1
|
Butler SK, Ashbrook EP, Tonks IA. Synthesis of Ti Complexes Supported by an ortho-terphenoxide Ligand and their Applications in Alkyne Hydroamination Catalysis. Organometallics 2023; 42:1732-1739. [PMID: 37842019 PMCID: PMC10575472 DOI: 10.1021/acs.organomet.2c00593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The synthesis of a series of Ti complexes of an aryl-linked bis-phenoxide ligand, 3,3''-di-tert-butyl-5,5''-dimethyl-[1,1':2',1''-terphenyl]-2,2''-bis(olate), (TPO)H2, is reported. This ortho-linked terphenyl ligand builds on previously reported meta- and para- linked terphenyl based ligands, completing the isomeric series of terphenoxide ligands. The 4-coordinate (TPO)Ti(NMe2)2 is an active catalyst for alkyne hydroamination with a variety of arylamines, revealing good regioselectivity in reactions with unsymmetric alkynes. Terminal alkynes such as phenylacetylene undergo additional insertion reactions with the key azatitanacyclobutene intermediates, providing further evidence that Ti aryloxide complexes are susceptible to this further reactivity.
Collapse
Affiliation(s)
- Steven K. Butler
- Department of Chemistry, University of Minnesota-Twin Cities, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Ethan P. Ashbrook
- Department of Chemistry, University of Minnesota-Twin Cities, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Ian A. Tonks
- Department of Chemistry, University of Minnesota-Twin Cities, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
2
|
Huh DN, Koby RF, Stuart ZE, Dunscomb RJ, Schley ND, Tonks IA. Reassessment of N 2 activation by low-valent Ti-amide complexes: a remarkable side-on bridged bis-N 2 adduct is actually an arene adduct. Chem Sci 2022; 13:13330-13337. [PMID: 36507167 PMCID: PMC9682900 DOI: 10.1039/d2sc04368h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/13/2022] [Indexed: 12/15/2022] Open
Abstract
The complex {(TMEDA)2Li}{[Ti(N(TMS)2)2]2(μ-η2:η2-N2)2} (5-Li) is the only transition metal N2 complex ever reported with two side-on N2 adducts. In this report, the similarity of 5-Li to a new inverse sandwich toluene adduct {(PhMe)K}{[Ti(N(TMS)2)2]2(μ-PhMe)} (6-K) necessitated a re-examination of the structure of 5-Li. Through a reassessment of the original disordered crystal data of 5-Li and new independent syntheses brought about through revisitation of the original reaction conditions, 5-Li has been re-assigned as an inverse sandwich toluene adduct, {(TMEDA)2Li}{[Ti(N(TMS)2)2]2(μ-PhMe)} (6-Li). The original crystal data could be fitted almost equally well to structural solutions as either 5-Li or 6-Li, and this study highlights the importance of a holistic examination of modeled data and the need for secondary/complementary analytical methods in paramagnetic inorganic syntheses, especially when presenting unique and unexpected results. In addition, further examination of reduction reactions of Ti[N(TMS)2]3 and [(TMS)2N]2TiCl(THF) in the presence of KC8 revealed rich solvent- and counterion-dependent chemistry, including several degrees of N2 activation (bridging nitride complexes, terminal bridging N2 complexes) as well as ligand C-H activation.
