1
|
Ren JW, Zhang QH, Han CS, Zhang HX, Wang YB, Shi HR, Sun JH, Han YF. L-Amino acid ester as a biomimetic reducing agent for the reduction of unsaturated CC bonds. Org Biomol Chem 2025; 23:654-659. [PMID: 39600194 DOI: 10.1039/d4ob01640h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The first example of an efficient protocol for the reduction of disubstituted methyleneindolinones, isoindigos and tetrasubstituted olefins for the synthesis of 3-substituted 2-oxindoles, dihydroisoindigos and tetrasubstituted ethane derivatives using an L-amino acid ester as an attractive biomimetic reducing agent has been developed. This new protocol has the advantages of mild reaction conditions without the need for any metal catalysts, a broad substrate scope (31 examples), excellent yields (90-98%) and good functional group tolerance, providing an operationally simple and practically useful methodology for reductive reactions. The L-amino acid derivative, which is cheap, nontoxic and easy to handle, serves as a new biomimetic reducing agent for use in organic chemistry, providing a novel and promising approach for future applications in reductive reactions.
Collapse
Affiliation(s)
- Ji-Wei Ren
- College of Chemistry and Chemical Engineering, Taishan University, Tai'an, Shandong, 271000, P. R. China.
| | - Qing-Hao Zhang
- College of Chemistry and Chemical Engineering, Taishan University, Tai'an, Shandong, 271000, P. R. China.
| | - Cheng-Shuai Han
- College of Chemistry and Chemical Engineering, Taishan University, Tai'an, Shandong, 271000, P. R. China.
| | - Huai-Xin Zhang
- College of Chemistry and Chemical Engineering, Taishan University, Tai'an, Shandong, 271000, P. R. China.
| | - Ya-Bin Wang
- College of Chemistry and Chemical Engineering, Taishan University, Tai'an, Shandong, 271000, P. R. China.
| | - Hai-Rui Shi
- College of Chemistry and Chemical Engineering, Taishan University, Tai'an, Shandong, 271000, P. R. China.
| | - Jing-Hui Sun
- College of Chemistry and Chemical Engineering, Taishan University, Tai'an, Shandong, 271000, P. R. China.
| | - Yin-Feng Han
- College of Chemistry and Chemical Engineering, Taishan University, Tai'an, Shandong, 271000, P. R. China.
| |
Collapse
|
2
|
Roy A, Shyamal P, Shaw K, Mondal D, Khatua A, Bisai A. Total Synthesis of (+)- and (-)-Calycanthidine and Formal Synthesis of (-)-Idiospermuline via Key Pd(0)-Catalyzed Asymmetric Allylations. Org Lett 2024; 26:10803-10808. [PMID: 39636269 DOI: 10.1021/acs.orglett.4c03837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
We envisioned a novel asymmetric strategy to access unsymmetrically substituted dimeric 2-oxindoles [(S,S)-8 and (R,R)-8] for the total synthesis of calycanthidine (4a). The key to success is the development of efficient Pd(0)-catalyzed asymmetric sequential allylations [via a highly enantioselective [up to 94% enantiomeric excess (ee)] and diastereoselective (up to ∼13:1) process] of unsymmetrically protected dimeric 2-oxindoles at the 3,3' position [such as (S,S)-8 and (R,R)-8]. Gratifyingly, a mixture of bis-ester (±)-10a, ester-carbonates (±)-10b and (±)-10c, and bis-carbonate 10d could afford (S,S)-8 and (R,R)-8 in highly stereoselective fashion, thereby culminating in the total synthesis of (+)-calycanthidine [ent-(4a)] and (-)-calycanthidine (4a). This effort also culminated in the formal total synthesis of idiospermuline (5).
Collapse
Affiliation(s)
- Avishek Roy
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh 462 066, India
| | - Pranay Shyamal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Kalyani, Nadia, West Bengal 741 246, India
| | - Kundan Shaw
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh 462 066, India
| | - Debabrata Mondal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Kalyani, Nadia, West Bengal 741 246, India
| | - Arindam Khatua
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh 462 066, India
| | - Alakesh Bisai
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh 462 066, India
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Kalyani, Nadia, West Bengal 741 246, India
| |
Collapse
|
3
|
Yamanishi K, Ashihara G, Shiomi S, Harada S, Kitajima M, Takayama H, Ishikawa H. New Entries in Organocatalysts from an Alkaloid Library; Development of Aminal Catalysis for a Michael Reaction Based on Calycanthine. J Am Chem Soc 2024; 146:27152-27160. [PMID: 39292187 DOI: 10.1021/jacs.4c10242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Natural products have historically been actively evaluated for their biological activity in the development of pharmaceuticals, while their evaluation as asymmetric catalysts has rarely been explored. In this study, we evaluated the catalytic activity of the natural product library. Three naturally occurring alkaloids, gardnerine, spiradine A, and calycanthine, were found to catalyze an asymmetric Michael reaction using oxindole and nitrostyrene. We further studied (+)-calycanthine, which is characterized by its aminal structure. Concise synthetic and extraction protocols were developed to provide both enantiomers of calycanthine. Further derivatization of this alkaloid led to improved enantioselectivity in a model reaction. Computational studies suggested that the aminal moiety of the catalyst activated nucleophiles and electrophiles through multiple hydrogen bonding interactions, including nonclassical hydrogen bonds between carboxylic acid and the aminal C-H.
Collapse
Affiliation(s)
- Kyosuke Yamanishi
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Gin Ashihara
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Shinya Shiomi
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Shingo Harada
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Mariko Kitajima
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Hiromitsu Takayama
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Hayato Ishikawa
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| |
Collapse
|
4
|
Khatua A, Jana D, Nandy M, Shyamal P, Bisai A. Total Synthesis of (+)- and (-)-Calycanthine by Means of Thio-Urea-Catalyzed Sequential Michael Reactions of Bis-oxindoles. J Org Chem 2024; 89:4792-4801. [PMID: 38544463 DOI: 10.1021/acs.joc.4c00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
A unified catalytic asymmetric approach to naturally occurring piperidinoindoline and pyrrololidinoindoline alkaloids has been realized via the development of a thio-urea-catalyzed sequential Michael addition of bis-oxindole onto nitroethylene (up to 93% ee and >20:1 dr). This strategy offers the total syntheses of either enantiomers of naturally occurring calycanthine.
