1
|
Jiang YJ, Wang N, Cheng F, Lin HR, Zhen SJ, Li YF, Li CM, Huang CZ. Dual Energy Transfer-Based DNA/Graphene Oxide Nanocomplex Probe for Highly Robust and Accurate Monitoring of Apoptosis-Related microRNAs. Anal Chem 2020; 92:11565-11572. [DOI: 10.1021/acs.analchem.0c00307] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yong Jian Jiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People’s Republic of China
| | - Na Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People’s Republic of China
| | - Feng Cheng
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People’s Republic of China
| | - Hua Rong Lin
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People’s Republic of China
| | - Shu Jun Zhen
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| | - Yuan Fang Li
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| | - Chun Mei Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People’s Republic of China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People’s Republic of China
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| |
Collapse
|
2
|
Kitamura Y, Taniguchi T, Tsutsumi M, Nurdiwijayanto L, Matsuo T, Katsuda Y, Ihara T. A RuO 2 Nanosheet as a Novel Quencher-free Platform for the Detection of Nucleic Acids in a Homogeneous Solution. ANAL SCI 2020; 36:397-400. [PMID: 32201407 DOI: 10.2116/analsci.20c004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A fluorescent dye-labeled DNA probe was adsorbed and quenched on the monolayer of RuO2 nanosheets. Significant fluorescent recovery was observed upon the addition of complementary DNA due to desorption of the probe from the surface of the RuO2 nanosheet through duplex formation. The efficiency of fluorescence recovery was higher than that for graphene oxide, which was known as a quencher-free platform for the detection of nucleic acids in a homogeneous solution.
Collapse
Affiliation(s)
- Yusuke Kitamura
- Division of Materials Science, Faculty of Advanced Science and Technology, Kumamoto University
| | - Takaaki Taniguchi
- World Premier International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS)
| | - Miwako Tsutsumi
- Division of Materials Science, Faculty of Advanced Science and Technology, Kumamoto University
| | - Leanddas Nurdiwijayanto
- World Premier International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS)
| | - Tomoya Matsuo
- Division of Materials Science, Faculty of Advanced Science and Technology, Kumamoto University
| | - Yousuke Katsuda
- Division of Materials Science, Faculty of Advanced Science and Technology, Kumamoto University
| | - Toshihiro Ihara
- Division of Materials Science, Faculty of Advanced Science and Technology, Kumamoto University
| |
Collapse
|
3
|
Liu YX, Xiao X, Li CH, Men C, Ye QC, Lv WY, Li YF, Huang CZ, Zhen SJ. DNA nanosheet as an excellent fluorescence anisotropy amplification platform for accurate and sensitive biosensing. Talanta 2020; 211:120730. [PMID: 32070579 DOI: 10.1016/j.talanta.2020.120730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 12/14/2022]
Abstract
Recently, various inorganic nanomaterials have been used as fluorescence anisotropy (FA) enhancers for biosensing successfully. However, most of them are size-uncontrollable and possess an intensive fluorescence quenching ability, which will seriously reduce the accuracy and sensitivity of FA method. Herein, we report a two-dimensional DNA nanosheet (DNS) without fluorescence quenching effect as a novel FA amplification platform. In our strategy, fluorophore-labeled probe DNA (pDNA) is linked onto the DNS surface through the hybridization with the handle DNA (hDNA) that extended from the DNS, resulting in the significantly enhanced FA value. After the addition of target, the pDNA was released from the DNS surface due to the high affinity between the hDNA and target, and the FA was decreased. Thus, target could be detected by the significantly decreased FA value. The linear range was 10-50 nM and the limit of detection was 8 nM for the single-stranded DNA detection. This new method is general and has been also successfully applied for the detection of ATP and thrombin sensitively. Our method improved the accuracy of FA assay and has great potential to detect series of biological analytes in complex biosensing systems.
