1
|
Suzuki W, Mizuhata Y, Tokitoh N, Teranishi T. Dioxygen Activation by Gold(I)-Distorted Porphyrin Dinuclear Complexes. Chemistry 2024; 30:e202401242. [PMID: 38888030 DOI: 10.1002/chem.202401242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 06/20/2024]
Abstract
Interactions between gold-based materials and dioxygen (O2) have motivated researchers to understand reaction mechanisms for O2 activation by homo- and heterogeneous gold catalysts. In this work, gold(I) porphyrin dinuclear complexes were synthesized with a saddle-distorted porphyrin ligand. The gold(I) porphyrin complexes showed unprecedented O2 activation in the presence of protic solvents to form gold(III) tetradentate porphyrin complexes. Mechanistic insights into the O2 activation by the gold(I) center were elucidated by spectroscopic measurements and theoretical calculations, revealing that dissociation of halides on the gold(I) center by alcohol solvents and hydrogen bonding of an N-H proton in the distorted porphyrin with dioxygen played important roles in establishing the unique reactivities of gold(I) complexes.
Collapse
Affiliation(s)
- Wataru Suzuki
- Institute for Chemical Research, Kyoto University, Gokasho Uji, Kyoto, 611-0011, Japan
- Graduate School of Engineering, University of Hyogo, 2167 Shosha Himeji, Hyogo, 671-2280, Japan
| | - Yoshiyuki Mizuhata
- Institute for Chemical Research, Kyoto University, Gokasho Uji, Kyoto, 611-0011, Japan
- Graduate School of Science, Kyoto University, Gokasho Uji, Kyoto, 611-0011, Japan
- Integrated Research Consortium on Chemical Sciences, Gokasho Uji, Kyoto, 611-0011, Japan
| | - Norihiro Tokitoh
- Institute for Chemical Research, Kyoto University, Gokasho Uji, Kyoto, 611-0011, Japan
- Graduate School of Science, Kyoto University, Gokasho Uji, Kyoto, 611-0011, Japan
- Integrated Research Consortium on Chemical Sciences, Gokasho Uji, Kyoto, 611-0011, Japan
| | - Toshiharu Teranishi
- Institute for Chemical Research, Kyoto University, Gokasho Uji, Kyoto, 611-0011, Japan
- Graduate School of Science, Kyoto University, Gokasho Uji, Kyoto, 611-0011, Japan
| |
Collapse
|
2
|
Hess KM, Leach IF, Wijtenhorst L, Lee H, Klein JEMN. Valence Tautomerism Induced Proton Coupled Electron Transfer:X-H Bond Oxidation with a Dinuclear Au(II) Hydroxide Complex. Angew Chem Int Ed Engl 2024; 63:e202318916. [PMID: 38324462 DOI: 10.1002/anie.202318916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 02/09/2024]
Abstract
We report the preparation and characterization of the dinuclear AuII hydroxide complex AuII 2(L)2(OH)2 (L=N,N'-bis (2,6-dimethyl) phenylformamidinate) and study its reactivity towards weak X-H bonds. Through the interplay of kinetic analysis and computational studies, we demonstrate that the oxidation of cyclohexadiene follows a concerted proton-coupled electron transfer (cPCET) mechanism, a rare type of reactivity for Au complexes. We find that the Au-Au σ-bond undergoes polarization in the PCET event leading to an adjustment of oxidation levels for both Au centers prior to C(sp3)-H bond cleavage. We thus describe the oxidation event as a valence tautomerism-induced PCET where the basicity of one reduced Au-OH unit provides a proton acceptor and the second more oxidized Au center serves as an electron acceptor. The coordination of these events allows for unprecedented radical-type reactivity by a closed shell AuII complex.
