1
|
Herczeg M, Demeter F, Nagy T, Rusznyák Á, Hodek J, Sipos É, Lekli I, Fenyvesi F, Weber J, Kéki S, Borbás A. Block Synthesis and Step-Growth Polymerization of C-6-Sulfonatomethyl-Containing Sulfated Malto-Oligosaccharides and Their Biological Profiling. Int J Mol Sci 2024; 25:677. [PMID: 38203849 PMCID: PMC10779578 DOI: 10.3390/ijms25010677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/30/2023] [Accepted: 12/31/2023] [Indexed: 01/12/2024] Open
Abstract
Highly sulfated malto-oligomers, similar to heparin and heparan-sulfate, have good antiviral, antimetastatic, anti-inflammatory and cell growth inhibitory effects. Due to their broad biological activities and simple structure, sulfated malto-oligomer derivatives have a great therapeutic potential, therefore, the development of efficient synthesis methods for their production is of utmost importance. In this work, preparation of α-(1→4)-linked oligoglucosides containing a sulfonatomethyl moiety at position C-6 of each glucose unit was studied by different approaches. Malto-oligomeric sulfonic acid derivatives up to dodecasaccharides were prepared by polymerization using different protecting groups, and the composition of the product mixtures was analyzed by MALDI-MS methods and size-exclusion chromatography. Synthesis of lower oligomers was also accomplished by stepwise and block synthetic methods, and then the oligosaccharide products were persulfated. The antiviral, anti-inflammatory and cell growth inhibitory activity of the fully sulfated malto-oligosaccharide sulfonic acids were determined by in vitro tests. Four tested di- and trisaccharide sulfonic acids effectively inhibited the activation of the TNF-α-mediated inflammatory pathway without showing cytotoxicity.
Collapse
Affiliation(s)
- Mihály Herczeg
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary;
| | - Fruzsina Demeter
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary;
| | - Tibor Nagy
- Department of Applied Chemistry, Faculty of Science and Technology, Institute of Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (T.N.); (S.K.)
| | - Ágnes Rusznyák
- Department of Molecular and Nanopharmaceutics, Faculty of Pharmacy, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary; (Á.R.); (F.F.)
- Institute of Healthcare Industry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Jan Hodek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague, Czech Republic; (J.H.); (J.W.)
| | - Éva Sipos
- Department of Pharmacodynamics, Faculty of Pharmacy, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary; (É.S.); (I.L.)
| | - István Lekli
- Department of Pharmacodynamics, Faculty of Pharmacy, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary; (É.S.); (I.L.)
| | - Ferenc Fenyvesi
- Department of Molecular and Nanopharmaceutics, Faculty of Pharmacy, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary; (Á.R.); (F.F.)
| | - Jan Weber
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague, Czech Republic; (J.H.); (J.W.)
| | - Sándor Kéki
- Department of Applied Chemistry, Faculty of Science and Technology, Institute of Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (T.N.); (S.K.)
| | - Anikó Borbás
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary;
- HUN-REN-UD Molecular Recognition and Interaction Research Group, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| |
Collapse
|
2
|
Li X, Di Carluccio C, Miao H, Zhang L, Shang J, Molinaro A, Xu P, Silipo A, Yu B, Yang Y. Promoter-Controlled Synthesis and Conformational Analysis of Cyclic Mannosides up to a 32-mer. Angew Chem Int Ed Engl 2023; 62:e202307851. [PMID: 37433753 DOI: 10.1002/anie.202307851] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/13/2023]
Abstract
Cyclodextrins are widely used as carriers of small molecules for drug delivery owing to their remarkable host properties and excellent biocompatibility. However, cyclic oligosaccharides with different sizes and shapes are limited. Cycloglycosylation of ultra-large bifunctional saccharide precursors is challenging due to the constrained conformational spaces. Herein we report a promoter-controlled cycloglycosylation approach for the synthesis of cyclic α-(1→6)-linked mannosides up to a 32-mer. Cycloglycosylation of the bifunctional thioglycosides and (Z)-ynenoates was found to be highly dependent on the promoters. In particular, a sufficient amount of a gold(I) complex played a key role in the proper preorganization of the ultra-large cyclic transition state, providing a cyclic 32-mer polymannoside, which represents the largest synthetic cyclic polysaccharide to date. NMR experiments and a computational study revealed that the cyclic 2-mer, 4-mer, 8-mer, 16-mer, and 32-mer mannosides adopted different conformational states and shapes.