Collapse
Affiliation(s)
- Yu Xin Liu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, 400715, Chongqing, PR China
| | - Xue Xiao
- College of Chemistry and Environment Protection Engineering, Southwest Minzu University, Chengdu, 610041, China
| | - Chun Hong Li
- College of Pharmaceutical Sciences, Southwest University, 400715, Chongqing, PR China
| | - Chen Men
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, 400715, Chongqing, PR China
| | - Qi Chao Ye
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, 400715, Chongqing, PR China
| | - Wen Yi Lv
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, 400715, Chongqing, PR China
| | - Yuan Fang Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, 400715, Chongqing, PR China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, 400715, Chongqing, PR China; College of Pharmaceutical Sciences, Southwest University, 400715, Chongqing, PR China
| | - Shu Jun Zhen
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, 400715, Chongqing, PR China.
| |
Collapse
|
4
|
Kong Y, Liu X, Liu C, Xue Q, Li X, Wang H. A dandelion-like liposomes-encoded magnetic bead probe-based toehold-mediated DNA circuit for the amplification detection of MiRNA. Analyst 2019; 144:4694-4701. [PMID: 31268436 DOI: 10.1039/c9an00887j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The development of facile and sensitive miRNA quantitative detection methods is a central challenge for the early diagnosis of miRNA-related diseases. Herein, we propose a strategy for a liposome-encoded magnetic bead-based DNA toehold-mediated DNA circuit for the simple and sensitive detection of miRNA based on a toehold-mediated circular strand displacement reaction (TCSDR) coupled with a personal glucometer (PGM ). In this strategy, a glucoamylase-encapsulated liposomes (GELs)-encoded magnetic bead (GELs-MB) probe is designed to integrate target binding, magnetic separation, and signal response. Upon sensing the target miRNA-21, a GELs-MB probe-based toehold-mediated circular strand displacement reaction (TCSDR) was initiated with the help of fuel-DNA, constructing a DNA circuit system, and realizing target recycling amplification and the disassembly of the liposomes. The disassembled liposomes were finally removed via magnetic separation, and the encapsulated glucoamylase was liberated to catalyze amylose hydrolysis with multiple turnovers to glucose for a PGM readout. Benefiting from target recycling amplification initiated by the toehold-mediated DNA circuit and the liposome multiple-label amplification, a small quantity of target miRNA-21 can be transformed into a large glucose signal. The strategy realized the quantification of miRNA-21 down to a level of 0.7 fM without enzymatic amplification or precise instrumentation. Moreover, the high-density GELs-MB probe allows the sensitive detection of miRNA-21 to be accomplished within 1.5 h. Furthermore, this strategy exhibits the advantages of specificity and simplicity, since a toehold-mediated strand displacement reaction, magnetic separation and portable PGM were used. Importantly, this strategy has been demonstrated to allow the high-confidence quantification of miRNA. Therefore, with the advantages of low cost, ease of use, portability, and sensitivity, the reported method holds great potential for the early diagnosis of miRNA-related diseases.
Collapse
Affiliation(s)
- Yancong Kong
- Department of Chemistry, Liaocheng University, Liaocheng, 252059, Shandong, China.
| | - Xiaowen Liu
- Department of Chemistry, Liaocheng University, Liaocheng, 252059, Shandong, China.
| | - Chunxue Liu
- Department of Chemistry, Liaocheng University, Liaocheng, 252059, Shandong, China.
| | - Qingwang Xue
- Department of Chemistry, Liaocheng University, Liaocheng, 252059, Shandong, China.
| | - Xia Li
- Department of Chemistry, Liaocheng University, Liaocheng, 252059, Shandong, China.
| | - Huaisheng Wang
- Department of Chemistry, Liaocheng University, Liaocheng, 252059, Shandong, China.
