1
|
Huang C, Liu R, Ding Y, Zhao L, Zhu Z, Li Q, Jiang D, Wu Y, Yu X, Ding S, Gao X, Zhu R. Template-assembly activation of primer exchange reaction for on-site and sensitive detection of copper ions in blood. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 330:125702. [PMID: 39793253 DOI: 10.1016/j.saa.2025.125702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/01/2025] [Accepted: 01/02/2025] [Indexed: 01/13/2025]
Abstract
The sensitive and accurate detection of copper ions is crucial for public health, medical research, and environmental monitoring. In this study, we developed a sensor based on template-assembly activation of the primer exchange reaction (PER) for the on-site detection of copper ions in blood. Copper ions triggered the assembly of two template fragments into a hairpin structure via a click-chemistry reaction, activating the PER. Polymerase then repeatedly guided the polymerization of multiple primers along the assembled PER template, generating amplified products containing G-triplex sequences. These G-triplex structures specifically enhanced the fluorescence of thioflavin T and exhibited peroxidase-like activity, serving as dual-functional signal reporters for both fluorescence and colorimetric outputs. The sensor effectively amplified a single copper ion signal into multiple G-triplex signals, achieving high sensitivity with detection limits of 68.5 nM in fluorescence mode and 70.4 nM in colorimetric mode. The system also demonstrated strong selectivity, due to the high specificity of the click-chemistry reaction for copper ions. The dual-mode detection minimized false signals and improved accuracy through cross-verification. Additionally, both fluorescence and colorimetric signals were easily measurable without complex instrumentation, enabling flexible application. The method was successfully applied to blood samples, showcasing its robust performance. This sensor offers a promising alternative for copper ion detection with broad potential applications in public health, medical research, and environmental monitoring.
Collapse
Affiliation(s)
- Chao Huang
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China; Department of Pharmacy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, PR China
| | - Rui Liu
- Nanchang Center for Disease Control and Prevention, Nanchang, PR China; Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250000, PR China
| | - Yue Ding
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| | - Linlin Zhao
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250000, PR China
| | - Zongmin Zhu
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China; Department of Pharmacy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, PR China
| | - Qiyan Li
- Shandong Institute for Food and Drug Control, Shandong Research Center of Engineering and Technology for Safety Inspection of Food and Drug, Jinan 250101, PR China
| | - Dafeng Jiang
- Shandong Academy of Preventive Medicine, Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan 250001, PR China
| | - Yuxin Wu
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250000, PR China
| | - Xuemei Yu
- Rizhao Hospital of Traditional Chinese Medicine, Rizhao 276800, PR China
| | - Shengyong Ding
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China; Department of Pharmacy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, PR China.
| | - Xibao Gao
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250000, PR China.
| | - Riran Zhu
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China; Department of Pharmacy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, PR China.
| |
Collapse
|
2
|
Das MK, Williams EP, Myhre MW, David WM, Kerwin SM. Calcium-Dependent Chemiluminescence Catalyzed by a Truncated c-MYC Promoter G-Triplex DNA. Molecules 2024; 29:4457. [PMID: 39339453 PMCID: PMC11434422 DOI: 10.3390/molecules29184457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
The dynamic landscape of non-canonical DNA G-quadruplex (G4) folding into G-triplex intermediates has led to the study of G-triplex structures and their ability to serve as peroxidase-mimetic DNAzymes. Here we report the formation, stability, and catalytic activity of a 5'-truncated c-MYC promoter region G-triplex, c-MYC-G3. Through circular dichroism, we demonstrated that c-MYC-G3 adopts a stable, parallel-stranded G-triplex conformation. The chemiluminescent oxidation of luminol by the peroxidase mimicking DNAzyme activity of c-MYC-G3 was increased in the presence of Ca2+ ions. We utilized surface plasmon resonance to characterize both c-MYC-G3 G-triplex formation and its interaction with hemin. The detailed study of c-MYC-G3 and its ability to form a G-triplex structure and its DNAzyme activity identifies issues that can be addressed in future G-triplex DNAzyme designs.
