1
|
Paveliuc G, Lawson Daku LM. Improving the Accuracy in the Prediction of Transition-Metal Spin-State Energetics Using a Robust Variation-Based Approach: Density Functional Theory, CASPT2 and MC-PDFT Applied to the Case Study of Tris-Diimine Fe(II) Complexes. J Phys Chem A 2024; 128:8404-8420. [PMID: 39315737 DOI: 10.1021/acs.jpca.4c04148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Designing ligands for transition metal complexes with a specified low-spin, high-spin or spin-crossover behavior is challenging. A major advance was recently made by Phan et al. [J. Am. Chem. Soc. 2017, 139, 6437-6447] who showed that the spin state of a homoleptic tris-diimine Fe(II) complex can be predicted from the N-N distance in the free diimine. They could thus predict the change in magnetic behavior on passing from the complexes of 2,2'-bipyridine (bpy), 2,2'-biimidazole (bim) and 2,2'-bis-2-imidazoline (bimz) ligands to those obtained with the modified analogs 4,5-diazafluoren-9-one (dafo), 1,1'-(α,α'-o-xylyl)-2,2'-bisimidazole (xbim) and 2,3,5,6,8,9-hexahydrodiimidazo[1,2-a:2', 1'-c]pyrazine (etbimz), respectively. Theoretically, the challenge lies in the accurate determination of the HS-LS zero-point energy difference ΔEHL°. The issue can be circumvented by using a variation-based approach, wherein ΔEHL° is not directly evaluated but obtained from the estimate of its variation Δ(ΔEHL°) in series of related systems, which include one whose ΔEHL° is accurately known [Phys. Chem. Chem. Phys. 2013, 15, 3752-3763; J. Phys. Chem. A 2022, 126, 6221-6235]. In this study, density functional theory (DFT), second-order multireference perturbation theory in its CASPT2 formulation, multiconfigurational pair DFT (MC-PDFT) and its hybrid formulation (HMC-PDFT) have been applied to the determination of Δ(ΔEHL°) in the pairs of complexes ( [ F e ( b p y ) 3 ] 2 + , [ F e ( d a f o ) 3 ] 2 + ) , ( [ F e ( b i m ) 3 ] 2 + , [ F e ( x b i m ) 3 ] 2 + ) and ( [ F e ( b i m z ) 3 ] 2 + , [ F e ( e t b i m z ) 3 ] 2 + ) . In DFT, we used several semilocal functionals and their global hybrids, as well as their D2, D3, D3BJ and D4 dispersion-corrected forms; and in MC-PDFT, different translated and fully translated functionals. The results are consistent with one another and in very good agreement with experiments. They show small to vanishing dependence on key details of the methods used: namely, the exact-exchange contribution to global hybrids; the ionization potential-electron affinity shift and basis sets used in the CASPT2 calculations; and the active spaces employed for the CASSCF wave functions used in the MC-PDFT and HMC-PDFT calculations. Insights into the change in the spin-state energetics accompanying the ligand exchanges were gained through a complexation energy analysis. Using the accurate CCSD(T) estimate of the HS-LS adiabatic energy difference in [ F e ( N C H ) 6 ] 2 + [J. Chem. Theory Comput. 2012, 8, 4216-4231], the Δ(ΔEHL°)-approach has been applied to the determination of ΔEHL° in the diimine complexes. The CASPT2 and DFT-D2 methods only give results in agreement with experiments. This suggests for the other methods a limitation in their treatment of dispersion which prevents them from accurately describing the spin-state energetics change accompanying the passing from [ F e ( N C H ) 6 ] 2 + with the tetragonal arrangement of its nitrile ligands to the tris-diimine complexes with the trigonal packing of their bulkier ligands.
