1
|
Xu M, Huang XH, Gao P, Chen HQ, Yuan Q, Zhu YX, Shen XX, Zhang YY, Xue ZX. Insight into the spatiotemporal distribution of antibiotic resistance genes in estuarine sediments during long-term ecological restoration. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 335:117472. [PMID: 36827800 DOI: 10.1016/j.jenvman.2023.117472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 01/16/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
In this study, we aimed to investigate the long-term spatiotemporal changes in hydrodynamics, antibiotics, nine typical subtypes of antibiotic resistance genes (ARGs), class 1 integron gene (intI1), and microbial communities in the sediments of a semi-enclosed estuary during ecological restoration with four treatment stages (influent (#1), effluent of the biological treatment area (#2), oxic area (#3), and plant treatment area (#4)). Ecological restoration of the estuary reduced common pollutants (nitrogen and phosphorus) in the water, whereas variations in ARGs showed noticeable seasonal and spatial features. The absolute abundance of ARGs at sampling site #2 considerably increased in autumn and winter, while it significantly increased at sampling site #3 in spring and summer. The strong intervention of biological treatment (from #1 to #2) and aerators (from #2 to #3) in the estuary substantially affected the distribution of ARGs and dominant antibiotic-resistant bacteria (ARB). The dominant ARB (Thiobacillus) in estuarine sediments may have low abundance but important dissemination roles. Meanwhile, redundancy and network analysis revealed that the microbial communities and intl1 were key factors related to ARG dissemination, which was affected by spatial and seasonal ecological restoration. A positive correlation between low flow velocity and certain ARGs (tetM, tetW, tetA, sul2, and ermC) was observed, implying that flow optimization should also be considered in future ecological restoration to remediate ARGs. Furthermore, the absolute abundance of ARGs can be utilized as an index to evaluate the removal capacity of ARGs by estuarine restoration.
Collapse
Affiliation(s)
- Ming Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Xing-Hao Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Peng Gao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Hao-Qiang Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Quan Yuan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Yun-Xiang Zhu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Xiao-Xiao Shen
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China.
| | - Yan-Yan Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Zhao-Xia Xue
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China.
| |
Collapse
|
2
|
Geranmayeh S, Mohammadnejad M, Abbasi A. Ln Based Metal-organic Framework for Fluorescence "Turn Off-On" Sensing of Hg 2. J Fluoresc 2022; 33:1017-1026. [PMID: 36562939 DOI: 10.1007/s10895-022-03124-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
A highly luminescent Ln-MOF [La3(NDC)4(DMF)3(H2O)4]n, (NDC = 2, 6 naphthalen dicarboxylic acid) was designed and synthesized. The structure was characterized by x-ray single structure determination, TGA, IR spectra and PXRD and fluorescence spectroscopy. The structure shows high fluorescence intensity based on the presence of lanthanide metal and ligand. In the presence of I-, the emission can be effectively quenched introducing turn off system. Furthermore, the synthesized Ln-MOF can recognize Hg (II) by showing fluorescence turn-on signal because of the high affinity between Hg (II) and I-. Moreover, the high selectivity and sensitivity of the synthesized Ln-MOF makes it quit qualified for determination of the low concentration of mercury (2.00 nM).
Collapse
Affiliation(s)
- Shokoofeh Geranmayeh
- Department of Physical Chemistry and Nanochemistry, Faculty of Chemistry, Alzahra University, Tehran, Iran.
| | - Masoumeh Mohammadnejad
- Department of Analytical Chemistry, Faculty of Chemistry, Alzahra University, Tehran, Iran.