Collapse
Affiliation(s)
- Daniel N Huh
- Department of Chemistry, University of Minnesota - Twin Cities Minneapolis MN 55455 USA
| | - Ross F Koby
- Department of Chemistry, University of Minnesota - Twin Cities Minneapolis MN 55455 USA
| | - Zoe E Stuart
- Department of Chemistry, University of Minnesota - Twin Cities Minneapolis MN 55455 USA
| | - Rachel J Dunscomb
- Department of Chemistry, University of Minnesota - Twin Cities Minneapolis MN 55455 USA
| | - Nathan D Schley
- Department of Chemistry, Vanderbilt University Nashville TN 37235 USA
| | - Ian A Tonks
- Department of Chemistry, University of Minnesota - Twin Cities Minneapolis MN 55455 USA
| |
Collapse
|
3
|
del Horno E, Jover J, Mena M, Pérez‐Redondo A, Yélamos C. Dinitrogen Binding at a Trititanium Chloride Complex and Its Conversion to Ammonia under Ambient Conditions. Angew Chem Int Ed Engl 2022; 61:e202204544. [PMID: 35748604 PMCID: PMC9542190 DOI: 10.1002/anie.202204544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Indexed: 12/18/2022]
Abstract
Reaction of [TiCp*Cl3 ] (Cp*=η5 -C5 Me5 ) with one equivalent of magnesium in tetrahydrofuran at room temperature affords the paramagnetic trinuclear complex [{TiCp*(μ-Cl)}3 (μ3 -Cl)], which reacts with dinitrogen under ambient conditions to give the diamagnetic derivative [{TiCp*(μ-Cl)}3 (μ3 -η1 : η2 : η2 -N2 )] and the titanium(III) dimer [{TiCp*Cl(μ-Cl)}2 ]. The structure of the trinuclear mixed-valence complexes has been studied by experimental and theoretical methods and the latter compound represents the first well-defined example of the μ3 -η1 : η2 : η2 coordination mode of the dinitrogen molecule. The reaction of [{TiCp*(μ-Cl)}3 (μ3 -η1 : η2 : η2 -N2 )] with excess HCl in tetrahydrofuran results in clean NH4 Cl formation with regeneration of the starting material [TiCp*Cl3 ]. Therefore, a cyclic ammonia synthesis under ambient conditions can be envisioned by alternating N2 /HCl atmospheres in a [TiCp*Cl3 ]/Mg(excess) reaction mixture in tetrahydrofuran.
Collapse
Affiliation(s)
- Estefanía del Horno
- Departamento de Química Orgánica y Química InorgánicaInstituto de Investigación Química “Andrés M. del Río” (IQAR)Universidad de Alcalá28805Alcalá de Henares-MadridSpain
| | - Jesús Jover
- Secció de Química InorgànicaDepartament de Química Inorgànica i OrgànicaInstitut de Química Teòrica i Computacional (IQTC-UB)Universitat de BarcelonaMartí i Franquès 1-1108028BarcelonaSpain
| | - Miguel Mena
- Departamento de Química Orgánica y Química InorgánicaInstituto de Investigación Química “Andrés M. del Río” (IQAR)Universidad de Alcalá28805Alcalá de Henares-MadridSpain
| | - Adrián Pérez‐Redondo
- Departamento de Química Orgánica y Química InorgánicaInstituto de Investigación Química “Andrés M. del Río” (IQAR)Universidad de Alcalá28805Alcalá de Henares-MadridSpain
| | - Carlos Yélamos
- Departamento de Química Orgánica y Química InorgánicaInstituto de Investigación Química “Andrés M. del Río” (IQAR)Universidad de Alcalá28805Alcalá de Henares-MadridSpain
| |
Collapse
|
4
|
Yelamos C, del Horno E, Jover J, Mena M, Perez-Redondo A. Dinitrogen Binding at a Trititanium Chloride Complex and Its Conversion to Ammonia under Ambient Conditions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Carlos Yelamos
- Universidad de Alcala Quimica Organica y Quimica Inorganica Campus Universitario, Edificio Farmacia 28805 Alcala de Henares SPAIN
| | - Estefania del Horno
- Universidad de Alcala Departamento de Quimica Organica y Quimica Inorganica Edificio de Farmacia, Campus Universitario 28805 Alcalá de Henares, Madrid SPAIN
| | - Jesus Jover
- Universitat de Barcelona Facultat de Quimica Deapartment de Quimica Inorganica i Organica Marti i Franques 1-11 08028 Barcelona SPAIN
| | - Miguel Mena
- Universidad de Alcala Departamento de Quimica Organica y Quimica Inorganica Edificio de Farmacia, Campus Universitario 28805 Alcalá de Henares, Madrid SPAIN
| | - Adrian Perez-Redondo
- Universidad de Alcala Departamento de Quimica Organica y Quimica Inorganica Edificio de Farmacia, Campus Universitario 28805 Alcalá de Henares, Madrid SPAIN