Collapse
Affiliation(s)
- Gheorghe Paveliuc
- Université de Genève, 30 Quai Ernest-Ansermet, CH-1211 Genève 4, Switzerland
| | | |
Collapse
|
2
|
Radoń M. Predicting spin states of iron porphyrins with DFT methods including crystal packing effects and thermodynamic corrections. Phys Chem Chem Phys 2024; 26:18182-18195. [PMID: 38899797 DOI: 10.1039/d4cp01327a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Accurate computational treatment of spin states for transition metal complexes, exemplified by iron porphyrins, lies at the heart of quantum bioinorganic chemistry, but at the same time represents a great challenge for approximate density functional theory (DFT) methods, which are predominantly used. Here, the accuracy of DFT methods for spin-state splittings in iron porphyrin is assessed by probing the ability to correctly predict the ground states for six FeIII or FeII complexes experimentally characterized in solid state. For each case, molecular and periodic DFT calculations are employed to quantify the effect of porphyrin side substituents and the crystal packing effect (CPE) on the spin-state splitting. It is proposed to partition the total CPE into additive components, the direct and structural one, the importance of which is shown to significantly vary from case to case. By knowing the substituent effect, the CPE, and the Gibbs free energy thermodynamic correction from calculations, one can employ the experimental ground-state information in order to derive a quantitative constraint on the electronic energy difference for a simplified (porphin) model of the experimentally characterized metalloporphyrin. The constraints derived in such a way-in the form of single or double inequalities-are used to assess the accuracy of dispersion-corrected DFT methods for 6 spin-state splittings of [FeIII(P)(2-MeIm)2]+, [FeIII(P)(2-MeIm)]+, [FeII(P)(THF)2] and [FeII(P)] models (where P is porphin, 2-MeIm is 2-methylimidazole, THF is tetrahydrofuran). These data constitute the new benchmark set of spin states for crystalline iron porphyrins (SSCIP6). The highest accuracy is obtained in the case of double-hybrid functionals (B2PLYP-D3, DSD-PBEB95-D3), whereas hybrid functionals, especially those with reduced admixture of the exact exchange (B3LYP*-D3, TPSSh-D3), are found to considerably overstabilize the intermediate spin state, leading to incorrect ground-state prediction in FeIII porphyrins. The present approach, which can be generalized to other transition metal complexes, is not only useful in method benchmarking, but also sheds light on the interpretations of experimental data for metalloporphyrins, which are important models to understand the electronic properties of heme proteins.
Collapse
Affiliation(s)
- Mariusz Radoń
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland.
| |
Collapse
|
3
|
Radoń M. Benchmarks for transition metal spin-state energetics: why and how to employ experimental reference data? Phys Chem Chem Phys 2023; 25:30800-30820. [PMID: 37938035 DOI: 10.1039/d3cp03537a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Accurate prediction of energy differences between alternative spin states of transition metal complexes is essential in computational (bio)inorganic chemistry-for example, in characterization of spin crossover materials and in the theoretical modeling of open-shell reaction mechanisms-but it remains one of the most compelling problems for quantum chemistry methods. A part of this challenge is to obtain reliable reference data for benchmark studies, as even the highest-level applicable methods are known to give divergent results. This Perspective discusses two possible approaches to method benchmarking for spin-state energetics: using either theoretically computed or experiment-derived reference data. With the focus on the latter approach, an extensive general review is provided for the available experimental data of spin-state energetics and their interpretations in the context of benchmark studies, targeting the possibility of back-correcting the vibrational effects and the influence of solvents or crystalline environments. With a growing amount of experience, these effects can be now not only qualitatively understood, but also quantitatively modeled, providing the way to derive nearly chemically accurate estimates of the electronic spin-state gaps to be used as benchmarks and advancing our understanding of the phenomena related to spin states in condensed phases.
Collapse
Affiliation(s)
- Mariusz Radoń
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Krakow, Poland.
| |
Collapse
|
4
|
Zhao J, Qi L, Li W, Cheng J, Li Q, Liu S. CH4 activation by PtX+ (X = F, Cl, Br, I). Front Chem 2022; 10:1027465. [PMID: 36226113 PMCID: PMC9548706 DOI: 10.3389/fchem.2022.1027465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/06/2022] [Indexed: 11/23/2022] Open
Abstract
Reactions of PtX+ (X = F, Cl, Br, I) with methane have been investigated at the density functional theory (DFT) level. These reactions take place more easily along the low-spin potential energy surface. For HX (X = F, Cl, Br, I) elimination, the formal oxidation state of the metal ion appears to be conserved, and the importance of this reaction channel decreases in going as the sequence: X = F, Cl, Br, I. A reversed trend is observed in the loss of H2 for X = F, Cl, Br, while it is not favorable for PtI+ in the loss of either HI or H2. For HX eliminations, the transfer form of H is from proton to atom, last to hydride, and the mechanisms are from PCET to HAT, last to HT for the sequence of X = F, Cl, Br, I. One reason is mainly due to the electronegativity of halogens. Otherwise, the mechanisms of HX eliminations also can be explained by the analysis of Frontier Molecular Orbitals. While for the loss of H2, the transfer of H is in the form of hydride for all the X ligands. Noncovalent interactions analysis also can be explained the reaction mechanisms.