| | - Alireza Abbasi
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
3
|
Liu C, Yu H, Zhang B, Liu S, Liu CG, Li F, Song H. Engineering whole-cell microbial biosensors: Design principles and applications in monitoring and treatment of heavy metals and organic pollutants. Biotechnol Adv 2022; 60:108019. [PMID: 35853551 DOI: 10.1016/j.biotechadv.2022.108019] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 01/18/2023]
Abstract
Biosensors have been widely used as cost-effective, rapid, in situ, and real-time analytical tools for monitoring environments. The development of synthetic biology has enabled emergence of genetically engineered whole-cell microbial biosensors. This review updates the design and optimization principles for a diverse array of whole-cell biosensors based on transcription factors (TF) including activators or repressors derived from heavy metal resistance systems, alkanes, and aromatics metabolic pathways of bacteria. By designing genetic circuits, the whole-cell biosensors could be engineered to intelligently sense heavy metals (Hg2+, Zn2+, Pb2+, Au3+, Cd2+, As3+, Ni2+, Cu2+, and UO22+) or organic compounds (alcohols, alkanes, phenols, and benzenes) through one-component or two-component system-based TFs, transduce signals through genetic amplifiers, and response as various outputs such as cell fluorescence and bioelectricity for monitoring heavy metals and organic pollutants in real conditions, synthetic curli and surface metal-binding peptides for in situ bio-sorption of heavy metals. We further review strategies that have been implemented to optimize the selectivity and correlation between ligand concentration and output signal of the TF-based biosensors, so as to meet requirements of practical applications. The optimization strategies include protein engineering to change specificities, promoter engineering to improve sensitivities, and genetic circuit-based amplification to enhance dynamic ranges via designing transcriptional amplifiers, logic gates, and feedback loops. At last, we outlook future trends in developing novel forms of biosensors.
Collapse
Affiliation(s)
- Changjiang Liu
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Huan Yu
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Baocai Zhang
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Shilin Liu
- Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Chen-Guang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences of Ministry of Education, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Feng Li
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Hao Song
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
4
|
Tsai ST, Cheng WJ, Zhang QX, Yeh YC. Gold-Specific Biosensor for Monitoring Wastewater Using Genetically Engineered Cupriavidus metallidurans CH34. ACS Synth Biol 2021; 10:3576-3582. [PMID: 34860511 DOI: 10.1021/acssynbio.1c00520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Transcription factor-based whole-cell biosensors have recently become promising alternatives to conventional analytical methods due to their advantage of simplicity, cost-effectiveness, and environmental friendliness. In this study, we used genetic engineering to develop a whole-cell biosensor based on the activation of promoters by CupR via interactions with gold ions, leading to the expression of reporter genes that yield output signals. Altering the promoter sequences was shown to significantly improve the performance of the biosensor strain in terms of gold-specificity. The detection sensitivity of our engineered strains was 42-fold higher than that of wild-type strains. The linear range of the purposed sensor was 125-1000 nM with a limit of detection at 46.5 nM. The effectiveness of the sensor strain was verified in wastewater samples.
Collapse
Affiliation(s)
- Ssu-Tzu Tsai
- Department of Chemistry, National Taiwan Normal University, Taipei 116, Taiwan
| | - Wen-Jui Cheng
- Department of Chemistry, National Taiwan Normal University, Taipei 116, Taiwan
| | - Qian-Xian Zhang
- Department of Chemistry, National Taiwan Normal University, Taipei 116, Taiwan
| | - Yi-Chun Yeh
- Department of Chemistry, National Taiwan Normal University, Taipei 116, Taiwan
| |
Collapse
|
5
|
Zhou N, Liu T, Wen B, Gong C, Wei G, Su Z. Recent Advances in the Construction of Flexible Sensors for Biomedical Applications. Biotechnol J 2020; 15:e2000094. [PMID: 32744777 DOI: 10.1002/biot.202000094] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/08/2020] [Indexed: 11/09/2022]
Abstract
The fabrication of flexible sensors is a potential way to promote the progress of modern social science and technology due to their wide applications in high-performance electronic equipment and devices. Flexible sensors based on organic materials combine the unique advantages of flexibility and low cost, increasing interest in healthcare monitoring, treatment, and human-machine interfaces. Advances in materials science and biotechnology have rapidly accelerated the development of bio-integrated multifunctional sensors and devices. Due to their excellent mechanical and electrical properties, many types of functional materials provided benefits for the construction of various sensors with improved flexibility and stretchability. In this review, recent advance in the fabrication of flexible sensors by using functional nanomaterials including nanoparticles, carbon materials, metal-organic materials, and polymers is presented. In addition, the potential biomedical applications of the fabricated flexible sensors for detecting gas molecules signals, small molecules, DNA/RNA, proteins, others are introduced and discussed.