Collapse
Affiliation(s)
- Kristopher M Hess
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747, AG Groningen, The Netherlands
| | - Isaac F Leach
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747, AG Groningen, The Netherlands
| | - Lisa Wijtenhorst
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747, AG Groningen, The Netherlands
| | - Hangyul Lee
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747, AG Groningen, The Netherlands
| | - Johannes E M N Klein
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747, AG Groningen, The Netherlands
| |
Collapse
|
3
|
Navarro M, Holzapfel M, Campos J. A Cavity-Shaped Gold(I) Fragment Enables CO 2 Insertion into Au-OH and Au-NH Bonds. Inorg Chem 2023. [PMID: 37367828 DOI: 10.1021/acs.inorgchem.3c00751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
A cavity-shaped linear gold(I) hydroxide complex acts as a platform to access unusual gold monomeric species. Notably, this sterically crowded gold fragment enables the trapping of CO2 via insertion into Au-OH and Au-NH bonds to form unprecedented monomeric gold(I) carbonate and carbamate complexes. In addition, we succeeded in the identification of the first gold(I) terminal hydride bearing a phosphine ligand. The basic nature of the Au(I)-hydroxide moiety is also explored through the reactivity toward other molecules containing acidic protons such as trifluoromethanesulfonic acid and terminal alkynes.
Collapse
Affiliation(s)
- Miquel Navarro
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Consejo Superior de Investigaciones Científicas (CSIC) and University of Sevilla, Sevilla 41092, Spain
| | - Markus Holzapfel
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Consejo Superior de Investigaciones Científicas (CSIC) and University of Sevilla, Sevilla 41092, Spain
| | - Jesús Campos
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Consejo Superior de Investigaciones Científicas (CSIC) and University of Sevilla, Sevilla 41092, Spain
| |
Collapse
|
4
|
Liu F, He S, Li Z, Xiang P, Qi J, Li Z. An overview of blockchain efficient interaction technologies. FRONTIERS IN BLOCKCHAIN 2023. [DOI: 10.3389/fbloc.2023.996070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
The successful operation of Bitcoin has made its underlying blockchain technology receive wide attention. As the application scenarios of blockchain technology are enriched, the requirements for its performance are getting higher. Therefore, it is of utmost importance to effectively solve the problem of high-performance data interaction in the blockchain. In this paper, based on relevant domestic and foreign research literature, we start from the development history of blockchain technology and review the relevant research work on improving the performance of blockchain from three perspectives: on-chain interaction technology, off-chain interaction technology, and cross-chain interaction technology in turn. The on-chain and off-chain interaction technologies improve performance by improving the architecture of the blockchain system. The performance improvement solution of on-chain interaction technology is to modify and optimize the basic protocol and architecture of the blockchain itself to achieve a performance improvement. Still, the impact of this approach is limited in terms of performance improvement. The performance improvement solution of off-chain interaction technology is to transfer part of the data processing to off-chain and only return the final result to on-chain for storage and recording, which reduces the burden of on-chain operation and improves the efficiency of data processing. In terms of cross-chain interaction technology, this paper analyses four mainstream technology, namely, Notary Scheme, Side chain and Chain relay, Hash-Locking, and Distributed Private Key Control, and ultimately concludes through comparative analysis that cross-chain technology has a significant impact on improving blockchain performance. Finally, the paper provides a systematic overview of the above and an outlook on the possible future development of technologies related to enhancing blockchain performance.
Collapse
|
5
|
Engbers S, Klein JEMN. Understanding the Surprising Oxidation Chemistry of Au-OH Complexes. Chemphyschem 2023; 24:e202200475. [PMID: 36104296 PMCID: PMC10091708 DOI: 10.1002/cphc.202200475] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/28/2022] [Indexed: 01/07/2023]
Abstract
Au is known to be fairly redox inactive (in catalysis) and bind oxygen adducts only quite weakly. It is thus rather surprising that stable Au-OH complexes can be synthesized and used as oxidants for both one- and two-electron oxidations. A charged AuIII -OH complex has been shown to cleave C-H and O-H bonds homolytically, resulting in a one-electron reduction of the metal center. Contrasting this, a neutral AuIII -OH complex performs oxygen atom transfer to phosphines, resulting in a two-electron reduction of the hydroxide proton to form a AuIII -H rather than causing a change in oxidation state of the metal. We explore the details of these two examples and draw comparisons to the more conventional reactivity exhibited by AuI -OH. Although the current scope of known Au-OH oxidation chemistry is still in its infancy, the current literature exemplifies the unique properties of Au chemistry and shows promise for future findings in the field.