Collapse
Affiliation(s)
- Malay Kumar Das
- Materials Science, Engineering, and Commercialization Program, Texas State University, San Marcos, TX 78666, USA;
| | - Elizabeth P. Williams
- Department of Chemistry & Biochemistry, Texas State University, San Marcos, TX 78666, USA; (E.P.W.); (M.W.M.); (W.M.D.)
| | - Mitchell W. Myhre
- Department of Chemistry & Biochemistry, Texas State University, San Marcos, TX 78666, USA; (E.P.W.); (M.W.M.); (W.M.D.)
| | - Wendi M. David
- Department of Chemistry & Biochemistry, Texas State University, San Marcos, TX 78666, USA; (E.P.W.); (M.W.M.); (W.M.D.)
| | - Sean M. Kerwin
- Materials Science, Engineering, and Commercialization Program, Texas State University, San Marcos, TX 78666, USA;
- Department of Chemistry & Biochemistry, Texas State University, San Marcos, TX 78666, USA; (E.P.W.); (M.W.M.); (W.M.D.)
| |
Collapse
|
3
|
Pang L, Wang L, Liang Y, Wang Z, Zhang W, Zhao Q, Yang X, Jiang Y. G-triplex/hemin DNAzyme mediated colorimetric aptasensor for Escherichia coli O157:H7 detection based on exonuclease III-assisted amplification and aptamers-functionalized magnetic beads. Talanta 2024; 269:125457. [PMID: 38039678 DOI: 10.1016/j.talanta.2023.125457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 09/25/2023] [Accepted: 11/20/2023] [Indexed: 12/03/2023]
Abstract
Escherichia coli O157: H7 (E. coli O157: H7) is one of the most common foodborne pathogens and is widespread in food and the environment. Thus, it is significant for rapidly detecting E. coli O157: H7. In this study, a colorimetric aptasensor based on aptamer-functionalized magnetic beads, exonuclease III (Exo III), and G-triplex/hemin was proposed for the detection of E. coli O157: H7. The functional hairpin HP was designed in the system, which includes two parts of a stem containing the G-triplex sequence and a tail complementary to cDNA. E. coli O157: H7 competed to bind the aptamer (Apt) in the Apt-cDNA complex to obtain cDNA. The cDNA then bound to the tail of HP to trigger Exo III digestion and release the single-stranded DNA containing the G-triplex sequence. G-triplex/hemin DNAzyme could catalyze TMB to produce visible color changes and detectable absorbance signals in the presence of H2O2. Based on the optimal conditions, E. coli O157: H7 could be detected down to 1.3 × 103 CFU/mL, with a wide linear range from 1.3 × 103 to 1.3 × 107 CFU/mL. This method had a distinguished ability to non-target bacteria, which showed good specificity. In addition, the system was successfully applied to detect E. coli O157: H7 in milk samples.
Collapse
Affiliation(s)
- Lidong Pang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Ling'e Wang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yaqi Liang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Zhenghui Wang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Wei Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Qianyu Zhao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Xinyan Yang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
4
|
Construction of a novel "self-regenerative" electrochemical biosensor based on metal-organic frameworks and its application to the detection of Mycoplasma ovine pneumonia. Bioelectrochemistry 2023; 152:108409. [PMID: 36898345 DOI: 10.1016/j.bioelechem.2023.108409] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/07/2023]
Abstract
This study aimed to prepare a novel "self-regenerative" electrochemical biosensor by successively modifying gold nanoparticles, four-arm polyethylene glycol-NH2, and NH2-MIL-53 (Al) (MOF) on the glassy carbon electrode interface. A hairpin G-triplex-mediated DNA (G3 probe) as a part of the mycoplasma ovine pneumonia (MO) gene was loosely adsorbed to MOF. Based on the mechanism of hybridization induction, the G3 probe could effectively detach from the MOF only after introducing the target DNA. Subsequently, its guanine-rich nucleic acid sequences were exposed to solution of methylene blue. As a result, the diffusion current of the sensor system showed a sharp decline. The developed biosensor showed excellent selectivity, and the concentration of target DNA exhibited a good correlation in the range 10-10 to 10-6 M with a detection limit of 1.00 pM (S/N = 3), even in 10% goat serum. Most interestingly, this biosensor interface automatically started the regeneration program. Moreover, regeneration could be effectively achieved at least seven times, and the recovery rate of the electrode interface and sensing efficiency was up to 90%. Additionally, this platform could be used for other clinical assays in various systems by simply changing the DNA sequence of the probe.
Collapse
|
5
|
Wu M, Yang B, Shi L, Tang Q, Wang J, Liu W, Li B, Jin Y. Peroxidase-Mimicking DNAzymes as Receptors for Label-Free Discriminating Heavy Metal Ions by Chemiluminescence Sensor Arrays. Anal Chem 2023; 95:3486-3492. [PMID: 36733985 DOI: 10.1021/acs.analchem.2c05447] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Receptors are crucial to the analytical performance of sensor arrays. Different from the previous receptors in sensor arrays, herein, peroxidase-mimicking DNAzymes were innovatively used as receptors to develop a label-free chemiluminescence sensor array for discriminating various heavy metal ions in complex samples. The peroxidase-mimicking DNAzymes are composed of functional oligonucleotides and hemin, including G-triplex-hemin DNAzyme (G3-DNAzyme), G-quadruplex-hemin DNAzyme (G4-DNAzyme), and the dimer of G-quadruplex-hemin DNAzyme (dG4-DNAzyme). Circular dichroism (CD) spectroscopy demonstrated that different metal ions diversely affect the conformation of G-quadruplex and G-triplex, resulting in a change in the activity of peroxidase-mimicking DNAzyme. Thus, the unique fingerprints formed to easily discriminate seven kinds of heavy metal ions by principal component analysis (PCA) within 20 min. The discrimination of unknown metal ions in tap water further confirmed its ability for discriminating multiple heavy metal ions. Moreover, it will not bring water pollution due to the good biocompatibility of DNA. Therefore, it not only merely offers a label-free, rapid, environment-friendly, and cheap (1.49 $) sensor assay for discriminating metal ions but also comes up with an innovative way for developing sensor arrays.