Collapse
Affiliation(s)
| | | | - Wenzuo Li
- *Correspondence: Wenzuo Li, ; Qingzhong Li, ; Shaoli Liu,
| | | | - Qingzhong Li
- *Correspondence: Wenzuo Li, ; Qingzhong Li, ; Shaoli Liu,
| | - Shaoli Liu
- *Correspondence: Wenzuo Li, ; Qingzhong Li, ; Shaoli Liu,
| |
Collapse
|
5
|
Missana A, Hauser A, Lawson Daku LM. Environmental Control of the Magnetic Behavior of Transition Metal Complexes: Density Functional Theory Study of Zeolite Y Embedded Complexes [M(bpy) 3] 2+@Y (M = Fe 2+, Co 2+). J Phys Chem A 2022; 126:6221-6235. [PMID: 36067495 DOI: 10.1021/acs.jpca.2c05070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Using the supramolecular approach developed for the study of the guest-host interactions in the zeolite Y encapsulated [Fe(bpy)3]2+ compound: [Fe(bpy)3]2+@Y (bpy = 2,2'-bipyridine) [Vargas et al., J. Chem. Theory Comput. 2009, 5, 97-115], we apply density functional theory (DFT) to the study of the influence of zeolite Y encapsulation on the structural and energetic properties of [Co(bpy)3]2+ in the low-spin (LS) and high-spin (HS) states, while revisiting [Fe(bpy)3]2+@Y. Although the accurate prediction of the HS-LS energy difference ΔEHLel remains challenging for current DFT methods, they give accurate estimates of its variation Δ(ΔEHLel) in a series of complexes of a given transition metal ion. Therefore, denoting [M(bpy)3]2+@YSM as the supramolecular model of the inclusion compounds, the values of ΔEHLel for the bpy complexes in the gas phase and in the supercage of zeolite Y were determined by combining the DFT estimates of Δ(ΔEHLel) in the series {[M(NCH)6]2+, [M(bpy)3]2+, and [M(bpy)3]2+@YSM}, with accurate CCSD(T) estimates of ΔEHLel in the benchmark complexes [M(NCH)6]2+ (M = Fe, Co) [Lawson Daku et al., J. Chem. Theory Comput., 2012, 8, 4216-4231]. Generalized gradient approximations as well as global and range-separated hybrids were employed. In order to better account for the key role of dispersion, they were also augmented with the semiempirical D2, D3BJ, and D3BJM dispersion corrections when available. The use of the D3BJ and D3BJM corrections led to similar results, and this is only with the use of the D2 scheme that (i) the free and encapsulated [Fe(bpy)3]2+ are correctly predicted as LS species and that (ii) the encapsulation of both complexes translates into a destabilization of their HS state with respect to their LS state. The increase of the HS-LS energy difference is smaller for [Co(bpy)3]2+ than [Fe(bpy)3]2+ because the HS-LS molecular volume difference ΔVHL in [Co(bpy)3]2+ is ∼50% smaller than in [Fe(bpy)3]2+. Periodic DFT calculations performed on crystalline [M(bpy)3]2+@Y show that the employed [M(bpy)3]2+@YSM supramolecular model allows the influence of encapsulation on the geometry and the spin-state energetics of [M(bpy)3]2+ (M = Fe, Co) to be quantitatively captured.
