1
|
Zeng JM, Liu Q, Zhao JY, Deng R, Wang YF, Huang J, Li ZR. OEEF-Driven Intramolecular Self-Redox of Superalkali Rb 3BeB 6Be'Rb' 3: A High-Performance Candidate for NLO Molecular Switch. ACS OMEGA 2023; 8:30612-30620. [PMID: 37636977 PMCID: PMC10448663 DOI: 10.1021/acsomega.3c04248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023]
Abstract
To provide a novel intramolecular self-redox switch, a boron-based sandwich-like complex Rb3BeB6Be'Rb'3 is achieved by using theoretical computations. An applicable oriented external electric field (OEEF) can result in the occurrence of intramolecular self-redox (IMSR) with a long-range electron transfer from tetrahedral Be'Rb'3 to Rb3Be and subsequently [Rb3Be]3+[B6]6-[Be'Rb'3]3+ (D3d) changes to [Rb3Be]2+[B6]6-[Be'Rb'3]4+ (C3v), accompanying high-performance NLO switchable effect for both static and dynamic first hyperpolarizability (β0). [Rb3Be]3+[B6]6-[Be'Rb'3]3+ (off-form) owns zero of dipole moment (μ0) and β0, while [Rb3Be]2+[B6]6-[Be'Rb'3]4+ (on-form) exhibits a μ0 of 3.36 D and a β0e of 2.18 × 105 au. The different dynamic first hyperpolarizabilities between [Rb3Be]3+[B6]6-[Be'Rb'3]3+ and [Rb3Be]2+[B6]6-[Be'Rb'3]4+ are also significant. This indicates that Rb3BeB6Be'Rb'3 is a potential candidate for an IMSR NLO switch.
Collapse
Affiliation(s)
- Jia-Mei Zeng
- Jiangxi
Province Key Laboratory of Coordination Chemistry, Institute of Applied
Chemistry, School of Chemistry and Chemical Engineering, Jinggangshan University, Ji’an CN 343009, China
| | - Qin Liu
- Jiangxi
Province Key Laboratory of Coordination Chemistry, Institute of Applied
Chemistry, School of Chemistry and Chemical Engineering, Jinggangshan University, Ji’an CN 343009, China
| | - Jing-Yi Zhao
- Jiangxi
Province Key Laboratory of Coordination Chemistry, Institute of Applied
Chemistry, School of Chemistry and Chemical Engineering, Jinggangshan University, Ji’an CN 343009, China
| | - Rui Deng
- Jiangxi
Province Key Laboratory of Coordination Chemistry, Institute of Applied
Chemistry, School of Chemistry and Chemical Engineering, Jinggangshan University, Ji’an CN 343009, China
| | - Yin-Feng Wang
- Jiangxi
Province Key Laboratory of Coordination Chemistry, Institute of Applied
Chemistry, School of Chemistry and Chemical Engineering, Jinggangshan University, Ji’an CN 343009, China
| | - Jiangen Huang
- Jiangxi
Province Key Laboratory of Coordination Chemistry, Institute of Applied
Chemistry, School of Chemistry and Chemical Engineering, Jinggangshan University, Ji’an CN 343009, China
| | - Zhi-Ru Li
- Laboratory
of Theoretical and Computational Chemistry, Institute of Theoretical
Chemistry, Jilin University, Changchun CN 130023, China
| |
Collapse
|
2
|
Noble BB, Todorova N, Yarovsky I. Electromagnetic bioeffects: a multiscale molecular simulation perspective. Phys Chem Chem Phys 2022; 24:6327-6348. [PMID: 35245928 DOI: 10.1039/d1cp05510k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Electromagnetic bioeffects remain an enigma from both the experimental and theoretical perspectives despite the ubiquitous presence of related technologies in contemporary life. Multiscale computational modelling can provide valuable insights into biochemical systems and predict how they will be perturbed by external stimuli. At a microscopic level, it can be used to determine what (sub)molecular scale reactions various stimuli might induce; at a macroscopic level, it can be used to examine how these changes affect dynamic behaviour of essential molecules within the crowded biomolecular milieu in living tissues. In this review, we summarise and evaluate recent computational studies that examined the impact of externally applied electric and electromagnetic fields on biologically relevant molecular systems. First, we briefly outline the various methodological approaches that have been employed to study static and oscillating field effects across different time and length scales. The practical value of such modelling is then illustrated through representative case-studies that showcase the diverse effects of electric and electromagnetic field on the main physiological solvent - water, and the essential biomolecules - DNA, proteins, lipids, as well as some novel biomedically relevant nanomaterials. The implications and relevance of the theoretical multiscale modelling to practical applications in therapeutic medicine are also discussed. Finally, we summarise ongoing challenges and potential opportunities for theoretical modelling to advance the current understanding of electromagnetic bioeffects for their modulation and/or beneficial exploitation in biomedicine and industry.