Collapse
Affiliation(s)
- Mengmeng Wu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Bing Yang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Lu Shi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Qiaorong Tang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Jing Wang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Wei Liu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Baoxin Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Yan Jin
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
6
|
Qin S, Chen X, Xu Z, Li T, Zhao S, Hu R, Zhu J, Li Y, Yang Y, Liu M. Telomere G-triplex lights up Thioflavin T for RNA detection: new wine in an old bottle. Anal Bioanal Chem 2022; 414:6149-6156. [PMID: 35725832 PMCID: PMC9208972 DOI: 10.1007/s00216-022-04180-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/06/2022] [Accepted: 06/13/2022] [Indexed: 02/07/2023]
Abstract
Few reports are found working on the features and functions of the human telomere G-triplex (ht-G3) though the telomere G-quadruplex has been intensely studied and widely implemented to develop various biosensors. We herein report that ht-G3 lights up Thioflavin T (ThT) and establish a sensitive biosensing platform for RNA detection by introducing a target recycling strategy. An optimal condition was selected out for ht-G3 to promote ThT to generate a strong fluorescence. Accordingly, an ht-G3-based molecular beacon was successfully designed against the corresponding RNA sequence of the SARS-CoV-2 N-gene. The sensitivity for the non-amplified RNA target achieves 0.01 nM, improved 100 times over the conventional ThT-based method. We believe this ht-G3/ThT-based label-free strategy could be widely applied for RNA detection.
Collapse
Affiliation(s)
- Shanshan Qin
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology - Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Xuliang Chen
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhichen Xu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology - Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Tao Li
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology - Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Shuhong Zhao
- University of Chinese Academy of Sciences, Beijing, 10049, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Rui Hu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology - Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Jiang Zhu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology - Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Ying Li
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology - Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan, 430071, China.
- University of Chinese Academy of Sciences, Beijing, 10049, China.
| | - Yunhuang Yang
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology - Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan, 430071, China.
- University of Chinese Academy of Sciences, Beijing, 10049, China.
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology - Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 10049, China
| |
Collapse
|
7
|
Li Q, Peng S, Chang Y, Yang M, Wang D, Zhou X, Shao Y. A G-triplex-Based Label-Free Fluorescence Switching Platform for the Specific Recognition of Chromium Species. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Huang Y, Wang C, Wei Q, Song Y, Chen P, Wang L, Yang X, Chen X. A sensitive aptasensor based on rolling circle amplification and G-rich ssDNA/terbium (III) luminescence enhancement for ofloxacin detection in food. Talanta 2021; 235:122783. [PMID: 34517641 DOI: 10.1016/j.talanta.2021.122783] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/10/2021] [Accepted: 08/02/2021] [Indexed: 11/24/2022]
Abstract
As the light-harvesting "antenna", G-rich oligonucleotides (such as the G-quadruplex) can interact with lanthanide (III) to bring a luminescent enhancement response. In this study, phenomenon of luminescent enhancement of G-triplex/terbium (III) (G3/Tb3+) and interaction between G3 and Tb3+ were first reported and characterized. Based on G3/Tb3+ luminescence, a label-free aptasensor for the detection of ofloxacin (OFL) residues in the food was developed. The OFL triggered the action of rolling circle amplification (RCA) allowed for the amplification product of G3-forming sequences in the single-stranded DNA, which promoted the conformational transition of the G3/Tb3+ complexes once the addition of Tb3+. Under the optimal conditions, the logarithmic correlation between the G3/Tb3+ luminescence intensity and the concentration of OFL was found to be linear in the range of 5-1000 pmol L-1 (R2 = 0.9949). The limit of detection was 0.18 pmol L-1 (3σ/slope). Additionally, the good recoveries of 90.19-108.89 % and the relative standard deviations values of 0.59-5.87 % were obtained in the application of the aptasensor detecting OFL in the practical samples. These results confirmed that the present aptasensor has a good analytical performance and bright prospect for detecting ofloxacin residues in food.