Collapse
Affiliation(s)
- Arindam Khatua
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India
| | - Debgopal Jana
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Kalyani, Nadia 741 246, West Bengal, India
| | - Monosij Nandy
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Kalyani, Nadia 741 246, West Bengal, India
| | - Pranay Shyamal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Kalyani, Nadia 741 246, West Bengal, India
| | - Alakesh Bisai
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Kalyani, Nadia 741 246, West Bengal, India
| |
Collapse
|
5
|
Sharma S, Shaheeda S, Shaw K, Bisai A, Paul A. Two-Electron- and One-Electron-Transfer Pathways for TEMPO-Catalyzed Greener Electrochemical Dimerization of 3-Substituted-2-Oxindoles. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Sulekha Sharma
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh 462 066, India
| | - Saina Shaheeda
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh 462 066, India
| | - Kundan Shaw
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh 462 066, India
| | - Alakesh Bisai
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh 462 066, India
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, West Bengal 741 246, India
| | - Amit Paul
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh 462 066, India
| |
Collapse
|
6
|
McClure TJ, Saludares C, Martinez G, Orozco C, Navarro R. Decarboxylative Allylic Alkylation of Phthalides: Stabilized Benzylic Nucleophiles for sp 3-sp 3 Coupling. J Org Chem 2022; 87:7557-7564. [PMID: 35575695 DOI: 10.1021/acs.joc.2c00723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new family of stabilized benzylic nucleophiles for the palladium-catalyzed decarboxylative allylic alkylation reaction has been developed. Allyl esters derived from 3-carboxyphthalides were found to undergo palladium-catalyzed deallylation and decarboxylation under mild reaction conditions, a process facilitated by the formation of a stabilized aromatic anion. The regioselective allylic coupling of this intermediate afforded a variety of functionalized phthalides in 73-96% yields.
Collapse
Affiliation(s)
- Timothy J McClure
- Department of Chemistry, Occidental College, Los Angeles, California 90041, United States
| | - Connor Saludares
- Department of Chemistry, Occidental College, Los Angeles, California 90041, United States
| | - Gisela Martinez
- Department of Chemistry, Occidental College, Los Angeles, California 90041, United States
| | - Cheyenne Orozco
- Department of Chemistry, Occidental College, Los Angeles, California 90041, United States
| | - Raul Navarro
- Department of Chemistry, Occidental College, Los Angeles, California 90041, United States
| |
Collapse
|
7
|
Khatua A, Shyamal P, Pal S, Mondal A, Bisai A. Concise total syntheses of bis(cyclotryptamine) alkaloids via thio-urea catalyzed one-pot sequential Michael addition. Chem Commun (Camb) 2022; 58:3929-3932. [PMID: 35244129 DOI: 10.1039/d2cc01008a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Naturally occurring bis(cyclotryptamine) alkaloids feature vicinal all-carbon quaternary stereocenters with an elongated labile C-3a-C-3a' Sigma bond with impressive biological activities. In this report, we have developed a thio-urea catalyzed one-pot sequential Michael addition of bis-oxindole onto selenone to access enantioenriched dimeric 2-oxindoles with vicinal quaternary stereogenic centers at the pseudobenzylic position (up to 96% ee and >20 : 1 dr). This strategy has been successfully applied for the total syntheses of either enantiomers of chimonanthine, folicanthine, and calycanthine.
Collapse
Affiliation(s)
- Arindam Khatua
- Department of Chemistry, IISER Bhopal, Bhopal Bypass Road, Bhopal - 462 066, Madhya Pradesh, India.
| | - Pranay Shyamal
- Department of Chemistry, IISER Kolkata, Mohanpur Campus, Kalyani, Nadia - 741 246, West Bengal, India
| | - Souvik Pal
- Department of Chemistry, IISER Bhopal, Bhopal Bypass Road, Bhopal - 462 066, Madhya Pradesh, India.
| | - Ayan Mondal
- Department of Chemistry, IISER Kolkata, Mohanpur Campus, Kalyani, Nadia - 741 246, West Bengal, India
| | - Alakesh Bisai
- Department of Chemistry, IISER Bhopal, Bhopal Bypass Road, Bhopal - 462 066, Madhya Pradesh, India. .,Department of Chemistry, IISER Kolkata, Mohanpur Campus, Kalyani, Nadia - 741 246, West Bengal, India
| |
Collapse
|
8
|
Ma Z, Zhou A, Xia C. Strategies for total synthesis of bispyrrolidinoindoline alkaloids. Nat Prod Rep 2022; 39:1015-1044. [PMID: 35297915 DOI: 10.1039/d1np00060h] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Covering up to 2021Complex cyclotryptamine alkaloids with a bispyrrolidino[2,3-b]indoline (BPI) skeleton are an intriguing family of natural products, exhibiting wide systematic occurrences, large structural diversity, and multiple biological activities. Based on their structural characteristics, BPI alkaloids can be classified into chimonanthine-type BPI alkaloids, BPI diketopiperazines, and BPI epipolythiodiketopiperazines. These intricate molecules have captivated great attention soon after their isolation and identification in the 1960s. Due to the structural complexity, the total synthesis of these cyclotryptamine alkaloids is challenging. Nevertheless, remarkable progress has been achieved in the last six decades; in particular, several methods have been successfully established for the construction of vicinal all-carbon quaternary stereocenters. In this review, the structural diversity and chemical synthesis of these BPI alkaloids were summarized. BPI alkaloids are mainly synthesized by the methods of oxidative dimerization, reductive dimerization, and alkylation of bisoxindole. The purpose of this review is to present overall strategies for assembling the BPI skeleton and efforts towards controlling the stereocenters.
Collapse
Affiliation(s)
- Zhixian Ma
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, and Yunnan University Library, Yunnan University, Kunming 650091, China.
| | - Ankun Zhou
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, and Yunnan University Library, Yunnan University, Kunming 650091, China.
| | - Chengfeng Xia
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, and Yunnan University Library, Yunnan University, Kunming 650091, China.
| |
Collapse
|
9
|
Munda M, Niyogi S, Shaw K, Kundu S, Nandi R, Bisai A. Electrocatalysis as a key strategy for the total synthesis of natural products. Org Biomol Chem 2022; 20:727-748. [PMID: 34989383 DOI: 10.1039/d1ob02115j] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Electrochemical strategies have been a powerful approach for the synthesis of valuable intermediates, in particular heterocyclic motifs. Because of the mild nature, a wide range of nonclassical bond disconnections have been achieved via in situ-generated radical intermediates in a highly efficient manner. In particular, anodic electrochemical oxidative strategies have been utilized for the total synthesis of many structurally intriguing natural products. In this review article, we have discussed a number of total syntheses of structurally intriguing alkaloids and terpenoids in which electrochemical processes play an important role as a key methodology.