Collapse
Affiliation(s)
- Nan Zhou
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Tianjiao Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Bianying Wen
- School of Materials and Mechanical Engineering, Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing, 100048, China
| | - Coucong Gong
- Faculty of Production Engineering, University of Bremen, Bremen, D-28359, Germany
| | - Gang Wei
- Faculty of Production Engineering, University of Bremen, Bremen, D-28359, Germany.,College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
| | - Zhiqiang Su
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
6
|
Shih CI, Chou YC, Chen HY, Chen KH, Wang IH, Yeh YC. Colorimetric and Fluorometric Paper-Based Assay for Cu 2+ Detection Based on Green Synthesis of 2-Aminoterephthalic Acid-Derived Pigments. ACS APPLIED BIO MATERIALS 2020; 3:2516-2521. [PMID: 35025302 DOI: 10.1021/acsabm.0c00212] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, we developed a simple and economical method for the green synthesis of Cu2+ sensors based on betaxanthin pigments. Aminoisophthalic acid-betaxanthin was synthesized by coupling 2-aminoisophthalic acid and betalamic acid produced from DOPA-extradiol-4,5-dioxygenase in situ and in vitro. The resulting 2-aminoterephthalic acid-betaxanthin (2-AIPA-BX) presented a satisfying fluorescence quantum yield in water and a high degree of selectivity for Cu2+ over interfering metal ions. The bioproduction process of 2-AIPA-BX was scaled up from test tubes to 1 L-flasks, indicating the robustness and reproducibility of this method. Additionally, we successfully incorporated 2-AIPA-BX into paper-based analytical devices to facilitate simple, inexpensive, and portable setup with lower sample consumption for onsite monitoring of environmental and biological samples.
Collapse
Affiliation(s)
- Chia-I Shih
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Yi-Chieh Chou
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Huei-Yu Chen
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Kuan-Han Chen
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - I-Hsiang Wang
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Yi-Chun Yeh
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| |
Collapse
|
7
|
Engineering and characterization of copper and gold sensors in Escherichia coli and Synechococcus sp. PCC 7002. Appl Microbiol Biotechnol 2019; 103:2797-2808. [PMID: 30645690 DOI: 10.1007/s00253-018-9490-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 10/27/2018] [Indexed: 12/17/2022]
Abstract
The anthropogenic release of toxic metals into the environment poses danger to the health of both humans and the local ecosystem. Biosensors for the detection of metals have been developed to improve our ability to monitor these environmental contaminants, yet most of these sensors use heterotrophic bacterial hosts, which require a fixed carbon source and do not typically grow in natural waterways. In this study, we constructed and characterized metal sensors for development of a photoautotrophic biosensor using Synechococcus sp. PCC 7002. We characterized gold and copper sensors based on modified MerR transcriptional activators: GolSA113T, with improved gold binding, and GolSCL, containing the metal-binding loop from CueR which binds both gold and copper. The metal-sensing constructs were first optimized and characterized in Escherichia coli MG1655. The addition of a strong ribosome binding site to the optical reporter protein increased translation of the fluorescent reporter, and expression of golSA113T from the rbc promoter of Synechococcus sp. PCC 7002 improved the response to gold in MG1655. In rich medium, the GolSA113T-based E. coli sensor detected gold at concentrations as low as 100 nM, while the GolSCL-based E. coli sensor detected gold and copper at sensitivities of 100 nM and 10 μM, respectively. Both E. coli sensors responded to gold and copper yet showed no detectable response to other metals. Abiotic factors, such as medium complexity, were found to influence the response of the E. coli sensors, with minimal medium resulting in higher sensitivities of detection. Expression of the GolSA113T- and GolSCL-based sensor constructs in the cyanobacterium Synechococcus sp. PCC 7002 resulted in photoautotrophic gold sensors, but these biosensors failed to produce a significant response to copper. Moreover, the fluorescence response of the cyanobacterial sensors to gold was significantly reduced compared to that of analogous E. coli sensors. While this effort demonstrates feasibility for the development of photoautotrophic biosensors, additional efforts to optimize sensor performance will be required.