Collapse
Affiliation(s)
- Yukun Huang
- School of Food and Biological Engineering, Xihua University, Chengdu, 610039, China; Key Laboratory of Food Non Thermal Processing, Engineering Technology Research Center of Food Non Thermal Processing, Yibin Xihua University Research Institute, Yibin, Sichuan, 644004, China.
| | - Chong Wang
- School of Food and Biological Engineering, Xihua University, Chengdu, 610039, China
| | - Qiming Wei
- School of Food and Biological Engineering, Xihua University, Chengdu, 610039, China
| | - Yaning Song
- School of Food and Biological Engineering, Xihua University, Chengdu, 610039, China
| | - Pengfei Chen
- School of Food and Biological Engineering, Xihua University, Chengdu, 610039, China
| | - Lijun Wang
- School of Food and Biological Engineering, Xihua University, Chengdu, 610039, China
| | - Xiao Yang
- School of Food and Biological Engineering, Xihua University, Chengdu, 610039, China
| | - Xianggui Chen
- School of Food and Biological Engineering, Xihua University, Chengdu, 610039, China; Key Laboratory of Food Non Thermal Processing, Engineering Technology Research Center of Food Non Thermal Processing, Yibin Xihua University Research Institute, Yibin, Sichuan, 644004, China.
| |
Collapse
|
9
|
Gao H, Peng S, Yan C, Zhang Q, Zheng X, Yang T, Wang D, Zhou X, Shao Y. Stimuli-Responsive and Reversible Nanoassemblies of G-Triplexes. Chembiochem 2021; 23:e202100587. [PMID: 34796597 DOI: 10.1002/cbic.202100587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Indexed: 11/06/2022]
Abstract
G-triplex (G3) structures formed with three consecutive G-tracts have recently been identified as a new emerging guanine-rich DNA fold. There could likely be a wide range of biological functions for G3s as occurring for G-quadruplex (G4) structures formed with four consecutive G-tracts. However, in comparison to the many reports on G4 nanoassemblies that organize monomers together in a controllable manner, G3-favored nanoassemblies have yet to be explored. In this work, we found that a natural alkaloid of sanguinarine can serve as a dynamic ligand glue to reversibly switch the dimeric nanoassemblies of the thrombin binding aptamer G3 (TBA-G3). The glue planarity was considered to be a crucial factor for realizing this switching. More importantly, external stimuli including pH, sulfite, O2 and H2 O2 can be employed as common regulators to easily modulate the glue's adhesivity for constructing and destructing the G3 nanoassemblies as a result of the ligand converting between isoforms. However, this assembly behavior does not occur with the counterpart TBA-G4. Our work demonstrates that higher-order G3 nanoassemblies can be reversibly operated by manipulating ligand adhesivity. This provides an alternative understanding of the unique behavior of guanine-rich sequences and focuses attention on the G3 fold since the nanoassembly event investigated herein might occur in living cells.
Collapse
Affiliation(s)
- Heng Gao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Zhejiang, Jinhua, 321004, P. R. China
| | - Shuzhen Peng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Zhejiang, Jinhua, 321004, P. R. China
| | - Chenxiao Yan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Zhejiang, Jinhua, 321004, P. R. China
| | - Qingqing Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Zhejiang, Jinhua, 321004, P. R. China
| | - Xiong Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Zhejiang, Jinhua, 321004, P. R. China
| | - Tong Yang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Zhejiang, Jinhua, 321004, P. R. China
| | - Dandan Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Zhejiang, Jinhua, 321004, P. R. China
| | - Xiaoshun Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Zhejiang, Jinhua, 321004, P. R. China
| | - Yong Shao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Zhejiang, Jinhua, 321004, P. R. China
| |
Collapse
|
10
|
Li T, Hu R, Xia J, Xu Z, Chen D, Xi J, Liu BF, Zhu J, Li Y, Yang Y, Liu M. G-triplex: A new type of CRISPR-Cas12a reporter enabling highly sensitive nucleic acid detection. Biosens Bioelectron 2021; 187:113292. [PMID: 33991961 DOI: 10.1016/j.bios.2021.113292] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/19/2021] [Accepted: 04/27/2021] [Indexed: 12/20/2022]
Abstract
CRISPR-Cas12a (Cpf1) trans-cleaves ssDNA and this feature has been widely harnessed for nucleic acid detection. Herein, we introduce a new type of Cas12a reporter, G-triplex (G3), and a highly sensitive biosensor termed G-CRISPR. We proved that Cas12a trans-cleaves G3 structures in about 10 min and G3 can serve as an excellent reporter based on the cleavage-induced high-order structure disruption. G3 reporter improves the analytical sensitivity up to 20 folds, enabling the detection of unamplified and amplified DNA as low as 50 pmol and 0.1 amol (one copy/reaction), respectively. G-CRISPR has been utilized for the analysis of 27 PCR-amplified patient samples with HPV infection risk based on both fluorescence and lateral flow assays, resulting in 100% concordance between the two. In comparison with the clinical results, it achieved overall specificity and sensitivity of 100% and 94.7%, respectively. These results suggest that G-CRISPR can serve as a rapid, sensitive, and reliable biosensor, and could further expand the CRISPR toolbox in biomedical diagnostics.