Collapse
Affiliation(s)
- Mintu Munda
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal - 462 066, Madhya Pradesh, India
| | - Sovan Niyogi
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia-741246, West Bengal, India.
| | - Kundan Shaw
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal - 462 066, Madhya Pradesh, India
| | - Sourav Kundu
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal - 462 066, Madhya Pradesh, India
| | - Rhituparna Nandi
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal - 462 066, Madhya Pradesh, India
| | - Alakesh Bisai
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal - 462 066, Madhya Pradesh, India.,Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia-741246, West Bengal, India.
| |
Collapse
|
10
|
Babu KN, Pal S, Khatua A, Roy A, Bisai A. The catalytic decarboxylative allylation of enol carbonates: the synthesis of enantioenriched 3-allyl-3'-aryl 2-oxindoles and the core structure of azonazine. Org Biomol Chem 2021; 20:127-131. [PMID: 34897364 DOI: 10.1039/d1ob02048j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The catalytic asymmetric synthesis of 3-allyl-3'-aryl 2-oxindoles has been shown via the Pd(0)-catalyzed decarboxylative allylation of allylenol carbonates. This methodology provides access to a variety of 2-oxindole substrates (5a-v) with all-carbon quaternary stereocenters (up to 94% ee) at the pseudobenzylic position under additive-free and mild conditions. The synthetic potential of this method was shown by the asymmetric synthesis of the tetracyclic core of the diketopiparazine-based alkaloid azonazine (11).
Collapse
Affiliation(s)
- K Naresh Babu
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal - 462 066, Madhya Pradesh, India.
| | - Souvik Pal
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal - 462 066, Madhya Pradesh, India.
| | - Arindam Khatua
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal - 462 066, Madhya Pradesh, India.
| | - Avishek Roy
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal - 462 066, Madhya Pradesh, India.
| | - Alakesh Bisai
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal - 462 066, Madhya Pradesh, India. .,Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia - 741246, West Bengal, India
| |
Collapse
|
11
|
Maity A, Munda M, Niyogi S, Kumar N, Bisai A. Total syntheses of Hexahydropyrrolo[2,3-b]indole Alkaloids, (+)-pseudophrynamine 270 and (+)-pseudophrynamine 272A. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Kundu S, Munda M, Nandi R, Bisai A. Pd(0)-Catalyzed Deacylative Allylations (DaA) Strategy and Application in the Total Synthesis of Alkaloids. CHEM REC 2021; 21:3818-3838. [PMID: 34796643 DOI: 10.1002/tcr.202100267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 11/12/2022]
Abstract
Natural product synthesis has been the prime focus for the development of new carbon-carbon bond forming transformations. In particular, the construction of molecules with all-carbon quaternary centers remain one of the most facinating targets. In this regard, transition-metal catalyzed processes have gained imporatnce owing to their mild nature. Towards this, Pd(0)-catalyzed decarboxylative allylations (DcA) is worth mentioning and has emerged as a convenient method for synthesis of molecules even in their enantioenriched form. However, in order to have a flexible approach that facilitate rapid production of derivatives by utilizing commercially available allyl alcohols, the concept of Pd(0)-catalyzed deacylative allylations (DaA) methodology gains popularity. In these reactions, the transfer of an acyl group has a functional role in activating the allylic alcohol (proelectrophile) toward reaction with Pd(0)-catalysts. We present here an Account on newly conceptualized deacylative allylations (DaA) methodology and its applications in the synthesis of various intermediates and building blocks. Further, its potential in the total synthesis of naturally occurring alkaloids have been summarized in this personal account.
Collapse
Affiliation(s)
- Sourav Kundu
- Department of Chemistry, Indian Institution of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462 066, MP, India
| | - Mintu Munda
- Department of Chemistry, Indian Institution of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462 066, MP, India
| | - Rhituparna Nandi
- Department of Chemistry, Indian Institution of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462 066, MP, India
| | - Alakesh Bisai
- Department of Chemical Sciences, Indian Institution of Science Education and Research Kolkata Mohanpur Campus, Kalyani, Nadia, 741 246, WB, India
| |
Collapse
|
13
|
Shaw K, Sharma S, Khatua A, Paul A, Bisai A. Oxidative electro-organic synthesis of dimeric hexahydropyrrolo-[2,3- b]indole alkaloids involving PCET: total synthesis of (±)-folicanthine. Org Biomol Chem 2021; 19:9390-9395. [PMID: 34705000 DOI: 10.1039/d1ob01463c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient electrochemical oxidation strategy for the total synthesis of a dimeric hexahydropyrrolo[2,3-b]indole alkaloid, (±)-folicanthine (1b), has been envisioned. Control experiments suggest that a PCET pathway involving stepwise electron transfer followed by proton transfer (ET-PT) was involved in the key oxidative dimerization process.
Collapse
Affiliation(s)
- Kundan Shaw
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal - 462 066, Madhya Pradesh, India.
| | - Sulekha Sharma
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal - 462 066, Madhya Pradesh, India.
| | - Arindam Khatua
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal - 462 066, Madhya Pradesh, India.
| | - Amit Paul
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal - 462 066, Madhya Pradesh, India.
| | - Alakesh Bisai
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal - 462 066, Madhya Pradesh, India. .,Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia - 741246, West Bengal, India
| |
Collapse
|
14
|
Abstract
The asymmetric alkylation of enolates is a particularly versatile method for the construction of α-stereogenic carbonyl motifs, which are ubiquitous in synthetic chemistry. Over the past several decades, the focus has shifted to the development of new catalytic methods that depart from classical stoichiometric stereoinduction strategies (e.g., chiral auxiliaries, chiral alkali metal amide bases, chiral electrophiles, etc.). In this way, the enantioselective alkylation of prochiral enolates greatly improves the step- and redox-economy of this process, in addition to enhancing the scope and selectivity of these reactions. In this review, we summarize the origin and advancement of catalytic enantioselective enolate alkylation methods, with a directed emphasis on the union of prochiral nucleophiles with carbon-centered electrophiles for the construction of α-stereogenic carbonyl derivatives. Hence, the transformative developments for each distinct class of nucleophile (e.g., ketone enolates, ester enolates, amide enolates, etc.) are presented in a modular format to highlight the state-of-the-art methods and current limitations in each area.
Collapse
Affiliation(s)
- Timothy B Wright
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada
| | - P Andrew Evans
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada.,Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, P. R. of China
| |
Collapse
|
15
|
Xu J, Li R, Xu N, Liu X, Wang F, Feng X. Enantioselective [4 + 2] Cycloaddition/Cyclization Cascade Reaction and Total Synthesis of cis-Bis(cyclotryptamine) Alkaloids. Org Lett 2021; 23:1856-1861. [PMID: 33621106 DOI: 10.1021/acs.orglett.1c00260] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The asymmetric catalytic synthesis of 3-cyclotryptamine substituted oxindoles through formal [4 + 2] cycloaddition/cyclization cascade is described. A wide range of cyclotryptamine derivatives were obtained in enantioenriched form under mild reaction conditions and were found to have potential anticancer activity. The strategy enables ready assembly of cyclotryptamine subunits at the C3a-C3a' positions with two quaternary stereogenic centers in cis-selectivity, leading to the concise synthesis of optically active cis-bis(hexahydropyrroloindole) and others of the cyclotryptamine alkaloid family.