Collapse
Affiliation(s)
- Benjamin B Noble
- School of Engineering, RMIT University, GPO Box 2476, Melbourne, Australia. .,Australian Centre for Electromagnetic Bioeffects Research, Australia
| | - Nevena Todorova
- School of Engineering, RMIT University, GPO Box 2476, Melbourne, Australia. .,Australian Centre for Electromagnetic Bioeffects Research, Australia
| | - Irene Yarovsky
- School of Engineering, RMIT University, GPO Box 2476, Melbourne, Australia. .,Australian Centre for Electromagnetic Bioeffects Research, Australia
| |
Collapse
|
3
|
Yu S, Vermeeren P, Hamlin TA, Bickelhaupt FM. How Oriented External Electric Fields Modulate Reactivity. Chemistry 2021; 27:5683-5693. [PMID: 33289179 PMCID: PMC8049047 DOI: 10.1002/chem.202004906] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/04/2020] [Indexed: 01/27/2023]
Abstract
A judiciously oriented external electric field (OEEF) can catalyze a wide range of reactions and can even induce endo/exo stereoselectivity of cycloaddition reactions. The Diels-Alder reaction between cyclopentadiene and maleic anhydride is studied by using quantitative activation strain and Kohn-Sham molecular orbital theory to pinpoint the origin of these catalytic and stereoselective effects. Our quantitative model reveals that an OEEF along the reaction axis induces an enhanced electrostatic and orbital interaction between the reactants, which in turn lowers the reaction barrier. The stronger electrostatic interaction originates from an increased electron density difference between the reactants at the reactive center, and the enhanced orbital interaction arises from the promoted normal electron demand donor-acceptor interaction driven by the OEEF. An OEEF perpendicular to the plane of the reaction axis solely stabilizes the exo pathway of this reaction, whereas the endo pathway remains unaltered and efficiently steers the endo/exo stereoselectivity. The influence of the OEEF on the inverse electron demand Diels-Alder reaction is also investigated; unexpectedly, it inhibits the reaction, as the electric field now suppresses the critical inverse electron demand donor-acceptor interaction.
Collapse
Affiliation(s)
- Song Yu
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081HVAmsterdamThe Netherlands
| | - Pascal Vermeeren
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081HVAmsterdamThe Netherlands
| | - Trevor A. Hamlin
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081HVAmsterdamThe Netherlands
| | - F. Matthias Bickelhaupt
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081HVAmsterdamThe Netherlands
- Institute for Molecules and Materials (IMM)Radboud UniversityHeyendaalseweg 1356525 AJNijmegenThe Netherlands
| |
Collapse
|
4
|
Orio M, Pantazis DA. Successes, challenges, and opportunities for quantum chemistry in understanding metalloenzymes for solar fuels research. Chem Commun (Camb) 2021; 57:3952-3974. [DOI: 10.1039/d1cc00705j] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Overview of the rich and diverse contributions of quantum chemistry to understanding the structure and function of the biological archetypes for solar fuel research, photosystem II and hydrogenases.
Collapse
Affiliation(s)
- Maylis Orio
- Aix-Marseille Université
- CNRS
- iSm2
- Marseille
- France
| | - Dimitrios A. Pantazis
- Max-Planck-Institut für Kohlenforschung
- Kaiser-Wilhelm-Platz 1
- 45470 Mülheim an der Ruhr
- Germany
| |
Collapse
|
5
|
Abstract
![]()
The
energetics for proton reduction in FeFe-hydrogenase has been
reinvestigated by theoretical modeling, in light of recent experiments.
Two different mechanisms have been considered. In the first one, the
bridging hydride position was blocked by the enzyme, which is the
mechanism that has been supported by a recent spectroscopic study
by Cramer et al. A major difficulty in
the present study to agree with experimental energetics was to find
the right position for the added proton in the first reduction step.
It was eventually found that the best position was as a terminal hydride
on the distal iron, which has not been suggested in any of the recent,
experimentally based mechanisms. The lowest transition state was surprisingly
found to be a bond formation between a proton on a cysteine and the
terminal hydride. This type of TS is similar to the one for heterolytic
H2 cleavage in NiFe hydrogenase. The second mechanism investigated
here is not supported by the present calculations or the recent experiments
by Cramer et al., but was still studied as an interesting comparison.
In that mechanism, the formation of the bridging hydride was allowed.