Collapse
Affiliation(s)
- Tao Li
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan National Laboratory for Optoelectronics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Rui Hu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan National Laboratory for Optoelectronics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Jianbo Xia
- Department of Laboratory Medicine, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430070, China
| | - Zhichen Xu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan National Laboratory for Optoelectronics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Dongjuan Chen
- Department of Laboratory Medicine, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430070, China
| | - Jinou Xi
- Department of Laboratory Medicine, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430070, China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jiang Zhu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan National Laboratory for Optoelectronics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Ying Li
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan National Laboratory for Optoelectronics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 10049, China.
| | - Yunhuang Yang
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan National Laboratory for Optoelectronics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan National Laboratory for Optoelectronics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 10049, China.
| |
Collapse
|
11
|
Gao C, Che B, Dai H. A new G-triplex-based strategy for sensitivity enhancement of the detection of endonuclease activity and inhibition. RSC Adv 2021; 11:28008-28013. [PMID: 35480740 PMCID: PMC9037997 DOI: 10.1039/d1ra04203c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/14/2021] [Indexed: 01/09/2023] Open
Abstract
EcoRI is an important biomacromolecule in live cells and protects bacterial cells against foreign DNA. In this work, we developed a simple and convenient G-triplex (G3) (5′-TGGGAAGGGAGGGAATTCCCT-3′)-based colorimetric assay for the rapid and selective detection of EcoRI activity and inhibition. The sequence specifically responds to EcoRI in the presence of K+ and hemin to form a G-triplex/hemin complex. Taking advantage of G-triplex, EcoRI activity was investigated under the optimized conditions. The absorption intensity ratio displayed a linear relationship against the concentration of EcoRI in the range 0 to 100 U mL−1, and the detection limit was 5.7 U mL−1. Furthermore, G3 showed good selectivity, and the ability to be used to screen for EcoRI inhibitors, indicating its potential in detection and analysis applications. A new G-triplex-based probe was developed for detecting EcoRI activity and inhibition. The probe showed good selectivity towards EcoRI. The assay was colorimetric and can be monitored by the naked eye.![]()
Collapse
Affiliation(s)
- Congcong Gao
- Beijing Institute for Drug Control, MNPA Key Laboratory for Quality Evaluation of Traditional Chinese Medicine (Traditional Chinese Medicine), MNPA Key Laboratory for Research and Evaluation of Generic Drugs, Beijing Key Laboratory of Analysis and Evaluation on Chinese Medicine Beijing 102206 China
| | - Baoquan Che
- Beijing Institute for Drug Control, MNPA Key Laboratory for Quality Evaluation of Traditional Chinese Medicine (Traditional Chinese Medicine), MNPA Key Laboratory for Research and Evaluation of Generic Drugs, Beijing Key Laboratory of Analysis and Evaluation on Chinese Medicine Beijing 102206 China
| | - Hong Dai
- Beijing Institute for Drug Control, MNPA Key Laboratory for Quality Evaluation of Traditional Chinese Medicine (Traditional Chinese Medicine), MNPA Key Laboratory for Research and Evaluation of Generic Drugs, Beijing Key Laboratory of Analysis and Evaluation on Chinese Medicine Beijing 102206 China
| |
Collapse
|
12
|
The catalytic properties of DNA G-quadruplexes rely on their structural integrity. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63744-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Gao H, Zheng X, Yang T, Zhang Q, Yan C, Zhou X, Shao Y. A pH-triggered G-triplex switch with K + tolerance. Chem Commun (Camb) 2020; 56:7349-7352. [PMID: 32484186 DOI: 10.1039/d0cc02757j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A pH-triggered G-triplex (G3) switch is demonstrated to operate in K+ using a planar ligand enabling reversible iminium-alkanolamine conversion as the G3 structuring-destructuring initiator.
