1
|
Zhang T, Liu P, Wei H, Sun X, Zeng Y, Zhang X, Cai Y, Cui M, Ma H, Liu W, Sun Y, Yang J. Protein Engineering of Glucosylglycerol Phosphorylase Facilitating Efficient and Highly Regio- and Stereoselective Glycosylation of Polyols in a Synthetic System. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Tong Zhang
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pi Liu
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Hongli Wei
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Xinming Sun
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yan Zeng
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Xuewen Zhang
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yi Cai
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Mengfei Cui
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Hongwu Ma
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Weidong Liu
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yuanxia Sun
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiangang Yang
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
2
|
Mitchell DA, Krieger N. Kinetics of lipase-catalyzed kinetic resolutions of racemic compounds: Reparameterization in terms of specificity constants. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
3
|
Chánique AM, Dimos N, Drienovská I, Calderini E, Pantín MP, Helmer CPO, Hofer M, Sieber V, Parra LP, Loll B, Kourist R. A Structural View on the Stereospecificity of Plant Borneol-Type Dehydrogenases. ChemCatChem 2021; 13:2262-2277. [PMID: 34262629 PMCID: PMC8261865 DOI: 10.1002/cctc.202100110] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/07/2021] [Indexed: 12/16/2022]
Abstract
The development of sustainable processes for the valorization of byproducts and other waste streams remains an ongoing challenge in the field of catalysis. Racemic borneol, isoborneol and camphor are currently produced from α-pinene, a side product from the production of cellulose. The pure enantiomers of these monoterpenoids have numerous applications in cosmetics and act as reagents for asymmetric synthesis, making an enzymatic route for their separation into optically pure enantiomers a desirable goal. Known short-chain borneol-type dehydrogenases (BDHs) from plants and bacteria lack the required specificity, stability or activity for industrial utilization. Prompted by reports on the presence of pure (-)-borneol and (-)-camphor in essential oils from rosemary, we set out to investigate dehydrogenases from the genus Salvia and discovered a dehydrogenase with high specificity (E>120) and high specific activity (>0.02 U mg-1) for borneol and isoborneol. Compared to other specific dehydrogenases, the one reported here shows remarkably higher stability, which was exploited to obtain the first three-dimensional structure of an enantiospecific borneol-type short-chain dehydrogenase. This, together with docking studies, led to the identification of a hydrophobic pocket in the enzyme that plays a crucial role in the stereo discrimination of bornane-type monoterpenoids. The kinetic resolution of borneol and isoborneol can be easily integrated into the existing synthetic route from α-pinene to camphor thereby allowing the facile synthesis of optically pure monoterpenols from an abundant renewable source.
Collapse
Affiliation(s)
- Andrea M Chánique
- Institute of Molecular Biotechnology Graz University of Technology Petersgasse 14 8010 Graz Austria
- Department of Chemical and Bioprocesses Engineering School of Engineering Pontificia Universidad Católica de Chile Vicuña Mackenna 4860 7810000 Santiago Chile
| | - Nicole Dimos
- Institute of Chemistry and Biochemistry Department of Biology Chemistry Pharmacy Laboratory of Structural Biochemistry Free University of Berlin Takustr. 6 14195 Berlin Germany
| | - Ivana Drienovská
- Institute of Molecular Biotechnology Graz University of Technology Petersgasse 14 8010 Graz Austria
| | - Elia Calderini
- Institute of Molecular Biotechnology Graz University of Technology Petersgasse 14 8010 Graz Austria
| | - Mónica P Pantín
- Institute of Molecular Biotechnology Graz University of Technology Petersgasse 14 8010 Graz Austria
| | - Carl P O Helmer
- Institute of Chemistry and Biochemistry Department of Biology Chemistry Pharmacy Laboratory of Structural Biochemistry Free University of Berlin Takustr. 6 14195 Berlin Germany
| | - Michael Hofer
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB Schulgasse 11a 94315 Straubing Germany
| | - Volker Sieber
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB Schulgasse 11a 94315 Straubing Germany
- Technical University of Munich Straubing Campus for Biotechnology and Sustainability Schulgasse 16 94315 Straubing Germany
| | - Loreto P Parra