Collapse
Affiliation(s)
- Jian Xu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Runze Li
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Nian Xu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Fei Wang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
16
|
|
17
|
Tomanik M, Hsu IT, Herzon SB. Fragment Coupling Reactions in Total Synthesis That Form Carbon-Carbon Bonds via Carbanionic or Free Radical Intermediates. Angew Chem Int Ed Engl 2021; 60:1116-1150. [PMID: 31869476 DOI: 10.1002/anie.201913645] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Indexed: 12/21/2022]
Abstract
Fragment coupling reactions that form carbon-carbon bonds are valuable transformations in synthetic design. Advances in metal-catalyzed cross-coupling reactions in the early 2000s brought a high level of predictability and reliability to carbon-carbon bond constructions involving the union of unsaturated fragments. By comparison, recent years have witnessed an increase in fragment couplings proceeding via carbanionic and open-shell (free radical) intermediates. The latter has been driven by advances in methods to generate and utilize carbon-centered radicals under mild conditions. In this Review, we survey a selection of recent syntheses that have implemented carbanion- or radical-based fragment couplings to form carbon-carbon bonds. We aim to highlight the strategic value of these disconnections in their respective settings and to identify extensible lessons from each example that might be instructive to students.
Collapse
Affiliation(s)
- Martin Tomanik
- Department of Chemistry, Yale University, 225 Prospect St, New Haven, CT, USA
| | - Ian Tingyung Hsu
- Department of Chemistry, Yale University, 225 Prospect St, New Haven, CT, USA
| | - Seth B Herzon
- Department of Chemistry, Yale University, 225 Prospect St, New Haven, CT, USA.,Department of Pharmacology, Yale University, 333 Cedar St, New Haven, CT, USA
| |
Collapse
|
18
|
Tomanik M, Hsu IT, Herzon SB. Fragmentverknüpfungen in der Totalsynthese – Bildung von C‐C‐Bindungen über intermediäre Carbanionen oder freie Radikale. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.201913645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Martin Tomanik
- Department of Chemistry Yale University 225 Prospect St New Haven CT USA
| | - Ian Tingyung Hsu
- Department of Chemistry Yale University 225 Prospect St New Haven CT USA
| | - Seth B. Herzon
- Department of Chemistry Yale University 225 Prospect St New Haven CT USA
- Department of Pharmacology Yale University 333 Cedar St New Haven CT USA
| |
Collapse
|
19
|
Devi M, Jadhav AP, Singh RP. KOH-mediated stereoselective alkylation of 3-bromooxindoles for the synthesis of 3,3′-disubstituted oxindoles with two contiguous all carbon quaternary centres. NEW J CHEM 2021. [DOI: 10.1039/d0nj06283a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The stereoselective synthesis of 3,3′-disubstituted oxindoles having all-carbon quaternary stereocenters has been achieved using KOH as a base with an excellent diastereomeric ratio (98 : 2).
Collapse
Affiliation(s)
- Manju Devi
- Department of Chemistry
- Indian Institute of Technology
- Delhi
- Hauz Khas
- India
| | - Amol P. Jadhav
- Department of Chemistry
- Indian Institute of Technology
- Delhi
- Hauz Khas
- India
| | - Ravi P. Singh
- Department of Chemistry
- Indian Institute of Technology
- Delhi
- Hauz Khas
- India
| |
Collapse
|
20
|
Sharma S, Roy A, Shaw K, Bisai A, Paul A. Electrochemical Synthesis of Dimeric 2-Oxindole Sharing Vicinal Quaternary Centers Employing Proton-Coupled Electron Transfer. J Org Chem 2020; 85:14926-14936. [DOI: 10.1021/acs.joc.0c01621] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Sulekha Sharma
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh 462 066, India
| | - Avishek Roy
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh 462 066, India
| | - Kundan Shaw
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh 462 066, India
| | - Alakesh Bisai
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh 462 066, India
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, West Bengal 741 246, India
| | - Amit Paul
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh 462 066, India
| |
Collapse
|
21
|
Zhou F, Zhu L, Pan BW, Shi Y, Liu YL, Zhou J. Catalytic enantioselective construction of vicinal quaternary carbon stereocenters. Chem Sci 2020; 11:9341-9365. [PMID: 34094201 PMCID: PMC8162142 DOI: 10.1039/d0sc03249b] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
This review summarizes the advances in the catalytic enantioselective construction of vicinal quaternary carbon stereocenters, introduces major synthetic strategies and discusses their advantages and limitations, highlights the application of known protocols in the total synthesis of natural products, and outlines the synthetic opportunities. This review summarizes the advances in catalytic enantioselective construction of vicinal quaternary carbon stereocenters, introduces major synthetic strategies and discusses their advantages and limitations, and outlines the synthetic opportunities.![]()
Collapse
Affiliation(s)
- Feng Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University Shanghai 200062 P. R. China
| | - Lei Zhu
- School of Chemistry and Materials Science, Hubei Engineering University Hubei 432000 P. R. China
| | - Bo-Wen Pan
- School of Pharmaceutical, Guizhou University of Traditional Chinese Medicine Guiyang 550002 P. R. China
| | - Yang Shi
- School of Pharmaceutical, Guizhou University of Traditional Chinese Medicine Guiyang 550002 P. R. China
| | - Yun-Lin Liu
- School of Chemistry and Chemical Engineering, Guangzhou University Guangzhou 510006 P. R. China
| | - Jian Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University Shanghai 200062 P. R. China .,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 P. R. China
| |
Collapse
|
22
|
Das MK, Yadav A, Majumder S, Bisai A. Catalytic deacylative alkylations (DaA) of enolcarbonates: Total synthesis of (±)-Crinane. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Moreno-Cabrerizo C, Ortega-Martínez A, Esteruelas MA, López AM, Nájera C, Sansano JM. Deacylative Alkylation vs. Photoredox Catalysis in the Synthesis of 3,3'-Bioxindoles. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000375] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Cristina Moreno-Cabrerizo
- Department of Organic Chemistry; and Instituto de Síntesis Orgánica (ISO); University of Alicante; PO Box 99 03080 Alicante Spain
- Centro de Innovación en Química Avanzada; ORFEO-CINQA; Spain
| | - Aitor Ortega-Martínez
- Department of Organic Chemistry; and Instituto de Síntesis Orgánica (ISO); University of Alicante; PO Box 99 03080 Alicante Spain
- Centro de Innovación en Química Avanzada; ORFEO-CINQA; Spain
| | - Miguel A. Esteruelas
- Centro de Innovación en Química Avanzada; ORFEO-CINQA; Spain
- Departamento de Química Inorgánica; Instituto de Síntesis Química y Catálisis Homogénea; Universidad de Zaragoza-CSIC; 50009 Zaragoza Spain
| | - Ana M. López
- Centro de Innovación en Química Avanzada; ORFEO-CINQA; Spain
- Departamento de Química Inorgánica; Instituto de Síntesis Química y Catálisis Homogénea; Universidad de Zaragoza-CSIC; 50009 Zaragoza Spain
| | - Carmen Nájera
- Centro de Innovación en Química Avanzada; ORFEO-CINQA; Spain
| | - José M. Sansano
- Department of Organic Chemistry; and Instituto de Síntesis Orgánica (ISO); University of Alicante; PO Box 99 03080 Alicante Spain
- Centro de Innovación en Química Avanzada; ORFEO-CINQA; Spain
| |
Collapse
|
24
|
Maity A, Roy A, Das MK, De S, Naskar M, Bisai A. Oxidative cyanation of 2-oxindoles: formal total synthesis of (±)-gliocladin C. Org Biomol Chem 2020; 18:1679-1684. [PMID: 32052001 DOI: 10.1039/c9ob02752a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Efficient oxidative direct cyanations of 3-alkyl/aryl 2-oxindoles using Cyano-1,2-BenziodoXol-3(1H)-one (CBX) (2a) have been reported under 'transition metal-free' conditions to synthesize a wide variety of 3-cyano 3-alkyl/aryl 2-oxindoles sharing an all-carbon quaternary center under additive-free conditions. The application of this process is shown by the formal total synthesis of (±)-gliocladin C (11c) in a few steps.