Collapse
Affiliation(s)
- Heng Gao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China.
| | | | | | | | | | | | | |
Collapse
|
14
|
Han Y, Zou R, Xiang L, Chen C, Cai C. Engineering a label- and enzyme-free detection of HIV-DNA on a cyclic DNA self-assembling strategy using G-triplexes as the signal reporter. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
15
|
Sensitive colorimetric determination of microRNA let-7a through rolling circle amplification and a peroxidase-mimicking system composed of trimeric G-triplex and hemin DNAzyme. Mikrochim Acta 2020; 187:139. [DOI: 10.1007/s00604-019-4093-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 12/22/2019] [Indexed: 01/07/2023]
|
16
|
G-triplex/hemin DNAzyme: An ideal signal generator for isothermal exponential amplification reaction-based biosensing platform. Anal Chim Acta 2019; 1079:139-145. [DOI: 10.1016/j.aca.2019.06.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/11/2019] [Accepted: 06/01/2019] [Indexed: 12/22/2022]
|
17
|
Zhao LL, Cao T, Zhou QY, Zhang XH, Zhou YL, Yang L, Zhang XX. The Exploration of a New Stable G-Triplex DNA and Its Novel Function in Electrochemical Biosensing. Anal Chem 2019; 91:10731-10737. [DOI: 10.1021/acs.analchem.9b02161] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ling-Li Zhao
- Beijing National Laboratory for Molecular Sciences (BNLMS), MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ting Cao
- Beijing National Laboratory for Molecular Sciences (BNLMS), MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Qian-Yu Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS), MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xiao-Hui Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Ying-Lin Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS), MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Lijiang Yang
- Beijing National Laboratory for Molecular Sciences (BNLMS), MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xin-Xiang Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
18
|
Wu Z, Zhou H, He J, Li M, Ma X, Xue J, Li X, Fan X. G-triplex based molecular beacon with duplex-specific nuclease amplification for the specific detection of microRNA. Analyst 2019; 144:5201-5206. [DOI: 10.1039/c9an01075k] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Based on the G-triplex molecular beacon (MBG3), we have developed a duplex-specific nuclease signal amplification (DSNSA) assay for highly selective miRNA detection.
Collapse
Affiliation(s)
- Zhifang Wu
- College of Chemistry and Chemical Engineering
- Gannan Normal University
- Ganzhou 341000
- P. R. China
| | - Hui Zhou
- College of Chemistry and Chemical Engineering
- Gannan Normal University
- Ganzhou 341000
- P. R. China
| | - Juan He
- College of Chemistry and Chemical Engineering
- Gannan Normal University
- Ganzhou 341000
- P. R. China
| | - Mei Li
- College of Chemistry and Chemical Engineering
- Gannan Normal University
- Ganzhou 341000
- P. R. China
| | - Xiaoming Ma
- College of Chemistry and Chemical Engineering
- Gannan Normal University
- Ganzhou 341000
- P. R. China
| | - Jun Xue
- College of Chemistry and Chemical Engineering
- Gannan Normal University
- Ganzhou 341000
- P. R. China
| | - Xun Li
- College of Chemistry and Chemical Engineering
- Gannan Normal University
- Ganzhou 341000
- P. R. China
| | - Xiaolin Fan
- College of Chemistry and Chemical Engineering
- Gannan Normal University
- Ganzhou 341000
- P. R. China
| |
Collapse
|
19
|
Fan X, Tian R, Wang T, Liu S, Wang L, Xu J, Liu J, Ma M, Wu Z. An ultrathin iron-porphyrin based nanocapsule with high peroxidase-like activity for highly sensitive glucose detection. NANOSCALE 2018; 10:22155-22160. [PMID: 30474099 DOI: 10.1039/c8nr07288d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
For the first time, an ultrathin iron-porphyrin based polymer nanocapsule with multiple peroxidase-like catalytic centers was constructed by covalently assembling iron-porphyrin monomers; this nanocapsule with a single molecule thickness shell acted as a highly efficient artificial enzyme for mimicking peroxidase. On the basis of the peroxidase-like activity of Fe-TPyP based nanocapsules (Fe-TPyP NCs), a highly sensitive colorimetric sensor for glucose determination was fabricated, the limit of detection was found to be as low as 0.098 μM. This study provided a novel strategy for developing artificial enzymes based on covalently assembled nanostructures. Furthermore, the colorimetric sensor for glucose determination showed potential applications in biomedicine and biology.
Collapse
Affiliation(s)
- Xiaotong Fan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Road, Changchun 130012, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
The G-quadruplex fluorescent probe 3,6-bis(1-methyl-2-vinyl-pyridinium) carbazole diiodide as a biosensor for human cancers. Sci Rep 2018; 8:16082. [PMID: 30382130 PMCID: PMC6208391 DOI: 10.1038/s41598-018-34378-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 10/15/2018] [Indexed: 12/16/2022] Open
Abstract
Using time-gated fluorescence lifetime imaging microscopy, significantly more signals from 3,6-bis(1-methyl-2-vinyl-pyridinium) carbazole diiodide (o-BMVC) foci, characterized by the longer fluorescent decay time of o-BMVC, were detected in six types of cancer cells than in three types of normal cells. Accumulating evidence suggested that the o-BMVC foci are mainly the G-quadruplex foci. The large contrast in the number of o-BMVC foci can be considered as a common signature to distinguish cancer cells from normal cells. Further study of tissue biopsy showed that the o-BMVC test provides a high accuracy for clinical detection of head and neck cancers.