Collapse
|
8
|
Pankajakshan A, Kuznetsov D, Mandal S. Ultrasensitive Detection of Hg(II) Ions in Aqueous Medium Using Zinc-Based Metal–Organic Framework. Inorg Chem 2019; 58:1377-1381. [DOI: 10.1021/acs.inorgchem.8b02898] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Asha Pankajakshan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala 695551, India
| | - Denis Kuznetsov
- Department of Functional Nanosystems and High Temperature Materials, National University of Science and Technology, MISIS, Leninsky, pr. 4, Moscow 119049, Russia
| | - Sukhendu Mandal
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala 695551, India
| |
Collapse
|
9
|
Guo KH, Lu KH, Yeh YC. Cell-Based Biosensor with Dual Signal Outputs for Simultaneous Quantification of Phenylacetic Acid and Phenylethylamine. ACS Synth Biol 2018; 7:2790-2795. [PMID: 30418753 DOI: 10.1021/acssynbio.8b00416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Despite the importance of 2-phenylacetic acid, a plant hormone in the endogenous auxin family, its biosynthesis pathway has yet to be elucidated. In this study, we developed a novel whole-cell biosensor for the simultaneous quantification of 2-phenylacetic acid (PA) and 2-phenylethylamine (PEA) through the regulation of bacterial catabolism of aromatic compounds. We used the PA regulon to enable the recognition of PA and PEA. Differentiation of PEA from PA involves the incorporation of the FeaR regulon within the same whole-cell biosensor to report the presence of aromatic amines. The proposed system is highly sensitive to PA as well as PEA.
Collapse
Affiliation(s)
- Kai-Hong Guo
- Department of Chemistry, National Taiwan Normal University, 88, Section 4, Tingzhou Road, Taipei 11677, Taiwan
| | - Kun-Hua Lu
- Department of Chemistry, National Taiwan Normal University, 88, Section 4, Tingzhou Road, Taipei 11677, Taiwan
| | - Yi-Chun Yeh
- Department of Chemistry, National Taiwan Normal University, 88, Section 4, Tingzhou Road, Taipei 11677, Taiwan
| |
Collapse
|
10
|
Nakamura H. Current status of water environment and their microbial biosensor techniques - Part II: Recent trends in microbial biosensor development. Anal Bioanal Chem 2018; 410:3967-3989. [PMID: 29736704 DOI: 10.1007/s00216-018-1080-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/07/2018] [Accepted: 04/12/2018] [Indexed: 12/20/2022]
Abstract
In Part I of the present review series, I presented the current state of the water environment by focusing on Japanese cases and discussed the need to further develop microbial biosensor technologies for the actual water environment. I comprehensively present trends after approximately 2010 in microbial biosensor development for the water environment. In the first section, after briefly summarizing historical studies, recent studies on microbial biosensor principles are introduced. In the second section, recent application studies for the water environment are also introduced. Finally, I conclude the present review series by describing the need to further develop microbial biosensor technologies. Graphical abstract Current water pollution indirectly occurs by anthropogenic eutrophication (Part I). Recent trends in microbial biosensor development for water environment are described in part II of the present review series.
Collapse
Affiliation(s)
- Hideaki Nakamura
- Department of Liberal Arts, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo, 192-0982, Japan.
| |
Collapse
|
11
|
Guo KH, Chen PH, Lin C, Chen CF, Lee IR, Yeh YC. Determination of Gold Ions in Human Urine Using Genetically Engineered Microorganisms on a Paper Device. ACS Sens 2018; 3:744-748. [PMID: 29589435 DOI: 10.1021/acssensors.7b00931] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This paper presents a whole-cell biosensor that operates in conjunction with a smartphone-based fluorescence diagnostic system on a paper device to monitor the concentration of gold ions in human urine. The heavy metal-tolerant bacteria Cupriavidus metallidurans was genetically engineered for use as a chassis in a red fluorescent protein (RFP)-based microbial sensor. The biosensor is highly sensitive to gold ions, with a detection limit of 110 nM. The proposed smartphone-based analysis system provides a user-friendly approach to design tools of personal health monitoring for reporting the presence of gold ions in human urine.