Collapse
Affiliation(s)
- Arindam Maity
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal - 462 066, Madhya Pradesh, India.
| | - Avishek Roy
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal - 462 066, Madhya Pradesh, India.
| | - Mrinal Kanti Das
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal - 462 066, Madhya Pradesh, India.
| | - Subhadip De
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal - 462 066, Madhya Pradesh, India.
| | - Malay Naskar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal - 462 066, Madhya Pradesh, India.
| | - Alakesh Bisai
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal - 462 066, Madhya Pradesh, India. and Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia - 741 246, West Bengal, India.
| |
Collapse
|
25
|
Roy A, Maity A, Giri R, Bisai A. Efficient Alkynylation of 2‐Oxindoles with Alkynyl Dibenzothiophenium Triflates: Total Synthesis of (±)‐Deoxyeseroline. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Avishek Roy
- Department of ChemistryIndian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal 462 066 Madhya Pradesh India
| | - Arindam Maity
- Department of ChemistryIndian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal 462 066 Madhya Pradesh India
| | - Rahul Giri
- Department of ChemistryIndian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal 462 066 Madhya Pradesh India
| | - Alakesh Bisai
- Department of ChemistryIndian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal 462 066 Madhya Pradesh India
- Department of Chemical SciencesIndian Institute of Science Education and Research Kolkata Mohanpur, Haringhata Kalyani, Nadia 741 246 West Bengal India
| |
Collapse
|
26
|
Chan W, Tang X, Zhang F, Quek G, Mei G, Lu Y. Phosphine‐Catalyzed (3+2) Annulation of Isoindigos with Allenes: Enantioselective Formation of Two Vicinal Quaternary Stereogenic Centers. Angew Chem Int Ed Engl 2019; 58:6260-6264. [DOI: 10.1002/anie.201900758] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 02/09/2019] [Indexed: 01/23/2023]
Affiliation(s)
- Wai‐Lun Chan
- Department of ChemistryNational University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Xiaodong Tang
- Department of ChemistryNational University of Singapore 3 Science Drive 3 117543 Singapore Singapore
- National University of Singapore (Suzhou) Research Institute 377 Lin Quan Street, Suzhou Industrial Park Suzhou Jiangsu 215123 China
| | - Fuhao Zhang
- Department of ChemistryNational University of Singapore 3 Science Drive 3 117543 Singapore Singapore
- Department of ChemistrySouthern University of Science and Technology Shenzhen 518000 China
| | - Glenn Quek
- Department of ChemistryNational University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Guang‐Jian Mei
- Department of ChemistryNational University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Yixin Lu
- Department of ChemistryNational University of Singapore 3 Science Drive 3 117543 Singapore Singapore
- National University of Singapore (Suzhou) Research Institute 377 Lin Quan Street, Suzhou Industrial Park Suzhou Jiangsu 215123 China
| |
Collapse
|
27
|
Chan W, Tang X, Zhang F, Quek G, Mei G, Lu Y. Phosphine‐Catalyzed (3+2) Annulation of Isoindigos with Allenes: Enantioselective Formation of Two Vicinal Quaternary Stereogenic Centers. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900758] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Wai‐Lun Chan
- Department of ChemistryNational University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Xiaodong Tang
- Department of ChemistryNational University of Singapore 3 Science Drive 3 117543 Singapore Singapore
- National University of Singapore (Suzhou) Research Institute 377 Lin Quan Street, Suzhou Industrial Park Suzhou Jiangsu 215123 China
| | - Fuhao Zhang
- Department of ChemistryNational University of Singapore 3 Science Drive 3 117543 Singapore Singapore
- Department of ChemistrySouthern University of Science and Technology Shenzhen 518000 China
| | - Glenn Quek
- Department of ChemistryNational University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Guang‐Jian Mei
- Department of ChemistryNational University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Yixin Lu
- Department of ChemistryNational University of Singapore 3 Science Drive 3 117543 Singapore Singapore
- National University of Singapore (Suzhou) Research Institute 377 Lin Quan Street, Suzhou Industrial Park Suzhou Jiangsu 215123 China
| |
Collapse
|
28
|
Liu X, Wang P, Bai L, Li D, Wang L, Yang D, Wang R. Construction of Vicinal All-Carbon Quaternary Stereocenters Enabled by a Catalytic Asymmetric Dearomatization Reaction of β-Naphthols with 3-Bromooxindoles. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03905] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Xihong Liu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Pengxin Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Lutao Bai
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Dan Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Linqing Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Dongxu Yang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
29
|
Babu KN, Roy A, Singh M, Bisai A. Thiourea-Catalyzed Enantioselective Malonate Addition onto 3-Sulfonyl-3'-indolyl-2-oxindoles: Formal Total Syntheses of (-)-Chimonanthine, (-)-Folicanthine, and (+)-Calycanthine. Org Lett 2018; 20:6327-6331. [PMID: 30299963 DOI: 10.1021/acs.orglett.8b02327] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A general approach to bispyrroloindolines via a key thiourea-catalyzed addition of malonates to 3-sulfonyl-3'-indolyl-2-oxindoles is reported. The enantioselelective process is found to be highly effective (up to 94% ee), where a C-C bond formation leads to the synthesis of a number of 2-oxindoles with an all-carbon quaternary stereocenter.
