1
|
Testing PtCu Nanoparticles Supported on Highly Ordered Mesoporous Carbons CMK3 and CMK8 as Catalysts for Low-Temperature Fuel Cells. Catalysts 2021. [DOI: 10.3390/catal11060724] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Pt(Cu) nanoparticles supported on CMK3 and CMK8 ordered mesoporous carbons (OMCs) have been synthesized by electroless deposition of Cu followed by galvanic exchange with Pt. The structural characterization by high-resolution transmission electron microscopy and X-ray diffraction showed the formation of Pt(Cu) nanoparticles of 4–5 nm, in which PtCu alloys with contracted fcc Pt lattice and 70–80 at.% Pt was identified. The X-ray photoelectron spectroscopy analyses indicated that the Pt(Cu) nanoparticles were mainly composed of a PtCu alloy core covered by a Pt-rich shell, in agreement with the steady cyclic voltammograms, which did not show any Cu oxidation peaks. Electroactive surface areas up to about 70 m2 gPt−1 were obtained. The onset potentials for CO oxidation and the oxygen reduction reaction were more negative and positive, respectively, as compared to Pt/C, thus indicating higher activity of these Pt(Cu) catalysts with respect to the latter. Based on the corresponding binding energies, these better activities were attributed to the favorable geometric and ligand effects of Cu on Pt, which were able to reduce the adsorption energy of the intermediates on Pt. Pt(Cu)/CMK3 showed competitive mass and specific activities, as well as better stability than Pt/C.
Collapse
|
2
|
Rahman MM, Ara MG, Alim MA, Uddin MS, Najda A, Albadrani GM, Sayed AA, Mousa SA, Abdel-Daim MM. Mesoporous Carbon: A Versatile Material for Scientific Applications. Int J Mol Sci 2021; 22:ijms22094498. [PMID: 33925852 PMCID: PMC8123390 DOI: 10.3390/ijms22094498] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 01/16/2023] Open
Abstract
Mesoporous carbon is a promising material having multiple applications. It can act as a catalytic support and can be used in energy storage devices. Moreover, mesoporous carbon controls body’s oral drug delivery system and adsorb poisonous metal from water and various other molecules from an aqueous solution. The accuracy and improved activity of the carbon materials depend on some parameters. The recent breakthrough in the synthesis of mesoporous carbon, with high surface area, large pore-volume, and good thermostability, improves its activity manifold in performing functions. Considering the promising application of mesoporous carbon, it should be broadly illustrated in the literature. This review summarizes the potential application of mesoporous carbon in many scientific disciplines. Moreover, the outlook for further improvement of mesoporous carbon has been demonstrated in detail. Hopefully, it would act as a reference guidebook for researchers about the putative application of mesoporous carbon in multidimensional fields.
Collapse
Affiliation(s)
- Md. Motiar Rahman
- Shenzhen Institute of Advanced Technology (SIAT) of the Chinese Academy of Sciences (CAS), Shenzhen 518055, China
- Nanotechnology and Catalysis Research Center (NanoCat), University of Malaya, Kuala Lumpur 50603, Malaysia;
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh
- Correspondence:
| | - Mst Gulshan Ara
- Nanotechnology and Catalysis Research Center (NanoCat), University of Malaya, Kuala Lumpur 50603, Malaysia;
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Mohammad Abdul Alim
- Department of Chemistry, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh;
- Graduate School of Innovative Life Science, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - Md. Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka 1213, Bangladesh;
- Pharmakon Neuroscience Research Network, Dhaka 1207, Bangladesh
| | - Agnieszka Najda
- Laboratory of Quality of Vegetables and Medicinal Plants, Department of Vegetable Crops and Medicinal Plants, University of Life Sciences in Lublin, 15 Akademicka Street, 20-950 Lublin, Poland;
| | - Ghadeer M. Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia;
| | - Amany A. Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt;
| | - Shaker A. Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA;
| | - Mohamed M. Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt;
| |
Collapse
|
3
|
Yuda A, Ashok A, Kumar A. A comprehensive and critical review on recent progress in anode catalyst for methanol oxidation reaction. CATALYSIS REVIEWS 2020. [DOI: 10.1080/01614940.2020.1802811] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Afdhal Yuda
- Department of Chemical Engineering, Qatar University, Doha, Qatar
| | - Anchu Ashok
- Department of Chemical Engineering, Qatar University, Doha, Qatar
| | - Anand Kumar
- Department of Chemical Engineering, Qatar University, Doha, Qatar
| |
Collapse
|
4
|
Bai X, Geng J, Zhao S, Li H, Li F. Tunable Hollow Pt@Ru Dodecahedra via Galvanic Replacement for Efficient Methanol Oxidation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:23046-23050. [PMID: 32348114 DOI: 10.1021/acsami.0c06460] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Pt-Ru nanocrystals are promising electrocatalysts for methanol oxidation in fuel cells. However, owing to the lattice mismatch and high reduction potential of Ru, the shape-controlled synthesis of Pt-Ru nanocrystals faces great challenges. Herein, we employ a galvanic replacement method to synthesize tunable hollow Pt@Ru dodecahedra via controlling the precursor concentration. Two typical structures, hollow Pt@Ru dodecahedra (h-Pt@Ru) and deformed hollow Pt@Ru dodecahedra (d-Pt@Ru), are obtained to exhibit superior electrocatalytic activities for methanol oxidation. The optimal d-Pt@Ru dodecahedra present a mass activity of 0.80 A mgPt-1 and a specific activity of 1.61 mA cmPt-2, which are 5.25 and 7.78 times higher than those of the commercial Pt/C, respectively. Remarkably, both h-Pt@Ru and d-Pt@Ru show lower oxidation potentials and higher CO-poisoning resistance for methanol oxidation than PtRu nanoparticles (NPs) and commercial Pt/C. This is attributed to the hollow dodecahedron structures with optimal spatial elemental distributions, leading to high utilization of Pt at edges and corners and the exposure of abundant Pt-Ru interfaces. Our strategy offers a facile method to engineer bimetallic metal catalysts regardless of lattice mismatch.