| |
Collapse
|
5
|
Zhao Q, Wu XF, Xiao X, Wang ZY, Zhao J, Wang BW, Lei H. Group 4 Metallocene Complexes Supported by a Redox-Active O, C-Chelating Ligand. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Qiuting Zhao
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Xiao-Fan Wu
- Beijing National Laboratory of Molecular Science, Beijing Key Laboratory for Magnetoelectric Materials and Devices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xiang Xiao
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Zi-Yu Wang
- Beijing National Laboratory of Molecular Science, Beijing Key Laboratory for Magnetoelectric Materials and Devices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jixing Zhao
- Analysis and Testing Center, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Bing-Wu Wang
- Beijing National Laboratory of Molecular Science, Beijing Key Laboratory for Magnetoelectric Materials and Devices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Hao Lei
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| |
Collapse
|
6
|
Bae DY, Lee G, Lee E. Reduction of highly bulky triphenolamine molybdenum nitrido and chloride complexes. Dalton Trans 2021; 50:14139-14143. [PMID: 34635894 DOI: 10.1039/d1dt02375f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transition metal nitrides are key intermediates in the catalytic reduction of dinitrogen to ammonia. To date, transition metal nitride complexes with the triphenolamine (TPA) ligand have not been reported and the system with the ligand has been much less studied for ammonia formation compared with other systems. Herein, we report a series of molybdenum complexes supported by a sterically demanding TPA ligand, including a nitrido complex NMo(TPA). We achieved the stoichiometric conversion of the nitride moiety into ammonia under ambient conditions by adding proton and electron sources to NMo(TPA). However, the catalytic turnover for N2 reduction to ammonia was not observed in the triphenolamine ligand system unlike the Schrock system-triamidoamine ligand. Density functional theory calculation revealed that the molybdenum center favors binding NH3 over N2 by 16.9 kcal mol-1 and the structural lability of the trigonal bipyramidal (TBP) molybdenum complex seems to prevent catalytic turnover. Our systematic study showed that the electronegativity and bond length of ancillary ligands determine the preference between N2 and NH3, suggesting a systematic design strategy for improvement.
Collapse
Affiliation(s)
- Dae Young Bae
- Department of Chemistry, Pohang University of Science and Technology, 77 Cheongam-Ro, 37673, Pohang, Republic of Korea.
| | - Gunhee Lee
- Department of Chemistry, Pohang University of Science and Technology, 77 Cheongam-Ro, 37673, Pohang, Republic of Korea.
| | - Eunsung Lee
- Department of Chemistry, Pohang University of Science and Technology, 77 Cheongam-Ro, 37673, Pohang, Republic of Korea.
| |
Collapse
|
7
|
Bae DY, Lee G, Lee E. Fixation of Dinitrogen at an Asymmetric Binuclear Titanium Complex. Inorg Chem 2021; 60:12813-12822. [PMID: 34492761 DOI: 10.1021/acs.inorgchem.1c01050] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A new type of dititanium dinitrogen complex supported by a triphenolamine (TPA) ligand is reported. Analysis by single-crystal X-ray diffraction and Raman and NMR spectroscopy reveals different coordination geometries for the two titanium centers. Hence, coordination of TPA and a nitrogen ligand results in trigonal-bipyramidal geometry, while an octahedral titanium center is obtained upon additional coordination of an ethoxide generated upon C-O bond cleavage in a diethyl ether solvent molecule. The titanium complex successfully generates ammonia in the presence of an excess amount of PCy3HI and KC8 in 154% yield (per titanium atom). A titanium complex with a bulkier TPA does not form a dinitrogen complex, and mononuclear titanium dinitrogen complexes were not accessible, presumably because of the high tendency of early transition metals to form binuclear dinitrogen complexes.