The H–H formation barrier is only 3.6 kcal/mol higher than
for the first mechanism, but there are severe problems concerning
the motion of the protons.
Collapse
Affiliation(s)
- Per E M Siegbahn
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Rong-Zhen Liao
- Key Laboratory for Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Media, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 430074 Wuhan, China
| |
Collapse
|
6
|
Kirshenboim O, Frenklah A, Kozuch S. Switch chemistry at cryogenic conditions: quantum tunnelling under electric fields. Chem Sci 2020; 12:3179-3187. [PMID: 34164085 PMCID: PMC8179409 DOI: 10.1039/d0sc06295b] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/15/2020] [Indexed: 12/03/2022] Open
Abstract
While the influence of intramolecular electric fields is a known feature in enzymes, the use of oriented external electric fields (EEF) to enhance or inhibit molecular reactivity is a promising topic still in its infancy. Herein we will explore computationally the effects that EEF can provoke in simple molecules close to the absolute zero, where quantum tunnelling (QT) is the sole mechanistic option. We studied three exemplary systems, each one with different reactivity features and known QT kinetics: π bond-shifting in pentalene, Cope rearrangement in semibullvalene, and cycloreversion of diazabicyclohexadiene. The kinetics of these cases depend both on the field strength and its direction, usually giving subtle but remarkable changes. However, for the cycloreversion, which suffers large changes on the dipole through the reaction, we also observed striking results. Between the effects caused by the EEF on the QT we observed an inversion of the Arrhenius equation, deactivation of the molecular fluxionality, and stabilization or instantaneous decomposition of the system. All these effects may well be achieved, literally, at the flick of a switch.
Collapse
Affiliation(s)
- Omer Kirshenboim
- Department of Chemistry, Ben-Gurion University of the Negev Beer-Sheva 841051 Israel
| | - Alexander Frenklah
- Department of Chemistry, Ben-Gurion University of the Negev Beer-Sheva 841051 Israel
| | - Sebastian Kozuch
- Department of Chemistry, Ben-Gurion University of the Negev Beer-Sheva 841051 Israel
| |
Collapse
|
7
|
Sowlati-Hashjin S, Karttunen M, Matta CF. Manipulation of Diatomic Molecules with Oriented External Electric Fields: Linear Correlations in Atomic Properties Lead to Nonlinear Molecular Responses. J Phys Chem A 2020; 124:4720-4731. [PMID: 32337997 DOI: 10.1021/acs.jpca.0c02569] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Oriented external electric fields (OEEFs) have been shown to have great potential in being able to provide unprecedented control of chemical reactions, catalysis, and selectivity with applications ranging from H2 storage to molecular machines. We report a theoretical study of the atomic origins of molecular changes because of OEEFs since understanding the characteristics of OEEF-induced couplings between atomic and molecular properties is an important step toward comprehensive understanding of the effects of strong external fields on the molecular structure, stability, and reactivity. We focus on the atomic and molecular (bond) properties of a set of homo- (H2, N2, O2, F2, and Cl2) and heterodiatomic (HF, HCl, CO, and NO) molecules under intense external electric fields in the context of quantum theory of atoms in molecules (QTAIM). It is shown that the atomic properties (atomic charges, energies, and localization indices) correlate linearly with the field strengths, but molecular properties (bond length, electron density at the bond critical point, and electron delocalization index) exhibit nonlinear responses to the imposed fields. In particular, the changes in the electron density distribution alter the shapes and locations of the zero-flux surfaces, atomic volumes, atomic electron population, and localization/delocalization indices. The topography and topology of the molecular electrostatic potential undergo dramatic changes. External fields also perturb the covalent-polar-ionic characteristic of the studied chemical bonds, hallmarking the impact of electric fields on the stability and reactivity of chemical compounds. The findings are well-rationalized within the framework of the QTAIM and form a coherent conceptual understanding of these effects in prototypical diatomic molecules.