Collapse
Affiliation(s)
- Xiaoxiao Bai
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Jiarun Geng
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Shuo Zhao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Haixia Li
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Fujun Li
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
5
|
Formation mechanism of highly dispersed semi-embedded ruthenium nanoparticles in porous carbon matrix determined by in situ temperature-programmed infrared spectroscopy. CHINESE JOURNAL OF CATALYSIS 2018. [DOI: 10.1016/s1872-2067(17)62958-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Mitigating the Degradation of Carbon-Supported Pt Electrocatalysts by Tungsten Oxide Nanoplates. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2015.11.147] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Linares N, Silvestre-Albero AM, Serrano E, Silvestre-Albero J, García-Martínez J. Mesoporous materials for clean energy technologies. Chem Soc Rev 2015; 43:7681-717. [PMID: 24699503 DOI: 10.1039/c3cs60435g] [Citation(s) in RCA: 214] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Alternative energy technologies are greatly hindered by significant limitations in materials science. From low activity to poor stability, and from mineral scarcity to high cost, the current materials are not able to cope with the significant challenges of clean energy technologies. However, recent advances in the preparation of nanomaterials, porous solids, and nanostructured solids are providing hope in the race for a better, cleaner energy production. The present contribution critically reviews the development and role of mesoporosity in a wide range of technologies, as this provides for critical improvements in accessibility, the dispersion of the active phase and a higher surface area. Relevant examples of the development of mesoporosity by a wide range of techniques are provided, including the preparation of hierarchical structures with pore systems in different scale ranges. Mesoporosity plays a significant role in catalysis, especially in the most challenging processes where bulky molecules, like those obtained from biomass or highly unreactive species, such as CO2 should be transformed into most valuable products. Furthermore, mesoporous materials also play a significant role as electrodes in fuel and solar cells and in thermoelectric devices, technologies which are benefiting from improved accessibility and a better dispersion of materials with controlled porosity.
Collapse
Affiliation(s)
- Noemi Linares
- Laboratorio de Nanotecnología Molecular, Departamento de Química Inorgánica, Universidad de Alicante, Ap. 99, E-03080 Alicante, Spain.
| | | | | | | | | |
Collapse
|
8
|
Abstract
Mesoporous carbon materials have been extensively studied because of their vast potential applications ranging from separation and adsorption, catalysis, and electrochemistry to energy storage.
Collapse
Affiliation(s)
- Wang Xin
- College of Water Science
- Beijing Normal University
- Beijing 100875
- China
- State Key Laboratory of Environmental Criteria and Risk Assessment
| | - Yonghui Song
- College of Water Science
- Beijing Normal University
- Beijing 100875
- China
- State Key Laboratory of Environmental Criteria and Risk Assessment
| |
Collapse
|
9
|
Li F, Tang DM, Jian Z, Liu D, Golberg D, Yamada A, Zhou H. Li-O(2) battery based on highly efficient Sb-doped tin oxide supported Ru nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:4659-4664. [PMID: 24861825 DOI: 10.1002/adma.201400162] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 04/03/2014] [Indexed: 06/03/2023]
Abstract
Novel cathodes based on Sb-doped tin oxide (STO)-supported Ru particles enable Li-O2 batteries to be operated below 4.0 V, which is of crucial importance for the realization of rechargeable Li-O2 batteries, and to deliver a high specific capacity of 750 mA h g(-1) even after 50 discharge-charge cycles at 0.1 mA cm(-2) .
Collapse
Affiliation(s)
- Fujun Li
- Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Umezono, Tsukuba, 305-8568, Japan; Department of Chemical System Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | | | | | | | | | | | | |
Collapse
|