Collapse
Affiliation(s)
- Dae Young Bae
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Gunhee Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Eunsung Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| |
Collapse
|
8
|
Reinholdt A, Pividori D, Laughlin AL, DiMucci IM, MacMillan SN, Jafari MG, Gau MR, Carroll PJ, Krzystek J, Ozarowski A, Telser J, Lancaster KM, Meyer K, Mindiola DJ. A Mononuclear and High-Spin Tetrahedral Ti II Complex. Inorg Chem 2020; 59:17834-17850. [PMID: 33258366 PMCID: PMC7928263 DOI: 10.1021/acs.inorgchem.0c02586] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Indexed: 12/31/2022]
Abstract
A high-spin, mononuclear TiII complex, [(TptBu,Me)TiCl] [TptBu,Me- = hydridotris(3-tert-butyl-5-methylpyrazol-1-yl)borate], confined to a tetrahedral ligand-field environment, has been prepared by reduction of the precursor [(TptBu,Me)TiCl2] with KC8. Complex [(TptBu,Me)TiCl] has a 3A2 ground state (assuming C3v symmetry based on structural studies), established via a combination of high-frequency and -field electron paramagnetic resonance (HFEPR) spectroscopy, solution and solid-state magnetic studies, Ti K-edge X-ray absorption spectroscopy (XAS), and both density functional theory and ab initio (complete-active-space self-consistent-field, CASSCF) calculations. The formally and physically defined TiII complex readily binds tetrahydrofuran (THF) to form the paramagnetic adduct [(TptBu,Me)TiCl(THF)], which is impervious to N2 binding. However, in the absence of THF, the TiII complex captures N2 to produce the diamagnetic complex [(TptBu,Me)TiCl]2(η1,η1;μ2-N2), with a linear Ti═N═N═Ti topology, established by single-crystal X-ray diffraction. The N2 complex was characterized using XAS as well as IR and Raman spectroscopies, thus establishing this complex to possess two TiIII centers covalently bridged by an N22- unit. A π acid such as CNAd (Ad = 1-adamantyl) coordinates to [(TptBu,Me)TiCl] without inducing spin pairing of the d electrons, thereby forming a unique high-spin and five-coordinate TiII complex, namely, [(TptBu,Me)TiCl(CNAd)]. The reducing power of the coordinatively unsaturated TiII-containing [(ΤptBu,Me)TiCl] species, quantified by electrochemistry, provides access to a family of mononuclear TiIV complexes of the type [(TptBu,Me)Ti═E(Cl)] (with E2- = NSiMe3, N2CPh2, O, and NH) by virtue of atom- or group-transfer reactions using various small molecules such as N3SiMe3, N2CPh2, N2O, and the bicyclic amine 2,3:5,6-dibenzo-7-azabicyclo[2.2.1]hepta-2,5-diene.