Collapse
Affiliation(s)
- Silène Engbers
- Molecular Inorganic ChemistryStratingh Institute for ChemistryFaculty of Science and EngineeringUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Johannes E. M. N. Klein
- Molecular Inorganic ChemistryStratingh Institute for ChemistryFaculty of Science and EngineeringUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| |
Collapse
|
6
|
Ma Z, Mahmudov KT, Aliyeva VA, Gurbanov AV, Guedes da Silva MFC, Pombeiro AJ. Peroxides in metal complex catalysis. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213859] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
7
|
Structurally characterized new alkyl- and alkenyl-gallium peroxides having interesting structural motifs. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Ligand effects in the stabilization of gold nanoparticles anchored on the surface of graphene: Implications in catalysis. J Catal 2021. [DOI: 10.1016/j.jcat.2020.12.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Joost M, Saffon-Merceron N, Amgoune A, Bourissou D. Synthesis, Structure, and Reactivity of an NHC Silyl Gold(I) Complex. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00574] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Maximilian Joost
- CNRS, Université Paul Sabatier, Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069), 118 Route de Narbonne, 31062 Toulouse Cedex 09, France
| | | | - Abderrahmane Amgoune
- CNRS, Université Paul Sabatier, Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069), 118 Route de Narbonne, 31062 Toulouse Cedex 09, France
| | - Didier Bourissou
- CNRS, Université Paul Sabatier, Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069), 118 Route de Narbonne, 31062 Toulouse Cedex 09, France
| |
Collapse
|
10
|
Di( tert -butyl)aluminum, -gallium and -indium β-diketonates and β-diketiminates, reactions with oxygen and formation of an unprecedented peroxo-rich hexaperoxotriindium compound. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2017.12.039] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
11
|
Nelson DJ, Nolan SP. Hydroxide complexes of the late transition metals: Organometallic chemistry and catalysis. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.10.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
12
|
Ventura-Espinosa D, Sabater S, Mata JA. Enhancement of gold catalytic activity and stability by immobilization on the surface of graphene. J Catal 2017. [DOI: 10.1016/j.jcat.2017.06.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
13
|
Lee YM, Yoo M, Yoon H, Li XX, Nam W, Fukuzumi S. Direct oxygen atom transfer versus electron transfer mechanisms in the phosphine oxidation by nonheme Mn(iv)-oxo complexes. Chem Commun (Camb) 2017; 53:9352-9355. [DOI: 10.1039/c7cc04035k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Direct oxygen atom transfer from Mn(iv)-oxo to Ph3P occurs, exhibiting significant steric effects of the ortho-substitution of the phenyl group, whereas in the presence of HOTf, the mechanism is switched to electron transfer from Ph3P to Mn(iv)-oxo, exhibiting no steric effects.