- Institute for Biological and Medical Engineering Schools of Engineering Medicine and Biological Sciences Pontificia Universidad Católica de Chile Vicuña Mackenna 4860 7810000 Santiago Chile
| | - Bernhard Loll
- Institute of Chemistry and Biochemistry Department of Biology Chemistry Pharmacy Laboratory of Structural Biochemistry Free University of Berlin Takustr. 6 14195 Berlin Germany
| | - Robert Kourist
- Institute of Molecular Biotechnology Graz University of Technology Petersgasse 14 8010 Graz Austria
| |
Collapse
|
4
|
Abstract
Nowadays, biocatalysts have received much more attention in chemistry regarding their potential to enable high efficiency, high yield, and eco-friendly processes for a myriad of applications. Nature’s vast repository of catalysts has inspired synthetic chemists. Furthermore, the revolutionary technologies in bioengineering have provided the fast discovery and evolution of enzymes that empower chemical synthesis. This article attempts to deliver a comprehensive overview of the last two decades of investigation into enzymatic reactions and highlights the effective performance progress of bio-enzymes exploited in organic synthesis. Based on the types of enzymatic reactions and enzyme commission (E.C.) numbers, the enzymes discussed in the article are classified into oxidoreductases, transferases, hydrolases, and lyases. These applications should provide us with some insight into enzyme design strategies and molecular mechanisms.
Collapse
|
5
|
Xu L, Wang C, Li Y, Xu X, Zhou L, Liu N, Wu Z. Crystallization‐Driven Asymmetric Helical Assembly of Conjugated Block Copolymers and the Aggregation Induced White‐light Emission and Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Lei Xu
- Department of Polymer Science and EngineeringSchool of Chemistry and Chemical EngineeringAnhui Key Laboratory of Advanced Catalytic Materials and Reaction EngineeringHefei University of Technology Hefei 230009 Anhui Province China
| | - Chao Wang
- Department of Polymer Science and EngineeringSchool of Chemistry and Chemical EngineeringAnhui Key Laboratory of Advanced Catalytic Materials and Reaction EngineeringHefei University of Technology Hefei 230009 Anhui Province China
| | - Yan‐Xiang Li
- Department of Polymer Science and EngineeringSchool of Chemistry and Chemical EngineeringAnhui Key Laboratory of Advanced Catalytic Materials and Reaction EngineeringHefei University of Technology Hefei 230009 Anhui Province China
| | - Xun‐Hui Xu
- Department of Polymer Science and EngineeringSchool of Chemistry and Chemical EngineeringAnhui Key Laboratory of Advanced Catalytic Materials and Reaction EngineeringHefei University of Technology Hefei 230009 Anhui Province China
| | - Li Zhou
- Department of Polymer Science and EngineeringSchool of Chemistry and Chemical EngineeringAnhui Key Laboratory of Advanced Catalytic Materials and Reaction EngineeringHefei University of Technology Hefei 230009 Anhui Province China
| | - Na Liu
- Department of Polymer Science and EngineeringSchool of Chemistry and Chemical EngineeringAnhui Key Laboratory of Advanced Catalytic Materials and Reaction EngineeringHefei University of Technology Hefei 230009 Anhui Province China
| | - Zong‐Quan Wu
- Department of Polymer Science and EngineeringSchool of Chemistry and Chemical EngineeringAnhui Key Laboratory of Advanced Catalytic Materials and Reaction EngineeringHefei University of Technology Hefei 230009 Anhui Province China
| |
Collapse
|
6
|
Xu L, Wang C, Li YX, Xu XH, Zhou L, Liu N, Wu ZQ. Crystallization-Driven Asymmetric Helical Assembly of Conjugated Block Copolymers and the Aggregation Induced White-light Emission and Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2020; 59:16675-16682. [PMID: 32543000 DOI: 10.1002/anie.202006561] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Indexed: 12/12/2022]
Abstract
Controlling the self-assembly morphology of π-conjugated block copolymer is of great interesting. Herein, amphiphilic poly(3-hexylthiophene)-block-poly(phenyl isocyanide)s (P3HT-b-PPI) copolymers composed of π-conjugated P3HT and optically active helical PPI segments were readily prepared. Taking advantage of the crystallizable nature of P3HT and the chirality of the helical PPI segment, crystallization-driven asymmetric self-assembly (CDASA) of the block copolymers lead to the formation of single-handed helical nanofibers with controlled length, narrow dispersity, and well-defined helicity. During the self-assembly process, the chirality of helical PPI was transferred to the supramolecular assemblies, giving the helical assemblies large optical activity. The single-handed helical assemblies of the block copolymers exhibited interesting white-light emission and circularly polarized luminescence (CPL). The handedness and dissymmetric factor of the induced CPL can be finely tuned through the variation on the helicity and length of the helical nanofibers.