Collapse
Affiliation(s)
- Andrea Missana
- Université de Genève, 30 quai Ernest-Ansermet, CH-1211Genève 4, Switzerland
| | - Andreas Hauser
- Université de Genève, 30 quai Ernest-Ansermet, CH-1211Genève 4, Switzerland
| | | |
Collapse
|
6
|
Drosou M, Mitsopoulou CA, Pantazis DA. Reconciling Local Coupled Cluster with Multireference Approaches for Transition Metal Spin-State Energetics. J Chem Theory Comput 2022; 18:3538-3548. [PMID: 35582788 PMCID: PMC9202354 DOI: 10.1021/acs.jctc.2c00265] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
Spin-state energetics
of transition metal complexes remain one
of the most challenging targets for electronic structure methods.
Among single-reference wave function approaches, local correlation
approximations to coupled cluster theory, most notably the domain-based
local pair natural orbital (DLPNO) approach, hold the promise of bringing
the accuracy of coupled cluster theory with single, double, and perturbative
triple excitations, CCSD(T), to molecular systems of realistic size
with acceptable computational cost. However, recent studies on spin-state
energetics of iron-containing systems raised doubts about the ability
of the DLPNO approach to adequately and systematically approximate
energetics obtained by the reference-quality complete active space
second-order perturbation theory with coupled-cluster semicore correlation,
CASPT2/CC. Here, we revisit this problem using a diverse set of iron
complexes and examine several aspects of the application of the DLPNO
approach. We show that DLPNO-CCSD(T) can accurately reproduce both
CASPT2/CC and canonical CCSD(T) results if two basic principles are
followed. These include the consistent use of the improved iterative
(T1) versus the semicanonical perturbative triple corrections
and, most importantly, a simple two-point extrapolation to the PNO
space limit. The latter practically eliminates errors arising from
the default truncation of electron-pair correlation spaces and should
be viewed as standard practice in applications of the method to transition
metal spin-state energetics. Our results show that reference-quality
results can be readily achieved with DLPNO-CCSD(T) if these principles
are followed. This is important also in view of the applicability
of the method to larger single-reference systems and multinuclear
clusters, whose treatment of dynamic correlation would be challenging
for multireference-based approaches.
Collapse
Affiliation(s)
- Maria Drosou
- Inorganic Chemistry Laboratory, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou 15771, Greece
| | - Christiana A Mitsopoulou
- Inorganic Chemistry Laboratory, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou 15771, Greece
| | - Dimitrios A Pantazis
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
7
|
Kwon HY, Ashley DC, Jakubikova E. Halogenation affects driving forces, reorganization energies and "rocking" motions in strained [Fe(tpy) 2] 2+ complexes. Dalton Trans 2021; 50:14566-14575. [PMID: 34586133 DOI: 10.1039/d1dt02314d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Controlling the energetics of spin crossover (SCO) in Fe(II)-polypyridine complexes is critical for designing new multifunctional materials or tuning the excited-state lifetimes of iron-based photosensitizers. It is well established that the Fe-N "breathing" mode is important for intersystem crossing from the singlet to the quintet state, but this does not preclude other, less obvious, structural distortions from affecting SCO. Previous work has shown that halogenation at the 6 and 6'' positions of tpy (tpy = 2,2';6',2''-terpyridine) in [Fe(tpy)2]2+ dramatically increased the lifetime of the excited MLCT state and also had a large impact on the ground state spin-state energetics. To gain insight into the origins of these effects, we used density functional theory calculations to explore how halogenation impacts spin-state energetics and molecular structure in this system. Based on previous work we focused on the ligand "rocking" motion associated with SCO in [Fe(tpy)2]2+ by constructing one-dimensional potential energy surfaces (PESs) along the tpy rocking angle for various spin states. It was found that halogenation has a clear and predictable impact on ligand rocking and spin-state energetics. The rocking is correlated to numerous other geometrical distortions, all of which likely affect the reorganization energies for spin-state changes. We have quantified trends in reorganization energy and also driving force for various spin-state changes and used them to interpret the experimentally measured excited-state lifetimes.