Collapse
Affiliation(s)
- Kai-Hong Guo
- Department of Chemistry , National Taiwan Normal University , Taipei 116 , Taiwan
| | - Pei-Hsuan Chen
- Department of Chemistry , National Taiwan Normal University , Taipei 116 , Taiwan
| | - Chieh Lin
- Department of Chemistry , National Taiwan Normal University , Taipei 116 , Taiwan
| | - Chien-Fu Chen
- Institute of Applied Mechanics , National Taiwan University , Taipei 106 , Taiwan
| | - I-Ren Lee
- Department of Chemistry , National Taiwan Normal University , Taipei 116 , Taiwan
| | - Yi-Chun Yeh
- Department of Chemistry , National Taiwan Normal University , Taipei 116 , Taiwan
| |
Collapse
|
12
|
Synthetic biology for microbial heavy metal biosensors. Anal Bioanal Chem 2017; 410:1191-1203. [DOI: 10.1007/s00216-017-0751-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 10/23/2017] [Accepted: 11/07/2017] [Indexed: 11/26/2022]
|
13
|
Ujjwal R, Sona C, Debnath S, Yadav PN, Ojha U. Dye-Labeled Polyacryloyl Hydrazide-Ag Nanoparticle Fluorescent Probe for Ultrasensitive and Selective Detection of Au Ion. ACS OMEGA 2017; 2:4278-4286. [PMID: 30023721 PMCID: PMC6044749 DOI: 10.1021/acsomega.7b00857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 07/25/2017] [Indexed: 06/08/2023]
Abstract
The efficiency of a fluorescence sensing device based on metal-enhanced fluorescence (MEF) is dependent on the optimization of interaction between the fluorophore and the metal nanoparticle (NP). Herewith, ultrasensitive and selective turn-on sensing of Au3+ is achieved by using a suitable combination of fluorophore and metal NP system through sequential MEF effect. Dansyl hydrazide-tagged Ag NPs in the polyacryloyl hydrazide cavity are utilized to sense the picomolar concentration of Au3+ in aqueous media. We demonstrated that the selective Au3+ sensing is due to the selective deposition of Au on the Ag NP surface over the 16 other metal ions studied. The sensitivity is assigned to the strong overlapping of the emission band of the fluorophore with the surface plasmon band of the Au and improvement of fluorescence signal through successive MEF by Ag and Au colloids. The sensing is associated with a fivefold increase in fluorescence intensity and appearance of violet color of the solution. These luminescent Ag-Au bimetallic NPs may be utilized to trace cancer cells in biological systems and for cell imaging applications.
Collapse
Affiliation(s)
- Rewati
Raman Ujjwal
- Department
of Chemistry, Rajiv Gandhi Institute of
Petroleum Technology, Ratapur Chowk, Rae Bareli, Uttar Pradesh 229316, India
| | - Chandan Sona
- Department
of Pharmacology, CSIR-Central Drug Research
Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh 226031, India
| | - Suman Debnath
- Department
of Chemistry, Rajiv Gandhi Institute of
Petroleum Technology, Ratapur Chowk, Rae Bareli, Uttar Pradesh 229316, India
| | - Prem Narayan Yadav
- Department
of Pharmacology, CSIR-Central Drug Research
Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh 226031, India
| | - Umaprasana Ojha
- Department
of Chemistry, Rajiv Gandhi Institute of
Petroleum Technology, Ratapur Chowk, Rae Bareli, Uttar Pradesh 229316, India
| |
Collapse
|
14
|
Chen PH, Lin C, Guo KH, Yeh YC. Development of a pigment-based whole-cell biosensor for the analysis of environmental copper. RSC Adv 2017. [DOI: 10.1039/c7ra03778c] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A engineered whole-cell biosensor is developed to generate output signals for the environmental copper analysis.