Collapse
Affiliation(s)
- Yong-Min Lee
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Korea
| | - Mi Yoo
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Korea
| | - Heejung Yoon
- Department of Material and Life Science
- Graduate School of Engineering
- Osaka University
- Suita
- Japan
| | - Xiao-Xi Li
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Korea
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Korea
- Department of Material and Life Science
| |
Collapse
|
14
|
Brill M, Nahra F, Gómez-Herrera A, Zinser C, Cordes DB, Slawin AMZ, Nolan SP. Gold-N-Heterocyclic Carbene Complexes of Mineral Acids. ChemCatChem 2016. [DOI: 10.1002/cctc.201601290] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Marcel Brill
- EaStCHEM School of Chemistry; University of St Andrews; St Andrews KY16 9ST UK
| | - Fady Nahra
- Department of Inorganic and Physical Chemistry; Ghent University; Krijgslaan 281-S3 9000 Gent Belgium
| | | | - Caroline Zinser
- EaStCHEM School of Chemistry; University of St Andrews; St Andrews KY16 9ST UK
| | - David B. Cordes
- EaStCHEM School of Chemistry; University of St Andrews; St Andrews KY16 9ST UK
| | | | - Steven P. Nolan
- Department of Inorganic and Physical Chemistry; Ghent University; Krijgslaan 281-S3 9000 Gent Belgium
- Chemistry Department, College of Science; King Saud University; P.O. Box 2455 Riyadh 11451 Saudi Arabia
| |
Collapse
|
15
|
Collado A, Bohnenberger J, Oliva-Madrid MJ, Nun P, Cordes DB, Slawin AMZ, Nolan SP. Synthesis of AuI- and AuIII-Bis(NHC) Complexes: Ligand Influence on Oxidative Addition to AuISpecies. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201600791] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Alba Collado
- EaStCHEM; School of Chemistry; University of St Andrews; Purdie Building, North Haugh KY16 9ST St Andrews, Fife United Kingdom
| | - Jan Bohnenberger
- EaStCHEM; School of Chemistry; University of St Andrews; Purdie Building, North Haugh KY16 9ST St Andrews, Fife United Kingdom
| | - María-José Oliva-Madrid
- EaStCHEM; School of Chemistry; University of St Andrews; Purdie Building, North Haugh KY16 9ST St Andrews, Fife United Kingdom
| | - Pierrick Nun
- EaStCHEM; School of Chemistry; University of St Andrews; Purdie Building, North Haugh KY16 9ST St Andrews, Fife United Kingdom
| | - David B. Cordes
- EaStCHEM; School of Chemistry; University of St Andrews; Purdie Building, North Haugh KY16 9ST St Andrews, Fife United Kingdom
| | - Alexandra M. Z. Slawin
- EaStCHEM; School of Chemistry; University of St Andrews; Purdie Building, North Haugh KY16 9ST St Andrews, Fife United Kingdom
| | - Steven P. Nolan
- Department of Inorganic and Physical Chemistry; Ghent University; Krijgslaan 281 - S3 9000 Gent Belgium
- Chemistry Department; College of Science; King Saud University; P. O. Box 2455 11451 Riyadh Saudi Arabia
| |
Collapse
|
16
|
Roşca DA, Wright JA, Bochmann M. An element through the looking glass: exploring the Au-C, Au-H and Au-O energy landscape. Dalton Trans 2015; 44:20785-807. [PMID: 26584519 PMCID: PMC4669034 DOI: 10.1039/c5dt03930d] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 11/12/2015] [Indexed: 11/21/2022]
Abstract
Gold, the archetypal "noble metal", used to be considered of little interest in catalysis. It is now clear that this was a misconception, and a multitude of gold-catalysed transformations has been reported. However, one consequence of the long-held view of gold as inert metal is that its organometallic chemistry contains many "unknowns", and catalytic cycles devised to explain gold's reactivity draw largely on analogies with other transition metals. How realistic are such mechanistic assumptions? In the last few years a number of key compound classes have been discovered that can provide some answers. This Perspective attempts to summarise these developments, with particular emphasis on recently discovered gold(iii) complexes with bonds to hydrogen, oxygen, alkenes and CO ligands.