Collapse
Affiliation(s)
- Hyuk-Yong Kwon
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Dr., Raleigh, NC 27695, USA.
| | - Daniel C Ashley
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Dr., Raleigh, NC 27695, USA.
| | - Elena Jakubikova
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Dr., Raleigh, NC 27695, USA.
| |
Collapse
|
8
|
Naumova MA, Kalinko A, Wong JWL, Alvarez Gutierrez S, Meng J, Liang M, Abdellah M, Geng H, Lin W, Kubicek K, Biednov M, Lima F, Galler A, Zalden P, Checchia S, Mante PA, Zimara J, Schwarzer D, Demeshko S, Murzin V, Gosztola D, Jarenmark M, Zhang J, Bauer M, Lawson Daku ML, Khakhulin D, Gawelda W, Bressler C, Meyer F, Zheng K, Canton SE. Exploring the light-induced dynamics in solvated metallogrid complexes with femtosecond pulses across the electromagnetic spectrum. J Chem Phys 2020; 152:214301. [PMID: 32505143 DOI: 10.1063/1.5138641] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Oligonuclear complexes of d4-d7 transition metal ion centers that undergo spin-switching have long been developed for their practical role in molecular electronics. Recently, they also have appeared as promising photochemical reactants demonstrating improved stability. However, the lack of knowledge about their photophysical properties in the solution phase compared to mononuclear complexes is currently hampering their inclusion into advanced light-driven reactions. In the present study, the ultrafast photoinduced dynamics in a solvated [2 × 2] iron(II) metallogrid complex are characterized by combining measurements with transient optical-infrared absorption and x-ray emission spectroscopy on the femtosecond time scale. The analysis is supported by density functional theory calculations. The photocycle can be described in terms of intra-site transitions, where the FeII centers in the low-spin state are independently photoexcited. The Franck-Condon state decays via the formation of a vibrationally hot high-spin (HS) state that displays coherent behavior within a few picoseconds and thermalizes within tens of picoseconds to yield a metastable HS state living for several hundreds of nanoseconds. Systematic comparison with the closely related mononuclear complex [Fe(terpy)2]2+ reveals that nuclearity has a profound impact on the photoinduced dynamics. More generally, this work provides guidelines for expanding the integration of oligonuclear complexes into new photoconversion schemes that may be triggered by ultrafast spin-switching.
Collapse
Affiliation(s)
- Maria A Naumova
- Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, D-22607 Hamburg, Germany
| | - Aleksandr Kalinko
- Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, D-22607 Hamburg, Germany
| | - Joanne W L Wong
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstraße 4, 37077 Göttingen, Germany
| | - Sol Alvarez Gutierrez
- Department of Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Jie Meng
- Department of Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Mingli Liang
- Department of Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Mohamed Abdellah
- Chemical Physics and NanoLund, Lund University, Box 124, 22100 Lund, Sweden
| | - Huifang Geng
- ELI-ALPS, ELI-HU Non-Profit Ltd., Dugonics ter 13, Szeged 6720, Hungary
| | - Weihua Lin
- Chemical Physics and NanoLund, Lund University, Box 124, 22100 Lund, Sweden
| | | | | | | | | | - Peter Zalden
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | | | - Jennifer Zimara
- Department of Dynamics at Surfaces, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Dirk Schwarzer
- Department of Dynamics at Surfaces, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Serhiy Demeshko
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstraße 4, 37077 Göttingen, Germany
| | - Vadim Murzin
- Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, D-22607 Hamburg, Germany
| | - David Gosztola
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA
| | | | - Jianxin Zhang
- State Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| | - Matthias Bauer
- Department Chemie and Center for Sustainable Systems Design (CSSD), University of Paderborn, Warburger Straße 100, D-33098 Paderborn, Germany
| | - Max Latevi Lawson Daku
- Département de Chimie Physique, Université de Genève, Quai E. Ansermet 30, CH-1211 Genève 4, Switzerland
| | | | | | | | - Franc Meyer
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstraße 4, 37077 Göttingen, Germany
| | - Kaibo Zheng
- Department of Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Sophie E Canton
- Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, D-22607 Hamburg, Germany
| |
Collapse
|
9
|
Gransbury GK, Boulon ME, Petrie S, Gable RW, Mulder RJ, Sorace L, Stranger R, Boskovic C. DFT Prediction and Experimental Investigation of Valence Tautomerism in Cobalt-Dioxolene Complexes. Inorg Chem 2019; 58:4230-4243. [DOI: 10.1021/acs.inorgchem.8b03291] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Gemma K. Gransbury