Collapse
Affiliation(s)
- Anders Reinholdt
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Daniel Pividori
- Inorganic
Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Alexander L. Laughlin
- Baker
Laboratory, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Ida M. DiMucci
- Baker
Laboratory, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Samantha N. MacMillan
- Baker
Laboratory, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Mehrafshan G. Jafari
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Michael R. Gau
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Patrick J. Carroll
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - J. Krzystek
- National
High Magnetic Field Laboratory, Florida
State University, Tallahassee, Florida 32310, United States
| | - Andrew Ozarowski
- National
High Magnetic Field Laboratory, Florida
State University, Tallahassee, Florida 32310, United States
| | - Joshua Telser
- Department
of Biological, Physical and Health Sciences, Roosevelt University, Chicago, Illinois 60605, United States
| | - Kyle M. Lancaster
- Baker
Laboratory, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Karsten Meyer
- Inorganic
Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Daniel J. Mindiola
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
9
|
Haiduc I. Inverse coordination metal complexes with oxalate and sulfur, selenium and nitrogen analogues as coordination centers. Topology and systematization. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1789120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ionel Haiduc
- Facultatea de Chimie, Universitatea Babeş-Bolyai, Cluj-Napoca, Romania
| |
Collapse
|
10
|
Abstract
Activation of dinitrogen plays an important role in daily anthropogenic life, and the processes by which this fixation occurs have been a longstanding and significant research focus within the community. One of the major fields of dinitrogen activation research is the use of multimetallic compounds to reduce and/or activate N2 into a more useful nitrogen-atom source, such as ammonia. Here we report a comprehensive review of multimetallic-dinitrogen complexes and their utility toward N2 activation, beginning with the d-block metals from Group 4 to Group 11, then extending to Group 13 (which is exclusively populated by B complexes), and finally the rare-earth and actinide species. The review considers all polynuclear metal aggregates containing two or more metal centers in which dinitrogen is coordinated or activated (i.e., partial or complete cleavage of the N2 triple bond in the observed product). Our survey includes complexes in which mononuclear N2 complexes are used as building blocks to generate homo- or heteromultimetallic dinitrogen species, which allow one to evaluate the potential of heterometallic species for dinitrogen activation. We highlight some of the common trends throughout the periodic table, such as the differences between coordination modes as it relates to N2 activation and potential functionalization and the effect of polarizing the bridging N2 ligand by employing different metal ions of differing Lewis acidities. By providing this comprehensive treatment of polynuclear metal dinitrogen species, this Review aims to outline the past and provide potential future directions for continued research in this area.
Collapse
Affiliation(s)
- Devender Singh
- Center for Catalysis, and Florida Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA
| | - William R. Buratto
- Center for Catalysis, and Florida Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA
| | - Juan F. Torres
- Center for Catalysis, and Florida Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA
| | - Leslie J. Murray
- Center for Catalysis, and Florida Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA
| |
Collapse
|
11
|
Anker MD, McMullin CL, Rajabi NA, Coles MP. Carbon–Carbon Bond Forming Reactions Promoted by Aluminyl and Alumoxane Anions: Introducing the Ethenetetraolate Ligand. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005301] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Mathew D. Anker
- School of Chemical and Physical Sciences Victoria University of Wellington PO Box 600 Wellington 6012 New Zealand
| | | | | | - Martyn P. Coles
- School of Chemical and Physical Sciences Victoria University of Wellington PO Box 600 Wellington 6012 New Zealand
| |
Collapse
|
12
|
Anker MD, McMullin CL, Rajabi NA, Coles MP. Carbon-Carbon Bond Forming Reactions Promoted by Aluminyl and Alumoxane Anions: Introducing the Ethenetetraolate Ligand. Angew Chem Int Ed Engl 2020; 59:12806-12810. [PMID: 32378311 DOI: 10.1002/anie.202005301] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Indexed: 11/09/2022]
Abstract
[K{Al(NONDipp )}]2 (NONDipp =[O(SiMe2 NDipp)2 ]2- , Dipp=2,6-iPr2 C6 H3 ) reacts with CS2 to afford the trithiocarbonate species [K(OEt2 )][Al(NONDipp )(CS3 )] 1 or the ethenetetrathiolate complex, [K{Al(NONDipp )(S2 C)}]2 [3]2 . The dimeric alumoxane [K{Al(NONDipp )(O)}]2 reacts with carbon monoxide to afford the oxygen analogue of 3, [K{Al(NONDipp )(O2 C)}]2 [4]2 containing the hitherto unknown ethenetetraolate ligand, [C2 O4 ]4- .
