv 69978
- Israel
| |
Collapse
|
36
|
Ye F, Wei R, Wang L, Meier H, Cao D. A pillar[5]arene-containing cross-linked polymer: synthesis, characterization and adsorption of dihaloalkanes and n-alkylene dinitriles. RSC Adv 2016. [DOI: 10.1039/c6ra15728a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A pillar[5]arene-containing cross-linked polymer was synthesized and utilized to adsorb dihaloalkanes and n-alkylene dinitriles.
Collapse
Affiliation(s)
- Fengqing Ye
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou 510641
- China
| | - Ruijin Wei
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou 510641
- China
| | - Lingyun Wang
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou 510641
- China
| | - Herbert Meier
- Institute of Organic Chemistry
- University of Mainz
- Mainz 55099
- Germany
| | - Derong Cao
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou 510641
- China
| |
Collapse
|
37
|
Schnurr M, Sloniec-Myszk J, Döpfert J, Schröder L, Hennig A. Supramolecular Assays for Mapping Enzyme Activity by Displacement-Triggered Change in Hyperpolarized (129)Xe Magnetization Transfer NMR Spectroscopy. Angew Chem Int Ed Engl 2015; 54:13444-7. [PMID: 26426128 DOI: 10.1002/anie.201507002] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Indexed: 12/26/2022]
Abstract
Reversibly bound Xe is a sensitive NMR and MRI reporter with its resonance frequency being influenced by the chemical environment of the host. Molecular imaging of enzyme activity presents a promising approach for disease identification, but current Xe biosensing concepts are limited since substrate conversion typically has little impact on the chemical shift of Xe inside tailored cavities. Herein, we exploit the ability of the product of the enzymatic reaction to bind itself to the macrocyclic hosts CB6 and CB7 and thereby displace Xe. We demonstrate the suitability of this method to map areas of enzyme activity through changes in magnetization transfer with hyperpolarized Xe under different saturation scenarios.
Collapse
Affiliation(s)
- Matthias Schnurr
- ERC Project BiosensorImaging, Leibniz-Institut für Molekulare Pharmakologie (FMP), Campus BerlinBuch, Robert-Rössle-Strasse 10, 13125 Berlin (Germany)
| | - Jagoda Sloniec-Myszk
- BAM Bundesanstalt für Materialforschung und -prüfung, Richard-Willstätter-Strasse 11, 12489 Berlin (Germany)
| | - Jörg Döpfert
- ERC Project BiosensorImaging, Leibniz-Institut für Molekulare Pharmakologie (FMP), Campus BerlinBuch, Robert-Rössle-Strasse 10, 13125 Berlin (Germany)
| | - Leif Schröder
- ERC Project BiosensorImaging, Leibniz-Institut für Molekulare Pharmakologie (FMP), Campus BerlinBuch, Robert-Rössle-Strasse 10, 13125 Berlin (Germany).
| | - Andreas Hennig
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759 Bremen (Germany).