- School of Chemistry, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Marie-Emmanuelle Boulon
- UdR INSTM and Department of Chemistry “U. Schiff”, University of Florence, 50019 Sesto Fiorentino, FI, Italy
| | - Simon Petrie
- Research School of Chemistry, College of Physical & Mathematical Sciences, Australian National University, Canberra, ACT 2601, Australia
| | - Robert W. Gable
- School of Chemistry, University of Melbourne, Melbourne, VIC 3010, Australia
| | | | - Lorenzo Sorace
- UdR INSTM and Department of Chemistry “U. Schiff”, University of Florence, 50019 Sesto Fiorentino, FI, Italy
| | - Robert Stranger
- Research School of Chemistry, College of Physical & Mathematical Sciences, Australian National University, Canberra, ACT 2601, Australia
| | - Colette Boskovic
- School of Chemistry, University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
10
|
Radoń M. Benchmarking quantum chemistry methods for spin-state energetics of iron complexes against quantitative experimental data. Phys Chem Chem Phys 2019; 21:4854-4870. [PMID: 30778468 DOI: 10.1039/c9cp00105k] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The accuracy of relative spin-state energetics predicted by selected quantum chemistry methods: coupled cluster theory at the CCSD(T) level, multiconfigurational perturbation theory (CASPT2, NEVPT2), multireference configuration interaction at the MRCISD+Q level, and a number of DFT methods, is quantitatively evaluated by comparison with the experimental data of four octahedral iron complexes. The available experimental data, either spin-forbidden transition energies or spin crossover enthalpies, are corrected for relevant environmental effects in order to derive the quantitative benchmark set of iron spin-state energetics. Comparison of theory predictions with the resulting reference data: (1) validates the high accuracy of the CCSD(T) method, particularly when based on Kohn-Sham orbitals, giving the maximum error below 2 kcal mol-1 and the mean absolute error (MAE) below 1 kcal mol-1; (2) corroborates the tendency of CASPT2 to systematically overstabilize higher-spin states by up to 5.5 kcal mol-1; (3) confirms that the latter problem is partly remedied by the recently proposed CASPT2/CC approach [Phung et al., J. Chem. Theory Comput., 2018, 14, 2446-2455]; (4) demonstrates that NEVPT2 performs worse than CASPT2, by giving errors up to 7 kcal mol-1; (5) shows that the accuracy of MRCISD+Q spin-state energetics strongly depends on the size-consistency correction: the Davidson-Silver and Pople corrections perform best (MAE < 3 kcal mol-1), whereas the standard Davidson correction is not recommended (MAE of 7 kcal mol-1). Only a few DFT methods (including the best performing ones identified in this study: B2PLYP-D3 and OPBE) are able to provide a balanced description of the spin-state energetics for all four studied iron complexes simultaneously, corroborating the non-universality problem of approximate density functionals.
Collapse
Affiliation(s)
- Mariusz Radoń
- Faculty of Chemistry, Jagiellonian University in Krakow, ul. Gronostajowa 2, 30-387 Kraków, Poland.
| |
Collapse
|
11
|
Ferreira H, Conradie MM, Conradie J. Electrochemical and electronic properties of a series of substituted polypyridine ligands and their Co(II) complexes. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2018.10.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
12
|
Wang CF, Yao ZS, Yang GY, Tao J. Ligand Substituent Effects on the Spin-Crossover Behaviors of Dinuclear Iron(II) Compounds. Inorg Chem 2019; 58:1309-1316. [PMID: 30620578 DOI: 10.1021/acs.inorgchem.8b02789] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Six analogue compounds with the general formula [Fe2( xL)5(NCS)4]· yMeOH ( x = o-Cl, y = 3 for compound 1; x = m-Cl, y = 5 for 2; x = p-Cl, y = 1 for 3; x = o-Me, y = 2 for 4; x = m-Me, y = 2 for 5; x = p-Me, y = 3 for 6; L = N-phenylmethylene-4-amino-1,2,4-triazole) were synthesized. The two Fe(II) ions are triply bridged by the triazole groups of three xL ligands and each Fe(II) is further capped with two NCS- groups and one more xL ligand. These compounds show regular patterns in their magnetic properties that depend on the positions the substituent groups (-Cl or -Me) ride, i.e., ortho-substituted compounds 1 and 4 undergo complete one-step spin crossover (SCO), while meta-substituted compounds 2 and 5 display incomplete one-step SCO with lower transition temperatures, and para-substituted compounds 3 and 6 are in the high-spin states in all temperature ranges. Structural analyses reveal that the molecular geometry and intermolecular interactions of these compounds, which should account for the differences in magnetic properties, are obviously depend on the positions of substituent groups (steric effect), despite them being electron-withdrawing chlorine or electron-donating methyl, whereas theoretical calculations confirm that the electronic effects of substituent groups exert no effect on the magnetic properties.