Collapse
Affiliation(s)
- Xiaona Li
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Cristina Di Carluccio
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126, Napoli, Italy
| | - He Miao
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Lvfeng Zhang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jintao Shang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126, Napoli, Italy
- Department of Chemistry, School of Science, Osaka University, 1-1 Osaka University Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Peng Xu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Alba Silipo
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126, Napoli, Italy
- Department of Chemistry, School of Science, Osaka University, 1-1 Osaka University Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Biao Yu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - You Yang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
3
|
Sarkar B, Pramanik T, Jayaraman N. Cyclic Disaccharide Formation Enforced by a Ring Contraction: 2,3-Dideoxy Pyranoside Glycoside Donor to a Furanoside Macrocycle. J Org Chem 2023; 88:670-674. [PMID: 36484560 DOI: 10.1021/acs.joc.2c01936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The synthesis of a disaccharide macrocycle through 2,3-dideoxy glucopyranosyl monosaccharide is reported. 2,3-Dideoxy-erythro-hexopyranosyl thioglycoside possessing a free hydroxy functionality at the C-4 carbon is prepared, and cycloglycosylation is conducted. In the event, the cycloglycosylation occurs with a ring contraction of the monosaccharide moiety and affords the cyclic furanoside disaccharide. Solution-phase and single-crystal X-ray diffraction structural characterizations permit the features of the macrocycle to be uncovered. The solubilization and encapsulation properties of the macrocycle are studied in aqueous solutions with 1-aminoadamantane.
Collapse
|
4
|
Rabus JM, Pellegrinelli RP, Khodr AHA, Bythell BJ, Rizzo TR, Carrascosa E. Unravelling the structures of sodiated β-cyclodextrin and its fragments. Phys Chem Chem Phys 2021; 23:13714-13723. [PMID: 34128027 PMCID: PMC8220536 DOI: 10.1039/d1cp01058a] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/05/2021] [Indexed: 12/29/2022]
Abstract
We present cryogenic infrared spectra of sodiated β-cyclodextrin [β-CD + Na]+, a common cyclic oligosaccharide, and its main dissociation products upon collision-induced dissociation (CID). We characterize the parent ions using high-resolution ion mobility spectrometry and cryogenic infrared action spectroscopy, while the fragments are characterized by their mass and cryogenic infrared spectra. We observe sodium-cationized fragments that differ in mass by 162 u, corresponding to Bn/Zm ions. For the m/z 347 product ion, electronic structure calculations are consistent with formation of the lowest energy 2-ketone B2 ion structure. For the m/z 509 product ion, both the calculated 2-ketone B3 and the Z3 structures show similarities with the experimental spectrum. The theoretical structure most consistent with the spectrum of the m/z 671 ions is a slightly higher energy 2-ketone B4 structure. Overall, the data suggest a consistent formation mechanism for all the observed fragments.
Collapse
Affiliation(s)
- Jordan M Rabus
- Department of Chemistry and Biochemistry, Ohio University, 391 Clippinger Laboratories, Athens, Ohio 45701, USA
| | - Robert P Pellegrinelli
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland.
| | - Ali Hassan Abi Khodr
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland.
| | - Benjamin J Bythell
- Department of Chemistry and Biochemistry, Ohio University, 391 Clippinger Laboratories, Athens, Ohio 45701, USA
| | - Thomas R Rizzo
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland.
| | - Eduardo Carrascosa
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
5
|
Jayaraman N. Display of Rich Reactivities of Endo- and Exocyclic Unsaturated Sugars that Parallel the Native Sugars. CHEM REC 2021; 21:3049-3062. [PMID: 33960656 DOI: 10.1002/tcr.202100091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 11/10/2022]
Abstract
Unsaturated monosaccharides expand the scope of reactivities in a sugar, directly leading to the development of newer methodologies, molecular structures and functional entities. The unsaturation as a reactive moiety can either be within the molecule, namely, endocyclic, or as a pendant moiety around the molecule, namely, exocyclic. One carbon homologations aided by reactions at the unsaturated moiety expand the molecular structures in both endo- and exocyclic sugars and lead to structures that are largely hitherto unknown. Molecular shifts and rearrangements permit interchanging the reactivities from one carbon to the other in unsaturated sugars. Activations of exocyclic unsaturated sugars also find newer possibilities to reactions central to the sugar chemistry, namely, the glycosylations. The personal reflections result from a couple of decades of explorations that traverse through the unsaturated sugars from different vantage points.
Collapse
|
6
|
Someya H, Seki T, Ishigami G, Itoh T, Saga Y, Yamada Y, Aoki S. One-pot synthesis of cyclic oligosaccharides by the polyglycosylation of monothioglycosides. Carbohydr Res 2020; 487:107888. [DOI: 10.1016/j.carres.2019.107888] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/29/2019] [Accepted: 12/03/2019] [Indexed: 10/25/2022]
|
7
|
Ikuta D, Hirata Y, Wakamori S, Shimada H, Tomabechi Y, Kawasaki Y, Ikeuchi K, Hagimori T, Matsumoto S, Yamada H. Conformationally supple glucose monomers enable synthesis of the smallest cyclodextrins. Science 2019; 364:674-677. [DOI: 10.1126/science.aaw3053] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/28/2019] [Indexed: 11/02/2022]
Abstract
Cyclodextrins (CDs) are cyclic oligomers of α-1,4-d-glucopyranoside and are known mainly as hexamers to octamers. The central cavities of CDs can retain small molecules, enabling diverse applications. The smallest members, CD3 and CD4, have ring sizes too small to permit the most stable conformations of glucopyranose and have not been accessible synthetically. In this study, we present methods to chemically synthesize both CD3 and CD4. The main factor in the successful synthesis is the creation of a glucopyranose ring conformationally counterbalanced between equatorial- and axial-rich forms. This suppleness is imparted by a bridge between O-3 and O-6 of glucose, which enables the generation of desirable, albeit deformed, conformers when synthesizing the cyclic trimer and tetramer.