| |
Collapse
|
38
|
Schnurr M, Sloniec‐Myszk J, Döpfert J, Schröder L, Hennig A. Supramolekulare Assays zur Lokalisation von Enzymaktivität durch Verdrängungs‐induzierte Änderungen in der Magnetisierungstransfer‐NMR‐Spektroskopie mit hyperpolarisiertem
129
Xe. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201507002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Matthias Schnurr
- ERC Project BiosensorImaging, Leibniz‐Institut für Molekulare Pharmakologie (FMP), Campus Berlin‐Buch, Robert‐Rössle‐Straße 10, 13125 Berlin (Deutschland)
| | - Jagoda Sloniec‐Myszk
- BAM Bundesanstalt für Materialforschung und ‐prüfung, Richard‐Willstätter‐Straße 11, 12489 Berlin (Deutschland)
| | - Jörg Döpfert
- ERC Project BiosensorImaging, Leibniz‐Institut für Molekulare Pharmakologie (FMP), Campus Berlin‐Buch, Robert‐Rössle‐Straße 10, 13125 Berlin (Deutschland)
| | - Leif Schröder
- ERC Project BiosensorImaging, Leibniz‐Institut für Molekulare Pharmakologie (FMP), Campus Berlin‐Buch, Robert‐Rössle‐Straße 10, 13125 Berlin (Deutschland)
| | - Andreas Hennig
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759 Bremen (Deutschland)
| |
Collapse
|
39
|
Kunth M, Witte C, Hennig A, Schröder L. Identification, classification, and signal amplification capabilities of high-turnover gas binding hosts in ultra-sensitive NMR. Chem Sci 2015; 6:6069-6075. [PMID: 30090222 PMCID: PMC6055117 DOI: 10.1039/c5sc01400j] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/05/2015] [Indexed: 12/20/2022] Open
Abstract
Nuclear Magnetic Resonance (NMR) can be a powerful tool for investigating exchange kinetics of host-guest interactions in solution. Beyond conventional direct NMR detection, radiofrequency (RF) saturation transfer can be used to enhance the study of such chemical exchange or to enable signal amplification from a dilute host. However, systems that are both dilute and labile (fast dissociation/re-association) impose specific challenges to direct as well as saturation transfer detection. Here we investigate host-guest systems under previously inaccessible conditions using saturation transfer techniques in combination with hyperpolarized nuclei and quantitative evaluation under different RF exposure. We further use that information to illustrate the consequences for signal amplification capabilities and correct interpretation of observed signal contrast from comparative exchange data of different types of hosts. In particular, we compare binding of xenon (Xe) to cucurbit[6]uril (CB6) with binding to cryptophane-A monoacid (CrA) in water as two different model systems. The Xe complexation with CB6 is extremely difficult to access by conventional NMR due to its low water solubility. We successfully quantified the exchange kinetics of this system and found that the absence of Xe signals related to encapsulated Xe in conventional hyperpolarized 129Xe NMR is due to line broadening and not due to low binding. By introducing a measure for the gas turnover during constant association-dissociation, we demonstrate that the signal amplification from a dilute pool of CB6 can turn this host into a very powerful contrast agent for Xe MRI applications (100-fold more efficient than cryptophane). However, labile systems only provide improved signal amplification for suitable saturation conditions and otherwise become disadvantageous. The method is applicable to many hosts where Xe is a suitable spy nucleus to probe for non-covalent interactions and should foster reinvestigation of several systems to delineate true absence of interaction from labile complex formation.
Collapse
Affiliation(s)
- Martin Kunth
- ERC Project BiosensorImaging , Leibniz-Institut für Molekulare Pharmakologie (FMP) , 13125 Berlin , Germany . ; Tel: +49 30 947 93 121
| | - Christopher Witte
- ERC Project BiosensorImaging , Leibniz-Institut für Molekulare Pharmakologie (FMP) , 13125 Berlin , Germany . ; Tel: +49 30 947 93 121
| | - Andreas Hennig
- Jacobs University Bremen , Department of Life Sciences and Chemistry , Campus Ring 1 , 28759 Bremen , Germany
| | - Leif Schröder
- ERC Project BiosensorImaging , Leibniz-Institut für Molekulare Pharmakologie (FMP) , 13125 Berlin , Germany . ; Tel: +49 30 947 93 121
| |
Collapse
|
40
|
Li C. Pillararene-based supramolecular polymers: from molecular recognition to polymeric aggregates. Chem Commun (Camb) 2015; 50:12420-33. [PMID: 25033095 DOI: 10.1039/c4cc03170a] [Citation(s) in RCA: 341] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Pillar[n]arenes (P[n]As) and their derivatives, consisting of (substituted) hydroquinone units linked by methylene bridges at para-positions, are new type of cyclophane hosts developed in 2008. Their intrinsic characteristics and properties, such as facile preparation and flexible modification, symmetrical and columnar architectures, very rigid and π-rich cavities, as well as intriguing and peculiar guest complexation capability, make them ideal building blocks for the fabrication of polymeric supramolecules. This Feature Article provides an overview of the construction of pillararene-based supramolecular polymers and covers recent research endeavors of the marriage between pillararene-based host-guest pairs and polymeric aggregates. These polymers are classified into two major classes according to the different types of guest species: (1) supramolecular polymers relying on pillararene-based cationic guest recognition; (2) supramolecular polymers relying on pillararene-based neutral guest recognition. The host-guest motifs, building strategies, topological architectures, stimuli-responsiveness and functionalities are comprehensively discussed.