Collapse
Affiliation(s)
- K Naresh Babu
- Department of Chemistry , IISER Bhopal , Bhopal Bypass Road , Bhauri, Bhopal 462 066 , Madhya Pradesh , India
| | - Avishek Roy
- Department of Chemistry , IISER Bhopal , Bhopal Bypass Road , Bhauri, Bhopal 462 066 , Madhya Pradesh , India
| | - Manvendra Singh
- Department of Chemistry , IISER Bhopal , Bhopal Bypass Road , Bhauri, Bhopal 462 066 , Madhya Pradesh , India
| | - Alakesh Bisai
- Department of Chemistry , IISER Bhopal , Bhopal Bypass Road , Bhauri, Bhopal 462 066 , Madhya Pradesh , India
| |
Collapse
|
30
|
Naresh Babu K, Kariyandi NR, Saheeda M. K. S, Kinthada LK, Bisai A. Lewis Acid-Catalyzed Malonate Addition onto 3-Hydroxy-2-oxindoles: Mechanistic Consideration and Synthetic Approaches to the Pyrroloindoline Alkaloids. J Org Chem 2018; 83:12664-12682. [DOI: 10.1021/acs.joc.8b02017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- K. Naresh Babu
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh 462 066, India
| | - Nikhil Raj Kariyandi
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh 462 066, India
| | - Saina Saheeda M. K.
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh 462 066, India
| | - Lakshmana K. Kinthada
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh 462 066, India
| | - Alakesh Bisai
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh 462 066, India
| |
Collapse
|
31
|
Kumar N, Gavit VR, Maity A, Bisai A. Pd(0)-Catalyzed Chemoselective Deacylative Alkylations (DaA) of N-Acyl 2-Oxindoles: Total Syntheses of Pyrrolidino[2,3- b]indoline Alkaloids, (±)-Deoxyeseroline, and (±)-Esermethole. J Org Chem 2018; 83:10709-10735. [PMID: 30058340 DOI: 10.1021/acs.joc.8b01101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report an efficient Pd(0)-catalyzed deacylative allylation of N-acyl 3-substituted 2-oxindoles via the coupling of in situ generated nucleophiles (3 and 4) with allyl electrophiles for the synthesis of a variety of 2-oxindoles with C3-quaternary centers. Gratifyingly, this alkylation process is found to be highly chemoselective in nature, where a C-C bond formation is completely predominant over a C-N bond formation. A variety of key intermediates were synthesized utilizing an aforementioned methodology.
Collapse
Affiliation(s)
- Nivesh Kumar
- Department of Chemistry , Indian Institute of Science Education and Research Bhopal , Bhopal Bypass Road , Bhauri, Bhopal , Madhya Pradesh 462 066 , India
| | - Vipin R Gavit
- Department of Chemistry , Indian Institute of Science Education and Research Bhopal , Bhopal Bypass Road , Bhauri, Bhopal , Madhya Pradesh 462 066 , India
| | - Arindam Maity
- Department of Chemistry , Indian Institute of Science Education and Research Bhopal , Bhopal Bypass Road , Bhauri, Bhopal , Madhya Pradesh 462 066 , India
| | - Alakesh Bisai
- Department of Chemistry , Indian Institute of Science Education and Research Bhopal , Bhopal Bypass Road , Bhauri, Bhopal , Madhya Pradesh 462 066 , India
| |
Collapse
|
32
|
Kumar N, Maity A, Gavit VR, Bisai A. A catalytic N-deacylative alkylation approach to hexahydropyrrolo[2,3-b]indole alkaloids. Chem Commun (Camb) 2018; 54:9083-9086. [PMID: 30059075 DOI: 10.1039/c8cc04117b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A versatile unprecedented strategy to diversely functionalized hexahydropyrrolo[2,3-b]indole alkaloids is described in high chemical yields. The synthesis features a key Pd(0)-catalyzed deacylative alkylation of N-acyl 3-substituted indoles using only 1 mol% of Pd(PPh3)4. The scope of this methodology is further defined in the asymmetric synthesis of pyrroloindolines using a diastereoselective approach.
Collapse
Affiliation(s)
- Nivesh Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal - 462 066, Madhya Pradesh, India.
| | | | | | | |
Collapse
|
33
|
Chen SK, Ma WQ, Yan ZB, Zhang FM, Wang SH, Tu YQ, Zhang XM, Tian JM. Organo-Cation Catalyzed Asymmetric Homo/Heterodialkylation of Bisoxindoles: Construction of Vicinal All-Carbon Quaternary Stereocenters and Total Synthesis of (−)-Chimonanthidine. J Am Chem Soc 2018; 140:10099-10103. [DOI: 10.1021/jacs.8b05386] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Si-Kai Chen
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Wen-Qiang Ma
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Zhi-Bo Yan
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Fu-Min Zhang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Shao-Hua Wang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Yong-Qiang Tu
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Xiao-Ming Zhang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Jin-Miao Tian
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| |
Collapse
|
34
|
Das MK, Kumar N, Bisai A. Catalytic Asymmetric Total Syntheses of Naturally Occurring Amarylidaceae Alkaloids, (−)-Crinine, (−)-epi-Crinine, (−)-Oxocrinine, (+)-epi-Elwesine, (+)-Vittatine, and (+)-epi-Vittatine*. Org Lett 2018; 20:4421-4424. [DOI: 10.1021/acs.orglett.8b01703] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mrinal K. Das
- Department of Chemistry, IISER Bhopal, Bhopal Bypass Road, Bhauri, Bhopal - 462 066, Madhya Pradesh, India
| | - Nivesh Kumar
- Department of Chemistry, IISER Bhopal, Bhopal Bypass Road, Bhauri, Bhopal - 462 066, Madhya Pradesh, India
| | - Alakesh Bisai
- Department of Chemistry, IISER Bhopal, Bhopal Bypass Road, Bhauri, Bhopal - 462 066, Madhya Pradesh, India
| |
Collapse
|
35
|
Babu KN, Kinthada LK, Pratim Das P, Bisai A. Cu(ii)- tBu-PHOX catalyzed enantioselective malonate addition onto 3-hydroxy 2-oxindoles: application in the synthesis of dimeric pyrroloindoline alkaloids. Chem Commun (Camb) 2018; 54:7963-7966. [PMID: 29956704 DOI: 10.1039/c8cc04338h] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient Cu(ii)-PHOX-catalyzed malonate addition onto 3-hydroxy 3-indolyl-2-oxindoles is envisioned to afford excellent enantioselectivities (up to >99% ee) in high chemical yields. Detailed characterization techniques including X-ray, NMR, CV and EPR experiments suggest that a Cu(ii)-complex is involved as an active species in this process. Applying this strategy, an advanced intermediate of cyclotryptamine alkaloids has been synthesized in few steps for a general approach to bis-cyclotryptamine alkaloids.