Collapse
Affiliation(s)
- Lei Xu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, 230009, Anhui Province, China
| | - Chao Wang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, 230009, Anhui Province, China
| | - Yan-Xiang Li
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, 230009, Anhui Province, China
| | - Xun-Hui Xu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, 230009, Anhui Province, China
| | - Li Zhou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, 230009, Anhui Province, China
| | - Na Liu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, 230009, Anhui Province, China
| | - Zong-Quan Wu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, 230009, Anhui Province, China
| |
Collapse
|
7
|
Franceus J, Desmet T. Sucrose Phosphorylase and Related Enzymes in Glycoside Hydrolase Family 13: Discovery, Application and Engineering. Int J Mol Sci 2020; 21:E2526. [PMID: 32260541 PMCID: PMC7178133 DOI: 10.3390/ijms21072526] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 02/07/2023] Open
Abstract
Sucrose phosphorylases are carbohydrate-active enzymes with outstanding potential for the biocatalytic conversion of common table sugar into products with attractive properties. They belong to the glycoside hydrolase family GH13, where they are found in subfamily 18. In bacteria, these enzymes catalyse the phosphorolysis of sucrose to yield α-glucose 1-phosphate and fructose. However, sucrose phosphorylases can also be applied as versatile transglucosylases for the synthesis of valuable glycosides and sugars because their broad promiscuity allows them to transfer the glucosyl group of sucrose to a diverse collection of compounds other than phosphate. Numerous process and enzyme engineering studies have expanded the range of possible applications of sucrose phosphorylases ever further. Moreover, it has recently been discovered that family GH13 also contains a few novel phosphorylases that are specialised in the phosphorolysis of sucrose 6F-phosphate, glucosylglycerol or glucosylglycerate. In this review, we provide an overview of the progress that has been made in our understanding and exploitation of sucrose phosphorylases and related enzymes over the past ten years.
Collapse
Affiliation(s)
| | - Tom Desmet
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium;
| |
Collapse
|
8
|
Gudiminchi RK, Nidetzky B. Walking a Fine Line with Sucrose Phosphorylase: Efficient Single-Step Biocatalytic Production of l-Ascorbic Acid 2-Glucoside from Sucrose. Chembiochem 2017; 18:1387-1390. [PMID: 28426168 DOI: 10.1002/cbic.201700215] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Indexed: 01/04/2023]
Abstract
The 2-O-α-d-glucoside of l-ascorbic acid (AA-2G) is a highly stabilized form of vitamin C, with important industrial applications in cosmetics, food, and pharmaceuticals. AA-2G is currently produced through biocatalytic glucosylation of l-ascorbic acid from starch-derived oligosaccharides. Sucrose would be an ideal substrate for AA-2G synthesis, but it lacks a suitable transglycosidase. We show here that in a narrow pH window (pH 4.8-6.0, with sharp optimum at pH 5.2), sucrose phosphorylases catalyzed the 2-O-α-glucosylation of l-ascorbic acid from sucrose with high efficiency and perfect site-selectivity. Optimized synthesis with the enzyme from Bifidobacterium longum at 40 °C gave a concentrated product (155 g L-1 ; 460 mm), from which pure AA-2G was readily recovered in ∼50 % overall yield, thus providing the basis for advanced production. The peculiar pH dependence is suggested to arise from a "reverse-protonation" mechanism in which the catalytic base Glu232 on the glucosyl-enzyme intermediate must be protonated for attack on the anomeric carbon from the 2-hydroxyl of the ionized l-ascorbate substrate.