Collapse
Affiliation(s)
- Chunju Li
- Department of Chemistry, Shanghai University, Shanghai, 200444, P. R. China.
| |
Collapse
|
41
|
Zhou T, Song N, Yu H, Yang YW. Pillar[5,6]arene-functionalized silicon dioxide: synthesis, characterization, and adsorption of herbicide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:1454-1461. [PMID: 25557460 DOI: 10.1021/la5050199] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A layer of synthetic supramolecular macrocycles, that is, perhydroxyl-pillar[5]arene and perhydroxyl-pillar[6]arene, has been covalently attached to hydrophilic silica supports through Si-O-Si linkages with a coverage of up to 250 μmol pillar[5,6]arenes/g to form novel absorbent hybrid materials. Their adsorption toward a typical herbicide, namely, paraquat, from its aqueous solution has been investigated. Kinetic studies disclosed that paraquat adsorption fits a first-order kinetic model. Equilibrium adsorption data could be explained very well by the Langmuir equation. The pillar[6]arene-modified materials showed more obvious adsorption as compared with pillar[5]arene-modified ones and the saturation adsorption quantity reached about 0.20 mmol of paraquat per gram of materials. The entire process of adsorption was endothermic, and significantly an elevated temperature led to an increase in the adsorption quantity. This new type of pillarene-based adsorbent materials can be considered as a potential adsorbent for harmful substances removal from wastewaters.
Collapse
Affiliation(s)
- Ting Zhou
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, Jilin University , 2699 Qianjin Street, Changchun 130012, P. R. China
| | | | | | | |
Collapse
|
42
|
Qi Z, Achazi K, Haag R, Dong S, Schalley CA. Supramolecular hydrophobic guest transport system based on pillar[5]arene. Chem Commun (Camb) 2015; 51:10326-9. [DOI: 10.1039/c5cc03955j] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A pillar[5]arene-based bioactive guest loading system was developed, which increased the solubility of norharmane in aqueous medium.
Collapse
Affiliation(s)
- Zhenhui Qi
- Institut für Chemie und Biochemie
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | - Katharina Achazi
- Institut für Chemie und Biochemie
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | - Rainer Haag
- Institut für Chemie und Biochemie
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | - Shengyi Dong
- Institut für Chemie und Biochemie
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | | |
Collapse
|
43
|
Song N, Chen DX, Xia MC, Qiu XL, Ma K, Xu B, Tian W, Yang YW. Supramolecular assembly-induced yellow emission of 9,10-distyrylanthracene bridged bis(pillar[5]arene)s. Chem Commun (Camb) 2015; 51:5526-9. [DOI: 10.1039/c4cc08205b] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Newly synthesized DSA-bridged bis(pillar[5]arene)s with AIE properties form linear supramolecular polymers upon binding to a neutral guest linker, exhibiting supramolecular assembly-induced yellow fluorescence emission.