Collapse
Affiliation(s)
- Shahin Sowlati-Hashjin
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada.,The Centre of Advanced Materials and Biomaterials Research, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada.,Department of Chemistry, Saint Mary's University, Halifax, Nova Scotia B3H 3C3, Canada.,Department of Chemistry and Physics, Mount Saint Vincent University, Halifax, Nova Scotia B3M 2J6, Canada
| | - Mikko Karttunen
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada.,The Centre of Advanced Materials and Biomaterials Research, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada.,Department of Applied Mathematics, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
| | - Chérif F Matta
- Department of Chemistry, Saint Mary's University, Halifax, Nova Scotia B3H 3C3, Canada.,Department of Chemistry and Physics, Mount Saint Vincent University, Halifax, Nova Scotia B3M 2J6, Canada.,Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H,4J3, Canada
| |
Collapse
|
8
|
Grimmel SA, Reiher M. The electrostatic potential as a descriptor for the protonation propensity in automated exploration of reaction mechanisms. Faraday Discuss 2020; 220:443-463. [PMID: 31528869 DOI: 10.1039/c9fd00061e] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We discuss the possibility of exploiting local minima of the molecular electrostatic potential for locating protonation sites in molecules in a fully automated manner. We implement and apply this concept to exploring the mechanism of proton reduction catalyzed by a hydrogenase model complex [Orthaber et al., Dalton Trans., 2014, 43, 4537]. A large number of distinct structures arising already in the early stages of the hydrogen evolution mechanism demonstrates the need for reliable, automated algorithms for the thorough analysis of catalytic processes.
Collapse
Affiliation(s)
- Stephanie A Grimmel
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland.
| | | |
Collapse
|
9
|
He CQ, Lam CC, Yu P, Song Z, Chen M, Lam YH, Chen S, Houk KN. Catalytic Effects of Ammonium and Sulfonium Salts and External Electric Fields on Aza-Diels–Alder Reactions. J Org Chem 2019; 85:2618-2625. [DOI: 10.1021/acs.joc.9b03446] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Cyndi Qixin He
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Ching Ching Lam
- Department of Chemistry, Imperial College London, London SW7 2AZ, U.K
| | - Peiyuan Yu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Zhihui Song
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Maggie Chen
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Yu-hong Lam
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Shuming Chen
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - K. N. Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
10
|
Stuyver T, Danovich D, Joy J, Shaik S. External electric field effects on chemical structure and reactivity. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2019. [DOI: 10.1002/wcms.1438] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Thijs Stuyver
- Institute of Chemistry The Hebrew University Jerusalem Israel
- Algemene Chemie Vrije Universiteit Brussel Brussels Belgium
| | - David Danovich
- Institute of Chemistry The Hebrew University Jerusalem Israel
| | - Jyothish Joy
- Institute of Chemistry The Hebrew University Jerusalem Israel
| | - Sason Shaik
- Institute of Chemistry The Hebrew University Jerusalem Israel
| |
Collapse
|
11
|
Vogiatzis KD, Polynski MV, Kirkland JK, Townsend J, Hashemi A, Liu C, Pidko EA. Computational Approach to Molecular Catalysis by 3d Transition Metals: Challenges and Opportunities. Chem Rev 2019; 119:2453-2523. [PMID: 30376310 PMCID: PMC6396130 DOI: 10.1021/acs.chemrev.8b00361] [Citation(s) in RCA: 228] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Indexed: 12/28/2022]
Abstract
Computational chemistry provides a versatile toolbox for studying mechanistic details of catalytic reactions and holds promise to deliver practical strategies to enable the rational in silico catalyst design. The versatile reactivity and nontrivial electronic structure effects, common for systems based on 3d transition metals, introduce additional complexity that may represent a particular challenge to the standard computational strategies. In this review, we discuss the challenges and capabilities of modern electronic structure methods for studying the reaction mechanisms promoted by 3d transition metal molecular catalysts. Particular focus will be placed on the ways of addressing the multiconfigurational problem in electronic structure calculations and the role of expert bias in the practical utilization of the available methods. The development of density functionals designed to address transition metals is also discussed. Special emphasis is placed on the methods that account for solvation effects and the multicomponent nature of practical catalytic systems. This is followed by an overview of recent computational studies addressing the mechanistic complexity of catalytic processes by molecular catalysts based on 3d metals. Cases that involve noninnocent ligands, multicomponent reaction systems, metal-ligand and metal-metal cooperativity, as well as modeling complex catalytic systems such as metal-organic frameworks are presented. Conventionally, computational studies on catalytic mechanisms are heavily dependent on the chemical intuition and expert input of the researcher. Recent developments in advanced automated methods for reaction path analysis hold promise for eliminating such human-bias from computational catalysis studies. A brief overview of these approaches is presented in the final section of the review. The paper is closed with general concluding remarks.
Collapse
Affiliation(s)
| | | | - Justin K. Kirkland
- Department
of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Jacob Townsend
- Department
of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Ali Hashemi
- Inorganic
Systems Engineering group, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Chong Liu
- Inorganic
Systems Engineering group, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Evgeny A. Pidko
- TheoMAT
group, ITMO University, Lomonosova 9, St. Petersburg 191002, Russia
- Inorganic
Systems Engineering group, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
12
|
Abstract
Metalloproteins are challenging objects if we want to investigate their chemical reactivity with theoretical approaches such as density functional theory (DFT). The complexity of these biomolecules often requires us to find a compromise between accuracy and feasibility, one that is tailored to the questions we set out to answer. In this chapter, we discuss computational approaches to studying chemical reactions in metalloproteins and how to utilize the information hidden in homologous proteins.