Collapse
Affiliation(s)
- K Naresh Babu
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal - 462 066, Madhya Pradesh, India.
| | | | | | | |
Collapse
|
36
|
Hethcox JC, Shockley SE, Stoltz BM. Enantioselective Synthesis of Vicinal All-Carbon Quaternary Centers via Iridium-Catalyzed Allylic Alkylation. Angew Chem Int Ed Engl 2018; 57:8664-8667. [PMID: 29750856 PMCID: PMC6033654 DOI: 10.1002/anie.201804820] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Indexed: 01/08/2023]
Abstract
The development of the first enantioselective transition-metal-catalyzed allylic alkylation providing access to acyclic products bearing vicinal all-carbon quaternary centers is disclosed. The iridium-catalyzed allylic alkylation reaction proceeds with excellent yields and selectivities for a range of malononitrile-derived nucleophiles and trisubstituted allylic electrophiles. The utility of these sterically congested products is explored through a series of diverse chemo- and diastereoselective product transformations to afford a number of highly valuable, densely functionalized building blocks, including those containing vicinal all-carbon quaternary stereocenters.
Collapse
Affiliation(s)
- J Caleb Hethcox
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd, MC 101-20, Pasadena, CA, 91125, USA
| | - Samantha E Shockley
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd, MC 101-20, Pasadena, CA, 91125, USA
| | - Brian M Stoltz
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd, MC 101-20, Pasadena, CA, 91125, USA
| |
Collapse
|
37
|
Hethcox JC, Shockley SE, Stoltz BM. Enantioselective Synthesis of Vicinal All‐Carbon Quaternary Centers via Iridium‐Catalyzed Allylic Alkylation. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804820] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- J. Caleb Hethcox
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering Division of Chemistry and Chemical Engineering California Institute of Technology 1200 E. California Blvd, MC 101-20 Pasadena CA 91125 USA
| | - Samantha E. Shockley
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering Division of Chemistry and Chemical Engineering California Institute of Technology 1200 E. California Blvd, MC 101-20 Pasadena CA 91125 USA
| | - Brian M. Stoltz
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering Division of Chemistry and Chemical Engineering California Institute of Technology 1200 E. California Blvd, MC 101-20 Pasadena CA 91125 USA
| |
Collapse
|
38
|
Guo W, Kuniyil R, Gómez JE, Maseras F, Kleij AW. A Domino Process toward Functionally Dense Quaternary Carbons through Pd-Catalyzed Decarboxylative C(sp3)–C(sp3) Bond Formation. J Am Chem Soc 2018; 140:3981-3987. [DOI: 10.1021/jacs.7b12608] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Wusheng Guo
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Rositha Kuniyil
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - José Enrique Gómez
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Feliu Maseras
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- Departament de Química, Universitat Autónoma de Barcelona, 08193 Bellaterra, Catalonia, Spain
| | - Arjan W. Kleij
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- Catalan Institute of Research and Advanced Studies (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
39
|
Roy A, Das MK, Chaudhuri S, Bisai A. Transition-Metal Free Oxidative Alkynylation of 2-Oxindoles with Ethynylbenziodoxolone (EBX) Reagents. J Org Chem 2017; 83:403-421. [DOI: 10.1021/acs.joc.7b02797] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Avishek Roy
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass
Road, Bhopal, MP 462 066, India
| | - Mrinal Kanti Das
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass
Road, Bhopal, MP 462 066, India
| | - Saikat Chaudhuri
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass
Road, Bhopal, MP 462 066, India
| | - Alakesh Bisai
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass
Road, Bhopal, MP 462 066, India
| |
Collapse
|
40
|
Kinthada LK, Medisetty SR, Parida A, Babu KN, Bisai A. FeCl3-Catalyzed Allylation Reactions onto 3-Hydroxy-2-oxindoles: Formal Total Syntheses of Bis-cyclotryptamine Alkaloids, (±)-Chimonanthine, and (±)-Folicanthine. J Org Chem 2017; 82:8548-8567. [DOI: 10.1021/acs.joc.7b01232] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lakshmana K. Kinthada
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh 462 066, India
| | - Sai Raghavendra Medisetty
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh 462 066, India
| | - Amarchand Parida
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh 462 066, India
| | - K. Naresh Babu
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh 462 066, India
| | - Alakesh Bisai
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh 462 066, India
| |
Collapse
|
41
|
Zheng Y, Bao M, Qiu L, Xu X. Thermally induced reaction of diazoamides with isatins: A complementary approach to the 3,3′-bioxindole derivatives. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.07.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
42
|
Liang K, Xia C. Recent Advances of Transition Metal-Mediated Oxidative Radical Reactions in Total Synthesis of Indole Alkaloids. CHINESE J CHEM 2017. [DOI: 10.1002/cjoc.201600777] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Kangjiang Liang
- Key Laboratory of Medicinal Chemistry for Natural Resources (Yunnan University); Ministry of Education, Yunnan University; Kunming Yunnan 650091 China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany; Chinese Academy of Sciences; Kunming Yunnan 650201 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Chengfeng Xia
- Key Laboratory of Medicinal Chemistry for Natural Resources (Yunnan University); Ministry of Education, Yunnan University; Kunming Yunnan 650091 China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany; Chinese Academy of Sciences; Kunming Yunnan 650201 China
| |
Collapse
|
43
|
Kumar N, Das MK, Ghosh S, Bisai A. Development of catalytic deacylative alkylations (DaA) of 3-acyl-2-oxindoles: total synthesis of meso-chimonanthine and related alkaloids. Chem Commun (Camb) 2017; 53:2170-2173. [PMID: 28144659 DOI: 10.1039/c6cc10228j] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present an effective deacylative alkylation strategy for the construction of a variety of 2-oxindoles bearing an all-carbon quaternary center at the pseudobenzylic position. A wide variety of products with quaternary centers could be accessed by employing simple Pd(0) catalysis under mild reaction conditions. Importantly, the same strategy works equally well for the dimeric 2-oxindole system, furnishing products with a vicinal quaternary center in favour of meso-isomer as the major product. Eventual application to the total syntheses of meso-chimonanthine and meso-folicanthine very well demonstrates the synthetic potential of this strategy.
Collapse
Affiliation(s)
- Nivesh Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal - 462 066, Madhya Pradesh, India.
| | - Mrinal Kanti Das
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal - 462 066, Madhya Pradesh, India.
| | - Santanu Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal - 462 066, Madhya Pradesh, India.
| | - Alakesh Bisai
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal - 462 066, Madhya Pradesh, India.
| |
Collapse
|
44
|
De S, Das MK, Roy A, Bisai A. Synthesis of 2-Oxindoles Sharing Vicinal All-Carbon Quaternary Stereocenters via Organocatalytic Aldol Reaction. J Org Chem 2016; 81:12258-12274. [PMID: 27978733 DOI: 10.1021/acs.joc.6b02195] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An organocatalytic enantioselective aldol reaction using paraformaldehyde as C1-unit has been developed for the synthesis of 2-oxindoles sharing vicinal all-carbon quaternary stereocenters. The methodology is eventually employed in the formal total synthesis of (+)-folicanthine (1b).