| |
Collapse
|
5
|
Wen ZB, Liang WB, Zhuo Y, Xiong CY, Zheng YN, Yuan R, Chai YQ. An ATP-fueled nucleic acid signal amplification strategy for highly sensitive microRNA detection. Chem Commun (Camb) 2018; 54:10897-10900. [PMID: 30206633 DOI: 10.1039/c8cc05525d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Herein, an adenosine triphosphate (ATP)-fueled nucleic acid signal amplification strategy based on toehold-mediated strand displacement (TMSD) and fluorescence resonance energy transfer (FRET) was proposed for highly sensitive detection of microRNA-21. More importantly, the target microRNA-21 could be regenerated with ATP as the fuel rather than a nucleotide segment in conventional approaches, which made the proposed strategy simple and efficient due to the high affinity and strength of the aptamer-target interaction.
Collapse
Affiliation(s)
- Zhi-Bin Wen
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
6
|
Xu J, Zheng T, Le J, Jia L. Stepwise nanoassembly of a single hairpin probe and its biosensing. Talanta 2018; 187:272-278. [PMID: 29853047 DOI: 10.1016/j.talanta.2018.05.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/20/2018] [Accepted: 05/08/2018] [Indexed: 01/06/2023]
Abstract
Herein, we describe a novel trigger-induced DNA nanoassembly method using only one loop-stem shaped hairpin probe (HP) that consists of three different functional regions as a single building unit. The Region I is designed complementary to the trigger, while the Region II and Region III are projected to complementary with each other. When hybridized with the trigger, a toehold mediated strand displacement (TMSD) occurred on the strand of Region I, leading to the release of Region III for further hybridization with the Region II on another HP molecule and in turn inducing a stepwise growth of HP with the aid of polymerase. Unlike the conventional assembly approaches that rely on the sophisticated sequence design and complex operation, the single-HP nanoassembly is easy and fast. Moreover, because many HPs are opened during the assembly process, we exemplified the nanoassembly strategy by re-designing a new labeled hairpin probe to analyze the Kras oncogene with a high sensitivity and specificity. The present study demonstrated a novel promising DNA nanoassembly strategy for biological applications.
Collapse
Affiliation(s)
- Jianguo Xu
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350116 China; School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Tingting Zheng
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350116 China
| | - Jingqing Le
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350116 China
| | - Lee Jia
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350116 China.
| |
Collapse
|
7
|
Yu W, Tang L, Qiu JH, Zhang Z, Zhou LL, Li JL, Xie GM. Systematic comparison between toehold exchange and toehold displacement: exploration for highly specific and sensitive DNA detection. RSC Adv 2017. [DOI: 10.1039/c7ra07481f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The detection of nucleic acid variations with high specificity and sensitivity is essential for the good practice of precision medicine.
Collapse
Affiliation(s)
- Wen Yu
- Key Laboratory of Laboratory Medical Diagnostics of Education
- Department of Laboratory Medicine
- Chongqing Medical University
- Chongqing 400016
- P. R. China
| | - Lan Tang
- The Public Health Center
- The First Affiliated Hospital of Chongqing Medical University
- Chongqing 400016
- P. R. China
| | - Ju-Hui Qiu
- State Key Laboratory of Membrane Biology
- Tsinghua-Peking Center for Life Sciences
- School of Life Sciences
- Tsinghua University
- Beijing 100084
| | - Zhang Zhang
- Department of Laboratory Medicine
- Affiliated Hospital of Southwest Medical University
- Luzhou
- P. R. China
| | - Li-Li Zhou
- Key Laboratory of Laboratory Medical Diagnostics of Education
- Department of Laboratory Medicine
- Chongqing Medical University
- Chongqing 400016
- P. R. China
| | - Jun-Long Li
- Key Laboratory of Laboratory Medical Diagnostics of Education
- Department of Laboratory Medicine
- Chongqing Medical University
- Chongqing 400016
- P. R. China
| | - Guo-Ming Xie
- Key Laboratory of Laboratory Medical Diagnostics of Education
- Department of Laboratory Medicine
- Chongqing Medical University