Collapse
|
8
|
Samanta G, Maiti K, Jayaraman N. Glycosidic Bond Expanded Cyclic Oligosaccharides: Synthesis and Host-Guest Binding Property of a Cyclic Pentasaccharide. ACS OMEGA 2018; 3:7466-7473. [PMID: 31458903 PMCID: PMC6644367 DOI: 10.1021/acsomega.8b00580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/18/2018] [Indexed: 05/15/2023]
Abstract
A new cyclic pentasaccharide comprising an oxymethylene glycosidic bond connecting the individual α-d-glycopyranoside monomers is synthesized through cycloglycosylation of a linear pentasaccharide precursor, which, in turn, is synthesized through the block glycosylation method. Molecular modeling shows that the 30-membered macrocyclic pentasaccharide is a distorted ellipsoid structure, with the lower and upper rims occupied by secondary and primary hydroxyl groups, respectively. Following the synthesis, the microenvironment of the cyclic pentasaccharide is assessed through thermodynamic evaluation upon complexation with 1-aminoadamantane in an aqueous solution, which shows the formation of ∼1:2 host-to-guest complex and a binding affinity of 10 500 (±425) M-1. Synthesis and assessment of the host-guest binding property of the new glycosidic bond expanded cyclic pentasaccharide are presented.
Collapse
|
9
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2013-2014. MASS SPECTROMETRY REVIEWS 2018; 37:353-491. [PMID: 29687922 DOI: 10.1002/mas.21530] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/29/2016] [Indexed: 06/08/2023]
Abstract
This review is the eighth update of the original article published in 1999 on the application of Matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2014. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly- saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2018 Wiley Periodicals, Inc. Mass Spec Rev 37:353-491, 2018.
Collapse
Affiliation(s)
- David J Harvey
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
10
|
Chaciak B, Dąbrowa K, Świder P, Jarosz S. Macrocyclic derivatives with a sucrose scaffold: insertion of a long polyhydroxylated linker between the terminal 6,6′-positions. NEW J CHEM 2018. [DOI: 10.1039/c8nj02808g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A series of five new macrocyclic hybrids with a sucrose scaffold were prepared by the reaction of activated 1′,2,3,3′,4,4′-hexa-O-methylsucrose with diversely functionalized d-mannitols.
Collapse
Affiliation(s)
- Bartosz Chaciak
- Institute of Organic Chemistry
- Polish Academy of Sciences
- ul. Kasprzaka 44/52 01-224 Warsaw
- Poland
| | - Kajetan Dąbrowa
- Institute of Organic Chemistry
- Polish Academy of Sciences
- ul. Kasprzaka 44/52 01-224 Warsaw
- Poland
| | - Paweł Świder
- Institute of Organic Chemistry
- Polish Academy of Sciences
- ul. Kasprzaka 44/52 01-224 Warsaw
- Poland
| | - Sławomir Jarosz
- Institute of Organic Chemistry
- Polish Academy of Sciences
- ul. Kasprzaka 44/52 01-224 Warsaw
- Poland
| |
Collapse
|
11
|
Kowalski M, Jarosz S. Synthesis of aza-crown analogues and macrocyclic bis-lactams with sucrose scaffold. Carbohydr Res 2017; 438:44-57. [PMID: 27984704 DOI: 10.1016/j.carres.2016.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/02/2016] [Accepted: 12/02/2016] [Indexed: 12/12/2022]
Abstract
2,3,3',4,4'-Penta-O-benzylsucrose was converted into the corresponding diaminoalcohol which was used as a key building block in the synthesis of the analogues of aza-crown ethers and bis-lactams.
Collapse
Affiliation(s)
- Michał Kowalski
- Institute of Organic Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Sławomir Jarosz
- Institute of Organic Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224, Warsaw, Poland.
| |
Collapse
|
12
|
Maiti K, Jayaraman N. Synthesis and Structure of Cyclic Trisaccharide with Expanded Glycosidic Linkages. J Org Chem 2016; 81:4616-22. [DOI: 10.1021/acs.joc.6b00462] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Krishnagopal Maiti
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560 012, India
| | | |
Collapse
|