Collapse
Affiliation(s)
- Nan Song
- State Key Laboratory of Supramolecular Structure and Materials
- International Joint Research Laboratory of Nano-Macro Architecture Chemistry (NMAC)
- College of Chemistry
- Jilin University
- Changchun
| | - Dai-Xiong Chen
- State Key Laboratory of Supramolecular Structure and Materials
- International Joint Research Laboratory of Nano-Macro Architecture Chemistry (NMAC)
- College of Chemistry
- Jilin University
- Changchun
| | - Meng-Chan Xia
- State Key Laboratory of Supramolecular Structure and Materials
- International Joint Research Laboratory of Nano-Macro Architecture Chemistry (NMAC)
- College of Chemistry
- Jilin University
- Changchun
| | - Xi-Long Qiu
- State Key Laboratory of Supramolecular Structure and Materials
- International Joint Research Laboratory of Nano-Macro Architecture Chemistry (NMAC)
- College of Chemistry
- Jilin University
- Changchun
| | - Ke Ma
- State Key Laboratory of Supramolecular Structure and Materials
- International Joint Research Laboratory of Nano-Macro Architecture Chemistry (NMAC)
- College of Chemistry
- Jilin University
- Changchun
| | - Bin Xu
- State Key Laboratory of Supramolecular Structure and Materials
- International Joint Research Laboratory of Nano-Macro Architecture Chemistry (NMAC)
- College of Chemistry
- Jilin University
- Changchun
| | - Wenjing Tian
- State Key Laboratory of Supramolecular Structure and Materials
- International Joint Research Laboratory of Nano-Macro Architecture Chemistry (NMAC)
- College of Chemistry
- Jilin University
- Changchun
| | - Ying-Wei Yang
- State Key Laboratory of Supramolecular Structure and Materials
- International Joint Research Laboratory of Nano-Macro Architecture Chemistry (NMAC)
- College of Chemistry
- Jilin University
- Changchun
| |
Collapse
|
44
|
Santra S, Kovalev IS, Kopchuk DS, Zyryanov GV, Majee A, Charushin VN, Chupakhin ON. Role of polar solvents for the synthesis of pillar[6]arenes. RSC Adv 2015. [DOI: 10.1039/c5ra19569a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An efficient procedure for the synthesis of pillar[6]arenes has been developed.
Collapse
Affiliation(s)
- S. Santra
- Ural Federal University
- Chemical Engineering Institute
- Yekaterinburg
- Russian Federation
| | - I. S. Kovalev
- Ural Federal University
- Chemical Engineering Institute
- Yekaterinburg
- Russian Federation
| | - D. S. Kopchuk
- Ural Federal University
- Chemical Engineering Institute
- Yekaterinburg
- Russian Federation
- I. Ya. Postovskiy Institute of Organic Synthesis
| | - G. V. Zyryanov
- Ural Federal University
- Chemical Engineering Institute
- Yekaterinburg
- Russian Federation
- I. Ya. Postovskiy Institute of Organic Synthesis
| | - A. Majee
- Department of Chemistry
- Visva-Bharati (A Central University)
- Santiniketan-731235
- India
| | - V. N. Charushin
- Ural Federal University
- Chemical Engineering Institute
- Yekaterinburg
- Russian Federation
- I. Ya. Postovskiy Institute of Organic Synthesis
| | - O. N. Chupakhin
- Ural Federal University
- Chemical Engineering Institute
- Yekaterinburg
- Russian Federation
- I. Ya. Postovskiy Institute of Organic Synthesis
| |
Collapse
|
45
|
Li H, Chen Q, Schönbeck C, Han BH. Sugar-functionalized water-soluble pillar[5]arene and its host–guest interaction with fullerene. RSC Adv 2015. [DOI: 10.1039/c4ra07523d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The host–guest interaction between a neutral water-soluble pillar[5]arene containing ten sugar moieties and C60 was investigated.