- Chongqing 400016
- P. R. China
| |
Collapse
|
8
|
Pieper H, Halbig CE, Kovbasyuk L, Filipovic MR, Eigler S, Mokhir A. Oxo-Functionalized Graphene as a Cell Membrane Carrier of Nucleic Acid Probes Controlled by Aging. Chemistry 2016; 22:15389-15395. [PMID: 27619408 DOI: 10.1002/chem.201603063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Indexed: 01/05/2023]
Abstract
We applied a fluorescein-containing oligonucleotide (ON) to probe surface properties of oxidized graphene (oxo-G) and observed that graphene-like patches are formed upon aging of oxo-G, indicated by enhanced probe binding and by FTIR spectroscopic analysis. By using a recently developed fluorogenic endoperoxide (EP) probe, we confirmed that during the aging process the amount of EPs on the oxo-G surface is reduced. Furthermore, aging was found to strongly affect cell membrane carrier properties of this material. In particular, freshly prepared oxo-G does not act as a carrier, whereas oxo-G aged for 28 days at 4 °C is an excellent carrier. Based on these data we prepared an optimized oxo-G, which has a low-defect density, binds ONs, is not toxic, and acts as cell membrane carrier. We successfully applied this material to design fluorogenic probes of representative intracellular nucleic acids 28S rRNA and β-actin-mRNA. The results will help to standardize oxidized graphene derivatives for biomedical and bioanalytical applications.
Collapse
Affiliation(s)
- H Pieper
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Henkestrasse 42, 91054, Erlangen, Germany
| | - C E Halbig
- Department of Chemistry and Pharmacy and Institute of Advanced Materials and Processes (ZMP), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Dr.-Mack Strasse 81, 90762, Fürth, Germany
| | - L Kovbasyuk
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Henkestrasse 42, 91054, Erlangen, Germany
| | - M R Filipovic
- Universite de Bordeaux, IBGC, UMR 5095, 33077, Bordeaux, France.,CNRS, IBGC, UMR 5095, 33077, Bordeaux, France
| | - S Eigler
- Department of Chemistry and Pharmacy and Institute of Advanced Materials and Processes (ZMP), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Dr.-Mack Strasse 81, 90762, Fürth, Germany. .,Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, 41258, Göteborg, Sweden.
| | - A Mokhir
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Henkestrasse 42, 91054, Erlangen, Germany.
| |
Collapse
|
9
|
Fluorescent assay for alkaline phosphatase activity based on graphene oxide integrating with λ exonuclease. Biosens Bioelectron 2016; 81:460-464. [DOI: 10.1016/j.bios.2016.03.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/27/2016] [Accepted: 03/14/2016] [Indexed: 11/19/2022]
|
10
|
Exonuclease III-assisted graphene oxide amplified fluorescence anisotropy strategy for ricin detection. Biosens Bioelectron 2016; 85:822-827. [PMID: 27295569 DOI: 10.1016/j.bios.2016.05.091] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/23/2016] [Accepted: 05/30/2016] [Indexed: 11/23/2022]
Abstract
Graphene oxide (GO) is an excellent fluorescence anisotropy (FA) amplifier. However, in the conventional GO amplified FA strategy, one target can only induce the FA change of one fluorophore on probe, which limits the detection sensitivity. Herein, we developed an exonuclease III (Exo III) aided GO amplified FA strategy by using aptamer as an recognition element and ricin B-chain as a proof-of-concept target. The aptamer was hybridized with a blocker sequence and linked onto the surface of magnetic beads (MBs). Upon the addition of ricin B-chain, blocker was released from the surface of MBs and hybridized with the dye-modified probe DNA on the surface of GO through the toehold-mediated strand exchange reaction. The formed blocker-probe DNA duplex triggered the Exo III-assisted cyclic signal amplification by repeating the hybridization and digestion of probe DNA, liberating the fluorophore with several nucleotides (low FA value). Thus, ricin B-chain could be sensitively detected by the significantly decreased FA. The linear range was from 1.0μg/mL to 13.3μg/mL and the limit of detection (LOD) was 400ng/mL. This method improved the sensitivity of FA assay and it could be generalized to any kind of target detection based on the use of an appropriate aptamer.