Collapse
Affiliation(s)
| | - Bernd Nidetzky
- Austrian Centre of Industrial Biotechnology, 14 Petersgasse, 8010, Graz, Austria.,Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, 12/1 Petersgasse, 8010, Graz, Austria
| |
Collapse
|
9
|
Kitaoka M. Diversity of phosphorylases in glycoside hydrolase families. Appl Microbiol Biotechnol 2015; 99:8377-90. [PMID: 26293338 DOI: 10.1007/s00253-015-6927-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/05/2015] [Indexed: 01/02/2023]
Abstract
Phosphorylases are useful catalysts for the practical preparation of various sugars. The number of known specificities was 13 in 2002 and is now 30. The drastic increase in available genome sequences has facilitated the discovery of novel activities. Most of these novel phosphorylase activities have been identified through the investigations of glycoside hydrolase families containing known phosphorylases. Here, the diversity of phosphorylases in each family is described in detail.
Collapse
Affiliation(s)
- Motomitsu Kitaoka
- National Food Research Institute, National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba, Ibaraki, 305-8642, Japan.
| |
Collapse
|
10
|
Kapoor M, Winter T, Lis L, Georg GI, Siegel RA. Rapid delivery of diazepam from supersaturated solutions prepared using prodrug/enzyme mixtures: toward intranasal treatment of seizure emergencies. AAPS JOURNAL 2014; 16:577-85. [PMID: 24700272 DOI: 10.1208/s12248-014-9596-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 03/20/2014] [Indexed: 11/30/2022]
Abstract
Current treatments for seizure emergencies, such as status epilepticus, include intravenous or rectal administration of benzodiazepines. While intranasal delivery of these drugs is desirable, the small volume of the nasal cavity and low drug solubility pose significant difficulties. Here, we prepared supersaturated diazepam solutions under physiological conditions and without precipitation, using a prodrug/enzyme system. Avizafone, a peptide prodrug of diazepam, was delivered with--Aspergillus oryzae (A.O.) protease, an enzyme identified from a pool of hydrolytic enzymes in assay buffer, pH 7.4 at 32°C. This enzyme converted avizafone to diazepam at supersaturated concentrations. In vitro permeability studies were performed at various prodrug/enzyme ratios using Madin-Darby canine kidney II-wild type (MDCKII-wt) monolayers, a representative model of the nasal epithelium. Monolayer integrity was examined using TEER measurement and the lucifer yellow permeability assay. Prodrug/drug concentrations were measured using HPLC. Enzyme kinetics with avizafone-protease mixtures revealed K(M) = 1,501 ± 232 μM and V(max) = 1,369 ± 94 μM/s. Prodrug-protease mixtures, when co-delivered apically onto MDCKII-wt monolayers, showed 2-17.6-fold greater diazepam flux (S = 1.3-15.3) compared to near-saturated diazepam (S = 0.7). Data for prodrug conversion upstream (apical side) and drug permeability downstream (basolateral side) fitted reasonably well to a previously developed in vitro two compartment pharmacokinetic model. Avizafone-protease mixtures resulted in supersaturated diazepam in less than 5 min, with the rate and extent of supersaturation determined by the prodrug/enzyme ratio. Together, these results suggest that an intranasal avizafone-protease system may provide a rapid and alternative means of diazepam delivery.
Collapse
Affiliation(s)
- Mamta Kapoor
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, 55455, USA
| | | | | | | | | |
Collapse
|