Collapse
|
21
|
He C, Zheng S, Zhang J, Li W, Fu Y. Hunting for the “Sweet Spot”: Effects of Contiguous Guanines and Strand Lengths on the Catalytic Performance of DNA-Based Peroxidase Mimetics. Catal Letters 2018. [DOI: 10.1007/s10562-018-2356-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Zhou H, Wu ZF, Han QJ, Zhong HM, Peng JB, Li X, Fan XL. Stable and Label-Free Fluorescent Probe Based on G-triplex DNA and Thioflavin T. Anal Chem 2018; 90:3220-3226. [PMID: 29378390 DOI: 10.1021/acs.analchem.7b04666] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
G-triplexes have recently been identified as a new kind of DNA structures. They perhaps possess specific biological and chemical functions similar as identified G-quadruplex but can be formed by shorter G-rich sequences with only three G-tracts. However, until now, limited G-triplexes sequences have been reported, which might be due to the fact that their stability is one of the biggest concerns during their functional studies and application research. Herein, we found a G-rich sequence (5'-TGGGTAGGGCGGG-3') which can form a stable G-triplex (Tm ∼ 60 °C) at room temperature. The stable G-triplex can combine with thioflavin T and function as an efficient fluorescence light-up probe. Comparing with the traditional G-quadruplex based probe, this triplex based probe was easy to be controlled and excited. Finally, the probe was successfully applied into constructing a label-free molecular beacon for miRNA detection. Taking advantage of these abilities of the G-triplex based fluorescent probe, the challenges faced during designing G-rich sequences based fluorescent biosensors can be efficiently solved. These findings provide important information for the future application of G-triplex.
Collapse
Affiliation(s)
- Hui Zhou
- College of Chemistry and Chemical Engineering , Gannan Normal University , Ganzhou , 341000 , China
| | - Zhi-Fang Wu
- College of Chemistry and Chemical Engineering , Gannan Normal University , Ganzhou , 341000 , China
| | - Qian-Jin Han
- College of Chemistry and Chemical Engineering , Gannan Normal University , Ganzhou , 341000 , China
| | - Hong-Mei Zhong
- College of Chemistry and Chemical Engineering , Gannan Normal University , Ganzhou , 341000 , China
| | - Jun-Bin Peng
- College of Chemistry and Chemical Engineering , Gannan Normal University , Ganzhou , 341000 , China
| | - Xun Li
- College of Chemistry and Chemical Engineering , Gannan Normal University , Ganzhou , 341000 , China
| | - Xiao-Lin Fan
- College of Chemistry and Chemical Engineering , Gannan Normal University , Ganzhou , 341000 , China
| |
Collapse
|
23
|
Hairpin probe for sequence-specific recognition of double-stranded DNA on simian virus 40. Chem Res Chin Univ 2017. [DOI: 10.1007/s40242-017-7152-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
24
|
Zhao Z, Lin F, Ye H, Huang R, Xu X. Effects of modified-guanosine on the stability of G-triplex. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.10.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
25
|
Ma DL, Lu L, Lin S, He B, Leung CH. A G-triplex luminescent switch-on probe for the detection of mung bean nuclease activity. J Mater Chem B 2015; 3:348-352. [DOI: 10.1039/c4tb01569j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A G-triplex luminescent switch-on probe for the detection of nuclease activity.