Collapse
|
11
|
Samanta A, Medintz IL. Nanoparticles and DNA - a powerful and growing functional combination in bionanotechnology. NANOSCALE 2016; 8:9037-95. [PMID: 27080924 DOI: 10.1039/c5nr08465b] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Functionally integrating DNA and other nucleic acids with nanoparticles in all their different physicochemical forms has produced a rich variety of composite nanomaterials which, in many cases, display unique or augmented properties due to the synergistic activity of both components. These capabilities, in turn, are attracting greater attention from various research communities in search of new nanoscale tools for diverse applications that include (bio)sensing, labeling, targeted imaging, cellular delivery, diagnostics, therapeutics, theranostics, bioelectronics, and biocomputing to name just a few amongst many others. Here, we review this vibrant and growing research area from the perspective of the materials themselves and their unique capabilities. Inorganic nanocrystals such as quantum dots or those made from gold or other (noble) metals along with metal oxides and carbon allotropes are desired as participants in these hybrid materials since they can provide distinctive optical, physical, magnetic, and electrochemical properties. Beyond this, synthetic polymer-based and proteinaceous or viral nanoparticulate materials are also useful in the same role since they can provide a predefined and biocompatible cargo-carrying and targeting capability. The DNA component typically provides sequence-based addressability for probes along with, more recently, unique architectural properties that directly originate from the burgeoning structural DNA field. Additionally, DNA aptamers can also provide specific recognition capabilities against many diverse non-nucleic acid targets across a range of size scales from ions to full protein and cells. In addition to appending DNA to inorganic or polymeric nanoparticles, purely DNA-based nanoparticles have recently surfaced as an excellent assembly platform and have started finding application in areas like sensing, imaging and immunotherapy. We focus on selected and representative nanoparticle-DNA materials and highlight their myriad applications using examples from the literature. Overall, it is clear that this unique functional combination of nanomaterials has far more to offer than what we have seen to date and as new capabilities for each of these materials are developed, so, too, will new applications emerge.
Collapse
Affiliation(s)
- Anirban Samanta
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA. and College of Science, George Mason University, Fairfax, Virginia 22030, USA
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA.
| |
Collapse
|
12
|
Li X, Li D, Zhou W, Chai Y, Yuan R, Xiang Y. A microRNA-activated molecular machine for non-enzymatic target recycling amplification detection of microRNA from cancer cells. Chem Commun (Camb) 2016; 51:11084-7. [PMID: 26065649 DOI: 10.1039/c5cc03723a] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The presence of the microRNA-141 target molecules activates the DNA molecular machine powered by the DNA fuel strands, leading to non-enzymatic target cyclic reuse of microRNA-141 and significantly amplified fluorescent signals for sensitive monitoring of microRNA-141 from low numbers of human prostate cancer cells.
Collapse
Affiliation(s)
- Xin Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | | | | | | | | | | |
Collapse
|
13
|
Cao Y, Han P, Wang Z, Chen W, Shu Y, Xiang Y. Binding-regulated click ligation for selective detection of proteins. Biosens Bioelectron 2016; 78:100-105. [DOI: 10.1016/j.bios.2015.11.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/11/2015] [Accepted: 11/12/2015] [Indexed: 11/17/2022]
|
14
|
Li X, Peng Y, Chai Y, Yuan R, Xiang Y. A target responsive aptamer machine for label-free and sensitive non-enzymatic recycling amplification detection of ATP. Chem Commun (Camb) 2016; 52:3673-6. [PMID: 26853492 DOI: 10.1039/c6cc00110f] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Based on a new target-triggered aptamer molecular machine, a label-free and non-enzymatic target recycling amplification strategy for sensitive fluorescence detection of ATP in human serums is described. The presence of the target ATP together with the DNA fuel strand initiates the operation of the aptamer machine and leads to cyclic reuse of ATP and the release of many G-quadruplex sequences, which associate with a fluorescent dye to generate significantly amplified fluorescence signals to achieve sensitive detection of ATP.
