Purbia R, Paria S. Yolk/shell nanoparticles: classifications, synthesis, properties, and applications.
NANOSCALE 2015;
7:19789-873. [PMID:
26567966 DOI:
10.1039/c5nr04729c]
[Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Core/shell nanoparticles were first reported in the early 1990s with a simple spherical core and shell structure, but the area is gradually diversifying in multiple directions such as different shapes, multishells, yolk/shell etc., because of the development of different new properties of the materials, which are useful for several advanced applications. Among different sub-areas of core/shell nanoparticles, yolk/shell nanoparticles (YS NPs) have drawn significant attention in recent years because of their unique properties such as low density, large surface area, ease of interior core functionalization, a good molecular loading capacity in the void space, tunable interstitial void space, and a hollow outer shell. The YS NPs have better properties over simple core/shell or hollow NPs in various fields including biomedical, catalysis, sensors, lithium batteries, adsorbents, DSSCs, microwave absorbers etc., mainly because of the presence of free void space, porous hollow shell, and free core surface. This review presents an extensive classification of YS NPs based on their structures and types of materials, along with synthesis strategies, properties, and applications with which one would be able to draw a complete picture of this area.
Collapse