Collapse
Affiliation(s)
- Martin T Stiebritz
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA.
| | - Yilin Hu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
13
|
Wang Z, Danovich D, Ramanan R, Shaik S. Oriented-External Electric Fields Create Absolute Enantioselectivity in Diels–Alder Reactions: Importance of the Molecular Dipole Moment. J Am Chem Soc 2018; 140:13350-13359. [DOI: 10.1021/jacs.8b08233] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Zhanfeng Wang
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - David Danovich
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Rajeev Ramanan
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Sason Shaik
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
14
|
Shaik S, Ramanan R, Danovich D, Mandal D. Structure and reactivity/selectivity control by oriented-external electric fields. Chem Soc Rev 2018; 47:5125-5145. [PMID: 29979456 DOI: 10.1039/c8cs00354h] [Citation(s) in RCA: 245] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This is a tutorial on use of external-electric-fields (EEFs) as effectors of chemical change. The tutorial instructs readers how to conceptualize and design electric-field effects on bonds, structures, and reactions. Most effects can be comprehended as the field-induced stabilization of ionic structures. Thus, orienting the field along the "bond axis" will facilitate bond breaking. Similarly, orienting the field along the "reaction axis", the direction in which "electron pairs transform" from reactants- to products-like, will catalyse the reaction. Flipping the field's orientation along the reaction-axis will cause inhibition. Orienting the field off-reaction-axis will control stereo-selectivity and remove forbidden-orbital mixing. Two-directional fields may control both reactivity and selectivity. Increasing the field strength for concerted reactions (e.g., Diels-Alder's) will cause mechanistic-switchover to stepwise mechanisms with ionic intermediates. Examples of bond breaking and control of reactivity/selectivity and mechanisms are presented and analysed from the "ionic perspective". The tutorial projects the unity of EEF effects, "giving insight and numbers".
Collapse
Affiliation(s)
- Sason Shaik
- Institute of Chemistry, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel.
| | | | | | | |
Collapse
|
15
|
Ramanan R, Danovich D, Mandal D, Shaik S. Catalysis of Methyl Transfer Reactions by Oriented External Electric Fields: Are Gold–Thiolate Linkers Innocent? J Am Chem Soc 2018; 140:4354-4362. [DOI: 10.1021/jacs.8b00192] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Rajeev Ramanan
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - David Danovich
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Debasish Mandal
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147 004 Punjab, India
| | - Sason Shaik
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
16
|
Stiebritz MT. MetREx: A protein design approach for the exploration of sequence-reactivity relationships in metalloenzymes. J Comput Chem 2015; 36:553-63. [DOI: 10.1002/jcc.23831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/12/2014] [Accepted: 12/16/2014] [Indexed: 01/10/2023]
Affiliation(s)
- Martin T. Stiebritz
- Laboratorium für Physikalische Chemie, ETH Zürich; Vladimir-Prelog-Weg 2 CH-8093 Zürich Switzerland
| |
Collapse
|
17
|
Murray KA, Wodrich MD, Hu X, Corminboeuf C. Toward functional type III [Fe]-hydrogenase biomimics for H2 activation: insights from computation. Chemistry 2015; 21:3987-96. [PMID: 25649221 DOI: 10.1002/chem.201405619] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Indexed: 11/06/2022]
Abstract
The chemistry of [Fe]-hydrogenase has attracted significant interest due to its ability to activate molecular hydrogen. The intriguing properties of this enzyme have prompted the synthesis of numerous small molecule mimics aimed at activating H2. Despite considerable effort, a majority of these compounds remain nonfunctional for hydrogenation reactions. By using a recently synthesized model as an entry point, seven biomimetic complexes have been examined through DFT computations to probe the influence of ligand environment on the ability of a mimic to bind and split H2. One mimic, featuring a bidentate diphosphine group incorporating an internal nitrogen base, was found to have particularly attractive energetics, prompting a study of the role played by the proton/hydride acceptor necessary to complete the catalytic cycle. Computations revealed an experimentally accessible energetic pathway involving a benzaldehyde proton/hydride acceptor and the most promising catalyst.
Collapse
Affiliation(s)
- Kevin A Murray
- Laboratory for Computational Molecular Design, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne (Switzerland)
| | | | | | | |
Collapse
|