Collapse
Affiliation(s)
- Mathew D Anker
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington, 6012, New Zealand
| | | | - Nasir A Rajabi
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK
| | - Martyn P Coles
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington, 6012, New Zealand
| |
Collapse
|
13
|
Ohta S, Takahashi S, Takenaka A, Akazawa Y, Miyamoto R, Okazaki M. Synthesis, Structures, and Solution Dynamics of Titanium and Zirconium Complexes Carrying a Bis(indolyl) and Two Diethylamido Ligands. Inorg Chem 2019; 58:15520-15528. [PMID: 31664824 DOI: 10.1021/acs.inorgchem.9b02566] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Indolyl is the anionic species obtained from the deprotonation of the N-H group of indole. Group 4 transition-metal complexes that carry indolyl-based polydentate ligands represent promising homogeneous catalysts for, e.g., olefin polymerization, hydroamination, and nitrogen-fixation reactions due to the weak π-donation and electron-withdrawing properties, as well as the low basicity of indolyl. In this study, we systematically investigated the synthesis and structures of titanium and zirconium complexes that carry deprotonated 2,2'-bis(indolyl)methane ligands (henceforth: bis(indolyl) ligands) and two diethylamido ligands. We found that the coordination geometry of the indolyl nitrogen atom in such bis(indolyl) ligands is affected by the steric impact of the substituents attached to the central aromatic ring. Moreover, we examined the dynamics of such bis(indolyl) ligands in solution for the corresponding zirconium complexes, and the mechanism was discussed in conjunction with DFT calculations. The results of this study suggest that bis(indolyl) ligands may also serve as coordinatively flexible ancillary ligands, and indicate the feasibility of an expansion from bis(indolyl) to bis(indolyl)-donor ligands.
Collapse
Affiliation(s)
- Shun Ohta
- Department of Frontier Materials Chemistry, Graduate School of Science and Technology , Hirosaki University , Hirosaki 036-8561 , Japan
| | - Shiona Takahashi
- Department of Frontier Materials Chemistry, Graduate School of Science and Technology , Hirosaki University , Hirosaki 036-8561 , Japan
| | - Amon Takenaka
- Department of Frontier Materials Chemistry, Graduate School of Science and Technology , Hirosaki University , Hirosaki 036-8561 , Japan
| | - Yuta Akazawa
- Department of Frontier Materials Chemistry, Graduate School of Science and Technology , Hirosaki University , Hirosaki 036-8561 , Japan
| | - Ryo Miyamoto
- Department of Frontier Materials Chemistry, Graduate School of Science and Technology , Hirosaki University , Hirosaki 036-8561 , Japan
| | - Masaaki Okazaki
- Department of Frontier Materials Chemistry, Graduate School of Science and Technology , Hirosaki University , Hirosaki 036-8561 , Japan
| |
Collapse
|
14
|
Affiliation(s)
- Ionel Haiduc
- Facultatea de Chimie, Universitatea Babeş-Bolyai, Cluj-Napoca, Romania
| |
Collapse
|
15
|
Low CH, Rosenberg JN, Lopez MA, Agapie T. Oxidative Coupling with Zr(IV) Supported by a Noninnocent Anthracene-Based Ligand: Application to the Catalytic Cotrimerization of Alkynes and Nitriles to Pyrimidines. J Am Chem Soc 2018; 140:11906-11910. [PMID: 30153728 DOI: 10.1021/jacs.8b07418] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We report the synthesis and reactivity of Zr complexes supported by a 9,10-anthracenediyl-linked bisphenoxide ligand, L. ZrIVLBn2 (1) undergoes facile photolytic reduction with concomitant formation of bibenzyl and ZrIVL(THF)3 (2), which displays a two-electron reduced anthracene moiety. Leveraging ligand-stored reducing equivalents, 2 promotes the oxidative coupling of internal and terminal alkynes to isolable zirconacyclopentadiene complexes, demonstrating the reversible utilization of anthracene as a redox reservoir. With diphenylacetylene under CO, cyclopentadienone is formed stoichiometrically. 2 is competent for the catalytic formation of pyrimidines from alkynes and nitriles. Mechanistic studies suggest that selectivity for pyrimidine originates from preferred formation of an azazirconacyclopentadiene intermediate, which reacts preferentially with nitriles over alkynes.