Collapse
Affiliation(s)
- Xin Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | | | | | | | | |
Collapse
|
15
|
Huang J, Wang Z, Kim JK, Su X, Li Z. Detecting Arbitrary DNA Mutations Using Graphene Oxide and Ethidium Bromide. Anal Chem 2015; 87:12254-61. [DOI: 10.1021/acs.analchem.5b03369] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Jiahao Huang
- Department
of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Zhenyu Wang
- Department
of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Jang-Kyo Kim
- Department
of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Xuefen Su
- School of Public
Health and Primary Care, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong,
Shatin, New Territories, Hong Kong
| | - Zhigang Li
- Department
of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
16
|
Kitamura Y, Miyahata T, Matsuura H, Hatakeyama K, Taniguchi T, Koinuma M, Matsumoto Y, Ihara T. Graphene Oxide-based Amplified Fluorescence Sensor for Nucleic Acid Detection through Target-catalyzed Hairpin Assembly. CHEM LETT 2015. [DOI: 10.1246/cl.150564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Yusuke Kitamura
- Department of Applied Chemistry and Biochemistry, Kumamoto University
- CREST, Japan Science and Technology Agency
| | - Takaaki Miyahata
- Department of Applied Chemistry and Biochemistry, Kumamoto University
| | - Hirotaka Matsuura
- Department of Applied Chemistry and Biochemistry, Kumamoto University
| | - Kazuto Hatakeyama
- Department of Applied Chemistry and Biochemistry, Kumamoto University
| | - Takaaki Taniguchi
- CREST, Japan Science and Technology Agency
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science
| | - Michio Koinuma
- Department of Applied Chemistry and Biochemistry, Kumamoto University
- CREST, Japan Science and Technology Agency
| | - Yasumichi Matsumoto
- Department of Applied Chemistry and Biochemistry, Kumamoto University
- CREST, Japan Science and Technology Agency
| | - Toshihiro Ihara
- Department of Applied Chemistry and Biochemistry, Kumamoto University
- CREST, Japan Science and Technology Agency
| |
Collapse
|
17
|
Yao D, Wang B, Xiao S, Song T, Huang F, Liang H. What Controls the "Off/On Switch" in the Toehold-Mediated Strand Displacement Reaction on DNA Conjugated Gold Nanoparticles? LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:7055-7061. [PMID: 26057346 DOI: 10.1021/acs.langmuir.5b01671] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In DNA dynamic nanotechnology, a toehold-mediated DNA strand-displacement reaction has demonstrated its capability in building complex autonomous system. In most cases, the reaction is performed in pure DNA solution that is essentially a one-phase system. In the present work, we systematically investigated the reaction in a heterogeneous media, in which the strand that implements a displacing action is conjugated on gold nanoparticles. By monitoring the kinetics of spherical nucleic acid (SNA) assembly driven by toehold-mediated strand displacement reaction, we observed significant differences, i.e., the abrupt jump in behavior of an "off/on switch", in the reaction rate when the invading toehold was extended to eight bases from seven bases. These phenomena are attributed to the effect of steric hindrance arising from the high density of invading strand conjugated to AuNPs. Based on these studies, an INHIBIT logic gate presenting good selectivity was developed.