Collapse
Affiliation(s)
- Hui Li
- National Center for Nanoscience and Technology
- Beijing 100190
- China
| | - Qi Chen
- National Center for Nanoscience and Technology
- Beijing 100190
- China
| | - Christian Schönbeck
- National Center for Nanoscience and Technology
- Beijing 100190
- China
- Department of Chemistry
- University of Copenhagen
| | - Bao-Hang Han
- National Center for Nanoscience and Technology
- Beijing 100190
- China
| |
Collapse
|
46
|
Tan LL, Li H, Tao Y, Zhang SXA, Wang B, Yang YW. Pillar[5]arene-based supramolecular organic frameworks for highly selective CO2-capture at ambient conditions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:7027-7031. [PMID: 25070149 DOI: 10.1002/adma.201401672] [Citation(s) in RCA: 189] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 06/25/2014] [Indexed: 06/03/2023]
Abstract
Low-density, solid-state, porous supramolecular organic frameworks are constructed using pillarenes. The frameworks have a honeycomb-like structure, permanent porosity, high thermal stability, and selective and reversible sorption properties toward CO2. The exceptionally selective CO2-sorption properties (375/1, 339/1) of one framework over N2 and CH4 indicate potential applications in CO2-capture for post-combustion power plants and natural gas sweetening.
Collapse
Affiliation(s)
- Li-Li Tan
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P.R. China
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
Macrocyclic chemistry has relied on the dominance of some key cavitands, including cyclodextrins, calixarenes, cyclophanes, and cucurbiturils, to advance the field of host-guest science. Very few of the many other cavitands introduced by chemists during these past few decades have been developed to near the extent of these four key players. A relatively new family of macrocycles that are becoming increasingly dominant in the field of macrocyclic chemistry are the pillar[n]arenes composed of n hydroquinone rings connected in their 2- and 5-positions by methylene bridges. This substitution pattern creates a cylindrical or pillar-like structure that has identical upper and lower rims. The preparation of pillar[n]arenes is facile, with pillar[5]- through pillar[7]arene being readily accessible and the larger macrocycles (n = 8-14) being accessible in diminishing yields. The rigid pillar[n]arene cavities are highly π-electron-rich on account of the n activated aromatic faces pointing toward their centers, allowing the cavities to interact strongly with a range of π-electron-deficient guests including pyridiniums, alkylammoniums, and imidazoliums. The substitution pattern of pillar[n]arenes bestows chirality onto the macrocycle in the form of n chiral planes. The absolute configuration of the chiral planes in pillar[n]arenes can be either fixed or rapidly undergoing inversion. The future of pillar[n]arenes is going to be dependent on their ability to fulfill specific applications. Chemical modification of the parent pillar[n]arenes lets us create functionalized hosts with anticipated chemical or physical properties. The featured potential applications of pillar[n]arenes to date are far reaching and include novel hosts with relevance to nanotechnology, materials science, and medicine. Pillar[n]arenes have an overwhelming advantage over other hosts since the number of ways available to incorporate handles into their structures are diverse and easy to implement. In this Account, we describe the routes to chemically modified pillar[n]arenes by discussing the chemistry of their functionalization: monofunctionalization, difunctionalization, rim differentiation, perfunctionalization, and phenylene substitution. We assess the synthetic complications of employing these functionalization procedures and survey the potential applications and novel properties that arise with these functionalized pillar[n]arenes. We also highlight the challenges and the synthetic approaches that have yet to be fully explored for the selective chemical modification of these hosts. Finally, we examine a related class of macrocycles and consider their future applications. We trust that this Account will stimulate the development of new methods for functionalizing these novel hosts to realize pillar[n]arene-containing compounds capable of finding applications.
Collapse
Affiliation(s)
- Nathan L. Strutt
- Department of Chemistry, Northwestern University, 2145 Sheridan
Road, Evanston, Illinois 60201-3113, United States
| | - Huacheng Zhang
- Department of Chemistry, Northwestern University, 2145 Sheridan
Road, Evanston, Illinois 60201-3113, United States
| | - Severin T. Schneebeli
- Department of Chemistry, Northwestern University, 2145 Sheridan
Road, Evanston, Illinois 60201-3113, United States
| | - J. Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan
Road, Evanston, Illinois 60201-3113, United States
| |
Collapse
|
48
|
|
49
|
|
50
|
Zhou T, Yu H, Liu M, Yang YW. Carboxylatopillarene-Modified Reduced Graphene Oxides with High Water Dispersibility for Fluorescent Dye Sensing. CHINESE J CHEM 2014. [DOI: 10.1002/cjoc.201400238] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|