Collapse
Affiliation(s)
- Dragoş-Adrian Roşca
- School of Chemistry , University of East Anglia , Norwich , NR4 7TJ , UK . ; Tel: +44 (0)16035 92044
- Max-Planck-Institut für Kohlenforschung , D-45470 Mülheim/Ruhr , Germany
| | - Joseph A. Wright
- School of Chemistry , University of East Anglia , Norwich , NR4 7TJ , UK . ; Tel: +44 (0)16035 92044
| | - Manfred Bochmann
- School of Chemistry , University of East Anglia , Norwich , NR4 7TJ , UK . ; Tel: +44 (0)16035 92044
| |
Collapse
|
17
|
Gasperini D, Collado A, Goméz-Suárez A, Cordes DB, Slawin AMZ, Nolan SP. Gold-acetonyl complexes: from side-products to valuable synthons. Chemistry 2015; 21:5403-12. [PMID: 25704115 DOI: 10.1002/chem.201406543] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Indexed: 01/23/2023]
Abstract
A new synthetic strategy was devised leading to the formation of complexes, such as [Au(IPr)(CH2 COCH3)]. The approach capitalizes on the formation of a decomposition product observed in the course of the synthesis of [Au(IPr)(Cl)]. A library of gold acetonyl complexes containing the most common N-heterocyclic carbene (NHC) ligands has been synthesized. These acetonyl complexes are good synthons for the preparation of numerous organogold complexes. Moreover, they have proven to be precatalysts in common gold(I)-catalyzed reactions.
Collapse
Affiliation(s)
- Danila Gasperini
- EaStCHEM, School of Chemistry, University of St. Andrews, Purdie Building, North Haugh, St. Andrews, Fife, KY16 9ST (UK)
| | | | | | | | | | | |
Collapse
|
18
|
Joost M, Estévez L, Mallet-Ladeira S, Miqueu K, Amgoune A, Bourissou D. Enhanced π-Backdonation from Gold(I): Isolation of Original Carbonyl and Carbene Complexes. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201407684] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
19
|
Joost M, Estévez L, Mallet-Ladeira S, Miqueu K, Amgoune A, Bourissou D. Enhanced π-backdonation from gold(I): isolation of original carbonyl and carbene complexes. Angew Chem Int Ed Engl 2014; 53:14512-6. [PMID: 25359485 DOI: 10.1002/anie.201407684] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Indexed: 01/04/2023]
Abstract
The specific electronic properties of bent o-carborane diphosphine gold(I) fragments were exploited to obtain the first classical carbonyl complex of gold [(DPCb)AuCO](+) (ν(CO)=2143 cm(-1) ) and the diphenylcarbene complex [(DPCb)Au(CPh2 )](+) , which is stabilized by the gold fragment rather than the carbene substituents. These two complexes were characterized by spectroscopic and crystallographic means. The [(DPCb)Au](+) fragment plays a major role in their stability, as substantiated by DFT calculations. The bending induced by the diphosphine ligand substantially enhances π-backdonation and thereby allows the isolation of carbonyl and carbene complexes featuring significant π-bond character.
Collapse
Affiliation(s)
- Maximilian Joost
- Laboratoire Hétérochimie Fondamentale et Appliquée, Université Paul Sabatier/CNRS UMR 5069, 118 Route de Narbonne, 31062 Toulouse Cedex 09 (France)
| | | | | | | | | | | |
Collapse
|
20
|
Collado A, Gómez-Suárez A, Webb PB, Kruger H, Bühl M, Cordes DB, Slawin AMZ, Nolan SP. Trapping atmospheric CO2 with gold. Chem Commun (Camb) 2014; 50:11321-4. [PMID: 25116899 DOI: 10.1039/c4cc05910g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The ability of gold-hydroxides to fix CO2 is reported. [Au(IPr)(OH)] and [{Au(IPr)}2(μ-OH)][BF4] react with atmospheric CO2 to form the trigold carbonate complex [{Au(IPr)}3(μ(3)-CO3)][BF4]. Reactivity studies revealed that this complex behaves as two basic and one cationic Au centres, and that it is catalytically active. DFT calculations and kinetic experiments have been carried out.
Collapse
Affiliation(s)
- Alba Collado
- EaStCHEM School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, UK.
| | | | | | | | | | | | | | | |
Collapse
|