Collapse
Affiliation(s)
- Pei-Hsuan Chen
- Department of Chemistry
- National Taiwan Normal University
- Taipei 11677
- Taiwan
| | - Chieh Lin
- Department of Chemistry
- National Taiwan Normal University
- Taipei 11677
- Taiwan
| | - Kai-Hong Guo
- Department of Chemistry
- National Taiwan Normal University
- Taipei 11677
- Taiwan
| | - Yi-Chun Yeh
- Department of Chemistry
- National Taiwan Normal University
- Taipei 11677
- Taiwan
| |
Collapse
|
15
|
Zammit CM, Weiland F, Brugger J, Wade B, Winderbaum LJ, Nies DH, Southam G, Hoffmann P, Reith F. Proteomic responses to gold(iii)-toxicity in the bacterium Cupriavidus metallidurans CH34. Metallomics 2016; 8:1204-1216. [DOI: 10.1039/c6mt00142d] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
16
|
Lin D, Li Y, Zhang P, Zhang W, Ding J, Li J, Wei G, Su Z. Fast preparation of MoS2 nanoflowers decorated with platinum nanoparticles for electrochemical detection of hydrogen peroxide. RSC Adv 2016. [DOI: 10.1039/c6ra07591f] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
MoS2 nanoflowers decorated with Pt nanoparticles show enhanced performances for electrochemical H2O2 sensing.
Collapse
Affiliation(s)
- Dongmei Lin
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- 100029 Beijing
- China
| | - Yang Li
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- 100029 Beijing
- China
| | - Panpan Zhang
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- 100029 Beijing
- China
| | - Wensi Zhang
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- 100029 Beijing
- China
| | - Junwei Ding
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- 100029 Beijing
- China
| | - Jingfeng Li
- Hybrid Materials Interface Group
- Faculty of Production Engineering
- University of Bremen
- D-28359 Bremen
- Germany
| | - Gang Wei
- Hybrid Materials Interface Group
- Faculty of Production Engineering
- University of Bremen
- D-28359 Bremen
- Germany
| | - Zhiqiang Su
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- 100029 Beijing
- China
| |
Collapse
|
17
|
Zhang P, Zhao X, Zhang X, Lai Y, Wang X, Li J, Wei G, Su Z. Electrospun doping of carbon nanotubes and platinum nanoparticles into the β-phase polyvinylidene difluoride nanofibrous membrane for biosensor and catalysis applications. ACS APPLIED MATERIALS & INTERFACES 2014; 6:7563-7571. [PMID: 24754739 DOI: 10.1021/am500908v] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A novel β-phase polyvinylidene difluoride (PVDF) nanofibrous membrane decorated with multiwalled carbon nanotubes (MWCNTs) and platinum nanoparticles (PtNPs) was fabricated by an improved electrospinning technique. The morphology of the fabricated PVDF-MWCNT-PtNP nanofibrous membrane was observed by scanning electron microscopy, and the formation of high β-phase in the hybrid nanofibrous membrane was investigated by Fourier transform infrared spectroscopy and differential scanning calorimetry. The uniform dispersion of MWCNTs and PtNPs in the PVDF hybrid nanofibrous membrane and their interaction were explored by transmission electron microscopy and X-ray diffraction. For the first time, we utilized this created PVDF-MWCNT-PtNP nanofibrous membrane for biosensor and catalysis applications. The nonenzymatic amperometric biosensor with highly stable and sensitive, and selective detection of both H2O2 and glucose was successfully fabricated based on the electrospun PVDF-MWCNT-PtNP nanofibrous membrane. In addition, the catalysis of the hybrid nanofibrous membrane for oxygen reduction reaction was tested, and a good catalysis performance was found. We anticipate that the strategies utilized in this work will not only guide the further design of functional nanofiber-based biomaterials and biodevices but also extend the potential applications in energy storage, cytology, and tissue engineering.
Collapse
Affiliation(s)
- Panpan Zhang
- Beijing Key Laboratory on Preparation and Processing of Novel Polymeric Materials, Beijing University of Chemical Technology , 100029 Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|