Collapse
Affiliation(s)
- Choon Heng Low
- Division of Chemistry and Chemical Engineering , California Institute of Technology , 1200 East California Boulevard MC 127-72 , Pasadena , California 91125 , United States
| | - Jeffrey N Rosenberg
- Division of Chemistry and Chemical Engineering , California Institute of Technology , 1200 East California Boulevard MC 127-72 , Pasadena , California 91125 , United States
| | - Marco A Lopez
- Division of Chemistry and Chemical Engineering , California Institute of Technology , 1200 East California Boulevard MC 127-72 , Pasadena , California 91125 , United States
| | - Theodor Agapie
- Division of Chemistry and Chemical Engineering , California Institute of Technology , 1200 East California Boulevard MC 127-72 , Pasadena , California 91125 , United States
| |
Collapse
|
16
|
Katayama A, Inomata T, Ozawa T, Masuda H. Ionic liquid promotes N 2 coordination to titanocene(iii) monochloride. Dalton Trans 2017; 46:7668-7671. [PMID: 28574550 DOI: 10.1039/c7dt01063j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Coordination of N2 to [(Cp2TiCl)2] in a non-coordinating ionic liquid, Pyr4FAP, was studied by UV-vis/NIR and EPR spectroscopies. [(Cp2TiCl)2] is in equilibrium between monomeric [Cp2TiCl] and dimeric species [(Cp2TiCl)2]. The frozen solution EPR spectrum revealed the coordination of N2 to [Cp2TiCl], suggesting that Pyr4FAP promotes N2 coordination to the Ti(iii) center.
Collapse
Affiliation(s)
- Akira Katayama
- Department of Cooperative Major in Nanopharmaceutical Sciences, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555, Japan
| | | | | | | |
Collapse
|
17
|
Wang L, Sun H, Zuo Z, Li X, Xu W, Langer R, Fuhr O, Fenske D. Activation of CO2, CS2, and Dehydrogenation of Formic Acid Catalyzed by Iron(II) Hydride Complexes. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201600642] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Lin Wang
- School of Chemistry and Chemical Engineering; Key Laboratory of Special Functional Aggregated Materials; Shandong University; Shanda Nanlu 27 250199 Jinan P. R. China
| | - Hongjian Sun
- School of Chemistry and Chemical Engineering; Key Laboratory of Special Functional Aggregated Materials; Shandong University; Shanda Nanlu 27 250199 Jinan P. R. China
| | - Zhenyu Zuo
- School of Chemistry and Chemical Engineering; Key Laboratory of Special Functional Aggregated Materials; Shandong University; Shanda Nanlu 27 250199 Jinan P. R. China
| | - Xiaoyan Li
- School of Chemistry and Chemical Engineering; Key Laboratory of Special Functional Aggregated Materials; Shandong University; Shanda Nanlu 27 250199 Jinan P. R. China
| | - Weiqin Xu
- Department of Chemistry; Philipps-Universität Marburg; Hans-Meerwein-Str. 35043 Marburg Germany
| | - Robert Langer
- Department of Chemistry; Philipps-Universität Marburg; Hans-Meerwein-Str. 35043 Marburg Germany
| | - Olaf Fuhr
- Institut für Nanotechnologie (INT); Karlsruher Nano-Micro-Facility (KNMF); Karlsruher Institut für Technologie (KIT); Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Dieter Fenske
- Institut für Nanotechnologie (INT); Karlsruher Nano-Micro-Facility (KNMF); Karlsruher Institut für Technologie (KIT); Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