Collapse
Affiliation(s)
- Dik-Lung Ma
- Department of Chemistry
- Hong Kong Baptist University
- Kowloon Tong
- China
| | - Lihua Lu
- Department of Chemistry
- Hong Kong Baptist University
- Kowloon Tong
- China
| | - Sheng Lin
- Department of Chemistry
- Hong Kong Baptist University
- Kowloon Tong
- China
| | - Bingyong He
- Department of Chemistry
- Hong Kong Baptist University
- Kowloon Tong
- China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Macao
- China
| |
Collapse
|
26
|
Li W, Zhao X, Zhang J, Fu Y. Cu(II)-coordinated GpG-duplex DNA as peroxidase mimetics and its application for label-free detection of Cu2+ ions. Biosens Bioelectron 2014; 60:252-8. [PMID: 24813915 DOI: 10.1016/j.bios.2014.04.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 04/12/2014] [Accepted: 04/17/2014] [Indexed: 02/01/2023]
Abstract
Herein a facile method is proposed to construct DNA-based peroxidase mimetics simply assembled by polymorphic DNA and Cu(2+) ions. The Cu(II)-catalyzed oxidation of TMB in the presence of H2O2 can be significantly accelerated through Cu(II)-coordination with DNA scaffolds, of which a colorimetric change can be discerned by naked-eye. The reaction rates of DNA-Cu(II) complexes are directly associated with sequence composition as well as the secondary structure of DNA scaffold, e.g., the reaction rate decreases in the following order: GpG-duplex ≈ G-rich coil > G-quadruplex > C-rich coil > i-motif. It is the first report to explore a colorimetric Cu(2+) sensing system on the basis of peroxidase mimicking activities of polymorphic DNA-Cu(II) complexes. One of our most intriguing results is that the GpG-duplex DNA demonstrates the ability to sense Cu(2+) ions in aqueous solution without significant interference from other metal ions. The Cu(2+) detection limit of 1.2 nM is achieved with a linear response range of 1.2-100 nM, and the developed sensing system is potentially applicable for quantitative determination of Cu(2+) in drinking water samples.
Collapse
Affiliation(s)
- Wei Li
- Key Laboratory for Green Chemical Technology MOE, Key Laboratory of Systems Bioengineering MOE, Tianjin University, Tianjin 300072, People׳s Republic of China
| | - Xuyin Zhao
- Key Laboratory for Green Chemical Technology MOE, Key Laboratory of Systems Bioengineering MOE, Tianjin University, Tianjin 300072, People׳s Republic of China
| | - Jinli Zhang
- Key Laboratory for Green Chemical Technology MOE, Key Laboratory of Systems Bioengineering MOE, Tianjin University, Tianjin 300072, People׳s Republic of China
| | - Yan Fu
- Key Laboratory for Green Chemical Technology MOE, Key Laboratory of Systems Bioengineering MOE, Tianjin University, Tianjin 300072, People׳s Republic of China.
| |
Collapse
|
27
|
Wang S, Fu B, Wang J, Long Y, Zhang X, Peng S, Guo P, Tian T, Zhou X. Novel Amplex Red Oxidases Based on Noncanonical DNA Structures: Property Studies and Applications in MicroRNA Detection. Anal Chem 2014; 86:2925-30. [DOI: 10.1021/ac402535a] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Shaoru Wang
- College
of Chemistry and Molecular Sciences, Key Laboratory of Biomedical
Polymers of Ministry of Education, State Key Laboratory of Virology, Wuhan University, Wuhan, Hubei 430072, P. R. of China
| | - Boshi Fu
- College
of Chemistry and Molecular Sciences, Key Laboratory of Biomedical
Polymers of Ministry of Education, State Key Laboratory of Virology, Wuhan University, Wuhan, Hubei 430072, P. R. of China
| | - Jiaqi Wang
- College
of Chemistry and Molecular Sciences, Key Laboratory of Biomedical
Polymers of Ministry of Education, State Key Laboratory of Virology, Wuhan University, Wuhan, Hubei 430072, P. R. of China
| | - Yuelin Long
- College
of Chemistry and Molecular Sciences, Key Laboratory of Biomedical
Polymers of Ministry of Education, State Key Laboratory of Virology, Wuhan University, Wuhan, Hubei 430072, P. R. of China
| | - Xiaoe Zhang
- College
of Chemistry and Molecular Sciences, Key Laboratory of Biomedical
Polymers of Ministry of Education, State Key Laboratory of Virology, Wuhan University, Wuhan, Hubei 430072, P. R. of China
| | - Shuang Peng
- College
of Chemistry and Molecular Sciences, Key Laboratory of Biomedical
Polymers of Ministry of Education, State Key Laboratory of Virology, Wuhan University, Wuhan, Hubei 430072, P. R. of China
| | - Pu Guo
- College
of Chemistry and Molecular Sciences, Key Laboratory of Biomedical
Polymers of Ministry of Education, State Key Laboratory of Virology, Wuhan University, Wuhan, Hubei 430072, P. R. of China
| | - Tian Tian
- College
of Chemistry and Molecular Sciences, Key Laboratory of Biomedical
Polymers of Ministry of Education, State Key Laboratory of Virology, Wuhan University, Wuhan, Hubei 430072, P. R. of China
| | - Xiang Zhou
- College
of Chemistry and Molecular Sciences, Key Laboratory of Biomedical
Polymers of Ministry of Education, State Key Laboratory of Virology, Wuhan University, Wuhan, Hubei 430072, P. R. of China
- State
Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| |
Collapse
|