Collapse
Affiliation(s)
- Dongbao Yao
- †CAS Key Laboratory of Soft Matter Chemistry, ‡iChEM, Department of Polymer Science and Engineering, and §Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Bei Wang
- †CAS Key Laboratory of Soft Matter Chemistry, ‡iChEM, Department of Polymer Science and Engineering, and §Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Shiyan Xiao
- †CAS Key Laboratory of Soft Matter Chemistry, ‡iChEM, Department of Polymer Science and Engineering, and §Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Tingjie Song
- †CAS Key Laboratory of Soft Matter Chemistry, ‡iChEM, Department of Polymer Science and Engineering, and §Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Fujian Huang
- †CAS Key Laboratory of Soft Matter Chemistry, ‡iChEM, Department of Polymer Science and Engineering, and §Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Haojun Liang
- †CAS Key Laboratory of Soft Matter Chemistry, ‡iChEM, Department of Polymer Science and Engineering, and §Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
18
|
Fabrication of enzyme-immobilized halloysite nanotubes for affinity enrichment of lipase inhibitors from complex mixtures. J Chromatogr A 2015; 1392:20-7. [PMID: 25798866 DOI: 10.1016/j.chroma.2015.03.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/28/2015] [Accepted: 03/02/2015] [Indexed: 11/23/2022]
Abstract
Lipase is the key enzyme for catalyzing triglyceride hydrolysis in vivo, and lipase inhibitors have been used in the management of obesity. We present the first report on the use of lipase-adsorbed halloysite nanotubes as an efficient medium for the selective enrichment of lipase inhibitors from natural products. A simple and rapid approach was proposed to fabricate lipase-adsorbed nanotubes through electrostatic interaction. Results showed that more than 85% lipase was adsorbed into nanotubes in 90 min, and approximately 80% of the catalytic activity was maintained compared with free lipase. The specificity and reproducibility of the proposed approach were validated by screening a known lipase inhibitor (i.e., orlistat) from a mixture that contains active and inactive compounds. Moreover, we applied this approach with high performance liquid chromatography-mass spectrometry technique to screen lipase inhibitors from the Magnoliae cortex extract, a medicinal plant used for treating obesity. Two novel biphenyl-type natural lipase inhibitors magnotriol A and magnaldehyde B were identified, and their IC50 values were determined as 213.03 and 96.96 μM, respectively. The ligand-enzyme interactions of magnaldehyde B were further investigated by molecular docking. Our findings proved that enzyme-adsorbed nanotube could be used as a feasible and selective affinity medium for the rapid screening of enzyme inhibitors from complex mixtures.
Collapse
|
19
|
Abstract
In this critical review, we present the recent advances in the design and fabrication of graphene/nucleic acid nanobiointerfaces, as well as the fundamental understanding of their interfacial properties and various nanobiotechnological applications.
Collapse
Affiliation(s)
- Longhua Tang
- State Key Laboratory of Modern Optical Instrumentation
- Department of Optical Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Ying Wang
- Department of Chemistry
- Shanghai Key Laboratory of Chemical Assessment and Sustainability
- UNEP-Tongji Institute of Environment for Sustainable Development
- Tongji University
- Shanghai
| | - Jinghong Li
- Department of Chemistry
- Beijing Key Laboratory for Microanalytical Methods and Instrumentation
- Tsinghua University
- Beijing 100084
- China
| |
Collapse
|
20
|
Xiao X, Li YF, Huang CZ, Zhen SJ. A novel graphene oxide amplified fluorescence anisotropy assay with improved accuracy and sensitivity. Chem Commun (Camb) 2015; 51:16080-3. [DOI: 10.1039/c5cc05902j] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel and versatile graphene oxide (GO) amplified fluorescence anisotropy (FA) strategy with improved accuracy and sensitivity has been successfully developed.
Collapse
Affiliation(s)
- Xue Xiao
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing
| | - Yuan Fang Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing
| | - Cheng Zhi Huang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing
| | - Shu Jun Zhen
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing
| |
Collapse
|
21
|
Deng X, Tang H, Jiang J. Recent progress in graphene-material-based optical sensors. Anal Bioanal Chem 2014; 406:6903-16. [DOI: 10.1007/s00216-014-7895-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/07/2014] [Accepted: 05/13/2014] [Indexed: 12/11/2022]
|