Collapse
Affiliation(s)
- Subhadip De
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal , Bhopal Bypass Road, Bhopal, MP 462 066, India
| | - Mrinal Kanti Das
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal , Bhopal Bypass Road, Bhopal, MP 462 066, India
| | - Avishek Roy
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal , Bhopal Bypass Road, Bhopal, MP 462 066, India
| | - Alakesh Bisai
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal , Bhopal Bypass Road, Bhopal, MP 462 066, India
| |
Collapse
|
45
|
Kumar N, Ghosh S, Bhunia S, Bisai A. Synthesis of 2-oxindoles via 'transition-metal-free' intramolecular dehydrogenative coupling (IDC) of sp(2) C-H and sp(3) C-H bonds. Beilstein J Org Chem 2016; 12:1153-1169. [PMID: 27559367 PMCID: PMC4979638 DOI: 10.3762/bjoc.12.111] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 05/16/2016] [Indexed: 11/23/2022] Open
Abstract
The synthesis of a variety of 2-oxindoles bearing an all-carbon quaternary center at the pseudo benzylic position has been achieved via a ‘transition-metal-free’ intramolecular dehydrogenative coupling (IDC). The construction of 2-oxindole moieties was carried out through formation of carbon–carbon bonds using KOt-Bu-catalyzed one pot C-alkylation of β-N-arylamido esters with alkyl halides followed by a dehydrogenative coupling. Experimental evidences indicated toward a radical-mediated path for this reaction.
Collapse
Affiliation(s)
- Nivesh Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal - 462 066, Madhya Pradesh, India
| | - Santanu Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal - 462 066, Madhya Pradesh, India
| | - Subhajit Bhunia
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal - 462 066, Madhya Pradesh, India
| | - Alakesh Bisai
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal - 462 066, Madhya Pradesh, India
| |
Collapse
|
46
|
Lee MS, Kim Y, Youk E, Park YS. Stereoselective Nucleophilc Substitution of α-Bromo Tertiary Amides for Asymmetric Synthesis of Highly Substituted 2,5-Diketopiperazines. B KOREAN CHEM SOC 2016. [DOI: 10.1002/bkcs.10802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Myung-su Lee
- Department of Chemistry; Konkuk University; Seoul 05029 Korea
| | - Yongtae Kim
- Department of Chemistry; Konkuk University; Seoul 05029 Korea
| | - Eunjee Youk
- Department of Chemistry; Konkuk University; Seoul 05029 Korea
| | - Yong Sun Park
- Department of Chemistry; Konkuk University; Seoul 05029 Korea
| |
Collapse
|
47
|
Chatterjee N, Arfeen M, Bharatam PV, Goswami A. A Metal and Base-Free Chemoselective Primary Amination of Boronic Acids Using Cyanamidyl/Arylcyanamidyl Radical as Aminating Species: Synthesis and Mechanistic Studies by Density Functional Theory. J Org Chem 2016; 81:5120-7. [DOI: 10.1021/acs.joc.6b00671] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nachiketa Chatterjee
- Department
of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar 140001, Punjab, India
| | - Minhajul Arfeen
- Department
of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar 160062, Punjab, India
| | - Prasad V. Bharatam
- Department
of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar 160062, Punjab, India
| | - Avijit Goswami
- Department
of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar 140001, Punjab, India
| |
Collapse
|
48
|
Hara Y, Kusano Y, Ohmatsu K, Ooi T. Palladium-catalyzed Branch-selective Decarboxylative Allylation Using Ion-paired Ligands. CHEM LETT 2016. [DOI: 10.1246/cl.160158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yoshiyuki Hara
- Institute of Transformative Bio-Molecules (WPI-ITbM), and Department of Applied Chemistry, Graduate School of Engineering, Nagoya University
| | - Yuya Kusano
- Institute of Transformative Bio-Molecules (WPI-ITbM), and Department of Applied Chemistry, Graduate School of Engineering, Nagoya University
| | - Kohsuke Ohmatsu
- Institute of Transformative Bio-Molecules (WPI-ITbM), and Department of Applied Chemistry, Graduate School of Engineering, Nagoya University
| | - Takashi Ooi
- Institute of Transformative Bio-Molecules (WPI-ITbM), and Department of Applied Chemistry, Graduate School of Engineering, Nagoya University
- CREST, Japan Science and Technology Agency (JST)
| |
Collapse
|
49
|
Shen X, Zhou Y, Xi Y, Zhao J, Zhang H. Total Synthesis of Dimeric HPI Alkaloids. NATURAL PRODUCTS AND BIOPROSPECTING 2016; 6:117-39. [PMID: 26969313 PMCID: PMC4805652 DOI: 10.1007/s13659-016-0092-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 02/19/2016] [Indexed: 05/17/2023]
Abstract
In this paper, we report a full account of the synthesis of dimeric hexahydropyrroloindole alkaloids and its analogues. The key feature of our new strategy is the novel catalytic copper (10 %) mediated intramolecular arylations of o-haloanilides followed by intermolecular oxidative dimerization of the resulting oxindoles in one pot. This sequential reaction leads to the key intermediates for the synthesis of (+)-chimonanthine, (+)-folicanthine, (-)-calycanthine and (-)-ditryptophenaline. In the presence of catalytic amount of cuprous iodide (10 %), an intramolecular arylation of o-haloanilides followed by an intermolecular oxidative dimerization of the resulting oxindoles leads to a common intermediate for the synthesis of (+)-chimonanthine, (+)-folicanthine and (-)-calycanthine. Based on this cascade sequence, we also developed a flexible strategy towards the asymmetric syntheses of dimeric HPI alkaloids (-)-ditryptophenaline and its analogues.
Collapse
Affiliation(s)
- Xianfu Shen
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Yongyun Zhou
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Yongkai Xi
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Jingfeng Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Hongbin Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China.
| |
Collapse
|
50
|
De S, Das MK, Bhunia S, Bisai A. Unified Approach to the Spiro(pyrrolidinyl-oxindole) and Hexahydropyrrolo[2,3-b]indole Alkaloids: Total Syntheses of Pseudophrynamines 270 and 272A. Org Lett 2015; 17:5922-5. [DOI: 10.1021/acs.orglett.5b03082] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Subhadip De
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass
Road, Bhauri, Bhopal - 462 066, Madhya Pradesh, India
| | - Mrinal Kanti Das
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass
Road, Bhauri, Bhopal - 462 066, Madhya Pradesh, India
| | - Subhajit Bhunia
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass
Road, Bhauri, Bhopal - 462 066, Madhya Pradesh, India
| | - Alakesh Bisai
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass
Road, Bhauri, Bhopal - 462 066, Madhya Pradesh, India
| |
Collapse
|