18
|
Plundrich GT, Wadepohl H, Clot E, Gade LH. η(6) -Arene-Zirconium-PNP-Pincer Complexes: Mechanism of Their Hydrogenolytic Formation and Their Reactivity as Zirconium(II) Synthons. Chemistry 2016; 22:9283-92. [PMID: 27258989 DOI: 10.1002/chem.201601213] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Indexed: 11/08/2022]
Abstract
The cyclometalated monobenzyl complexes [(Cbzdiphos(R) -CH)ZrBnX] 1 (iPr) Cl and 1 (Ph) I reacted with dihydrogen (10 bar) to yield the η(6) -toluene complexes [(Cbzdiphos(R) )Zr(η(6) -tol)X] 2 (iPr) Cl and 2 (Ph) I (cbzdiphos=1,8-bis(phosphino)-3,6-di-tert-butyl-9H-carbazole). The arene complexes were also found to be directly accessible from the triiodide [(Cbzdiphos(Ph) )ZrI3 ] through an in situ reaction with a dibenzylmagnesium reagent and subsequent hydrogenolysis, as exemplified for the η(6) -mesitylene complex [(Cbzdiphos(Ph) )Zr(η(6) -mes)I] (3 (Ph) I). The tolyl-ring in 2 (iPr) Cl adopts a puckered arrangement (fold angle 23.3°) indicating significant arene-1,4-diido character. Deuterium labeling experiments were consistent with an intramolecular reaction sequence after the initial hydrogenolysis of a Zr-C bond by a σ-bond metathesis. A DFT study of the reaction sequence indicates that hydrogenolysis by σ-bond metathesis first occurs at the cyclometalated ancillary ligand giving a hydrido-benzyl intermediate, which subsequently reductively eliminates toluene that then coordinates to the Zr atom as the reduced arene ligand. Complex 2 (Ph) I was reacted with 2,6-diisopropylphenyl isocyanide giving the deep blue, diamagnetic Zr(II) -diisocyanide complex [(Cbzdiphos(Ph) )Zr(CNDipp)2 I] (4 (Ph) I). DFT modeling of 4 (Ph) I demonstrated that the HOMO of the complex is primarily located as a "lone pair on zirconium", with some degree of back-bonding into the C≡N π* bond, and the complex is thus most appropriately described as a zirconium(II) species. Reaction of 2 (Ph) I with trimethylsilylazide (N3 TMS) and 2 (iPr) Cl with 1-azidoadamantane (N3 Ad) resulted in the formation of the imido complexes [(Cbzdiphos(R) )Zr=NR'(X)] 5 (iPr) Cl-NAd and 5 (Ph) I-NTMS, respectively. Reaction of 2 (iPr) Cl with azobenzene led to N-N bond scission giving 6 (iPr) Cl, in which one of the NPh-fragments is coupled with the carbazole nitrogen to form a central η(2) -bonded hydrazide(-1), whereas the other NPh-fragment binds to zirconium acting as an imido-ligand. Finally, addition of pyridine to 2 (iPr) Cl yielded the dark purple complex [(Cbzdiphos(iPr) )Zr(bpy)Cl] (7 (iPr) Cl) through a combination of CH-activation and C-C-coupling. The structural data and UV/Vis spectroscopic properties of 7 (iPr) Cl indicate that the bpy (bipyridine) may be regarded as a (dianionic) diamido-type ligand.
Collapse
Affiliation(s)
- Gudrun T Plundrich
- Anorganisch Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Hubert Wadepohl
- Anorganisch Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Eric Clot
- Institut Charles Gerhardt Montpellier, UMR 5253 CNRS-UM-ENSCM, Université de Montpellier, cc 1501, Place Eugène Bataillon, 34095, Montpellier Cedex 5, France.
| | - Lutz H Gade
- Anorganisch Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany.
| |
Collapse
|