Collapse
Affiliation(s)
- Chun-Feng Wang
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 100081 , PR China
| | - Zi-Shuo Yao
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 100081 , PR China
| | - Guo-Yu Yang
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 100081 , PR China
| | - Jun Tao
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 100081 , PR China
| |
Collapse
|
13
|
Hrudka JJ, Phan H, Lengyel J, Rogachev AY, Shatruk M. Power of Three: Incremental Increase in the Ligand Field Strength of N-Alkylated 2,2′-Biimidazoles Leads to Spin Crossover in Homoleptic Tris-Chelated Fe(II) Complexes. Inorg Chem 2018; 57:5183-5193. [DOI: 10.1021/acs.inorgchem.8b00223] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Jeremy J. Hrudka
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Hoa Phan
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Jeff Lengyel
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Andrey Yu. Rogachev
- Department of Chemistry, Illinois Institute of Technology, 3101 South Dearborn St, Chicago, Illinois 60616, United States
| | - Michael Shatruk
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| |
Collapse
|
14
|
Phan H, Hrudka JJ, Igimbayeva D, Lawson Daku LM, Shatruk M. A Simple Approach for Predicting the Spin State of Homoleptic Fe(II) Tris-diimine Complexes. J Am Chem Soc 2017; 139:6437-6447. [PMID: 28402639 DOI: 10.1021/jacs.7b02098] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We propose a simple method for predicting the spin state of homoleptic complexes of the Fe(II) d6 ion with chelating diimine ligands. The approach is based on the analysis of a single metric parameter within a free (noncoordinated) ligand: the interatomic separation between the N-donor metal-binding sites. An extensive analysis of existing complexes allows the determination of critical N···N distances that dictate the regions of stability for the high-spin and low-spin complexes, as well as the intermediate range in which the magnetic bistability (spin crossover) can be observed. The prediction has been tested on several complexes that demonstrate the validity of our method.
Collapse
Affiliation(s)
- Hoa Phan
- Department of Chemistry and Biochemistry, Florida State University , 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Jeremy J Hrudka
- Department of Chemistry and Biochemistry, Florida State University , 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Dilyara Igimbayeva
- Department of Chemistry, L. N. Gumilyov Eurasian National University , 5 Munaitpasov Street, 010008 Astana, Kazakhstan
| | - Latévi M Lawson Daku
- Department of Physical Chemistry, University of Geneva , 30 Quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland
| | - Michael Shatruk
- Department of Chemistry and Biochemistry, Florida State University , 95 Chieftan Way, Tallahassee, Florida 32306, United States
| |
Collapse
|
15
|
Aroua S, Todorova TK, Hommes P, Chamoreau LM, Reissig HU, Mougel V, Fontecave M. Synthesis, Characterization, and DFT Analysis of Bis-Terpyridyl-Based Molecular Cobalt Complexes. Inorg Chem 2017; 56:5930-5940. [DOI: 10.1021/acs.inorgchem.7b00595] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Safwan Aroua
- Laboratoire de Chimie
des Processus Biologiques, UMR 8229 CNRS, Collège de France, Université Paris 6, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Tanya K. Todorova
- Laboratoire de Chimie
des Processus Biologiques, UMR 8229 CNRS, Collège de France, Université Paris 6, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Paul Hommes
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Lise-Marie Chamoreau
- Sorbonne Universités, UPMC Université Paris 6, Institut Parisien de
Chimie Moléculaire, UMR 8232 CNRS, 4 Place Jussieu, 75252 Paris Cedex 5, France
| | - Hans-Ulrich Reissig
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Victor Mougel
- Laboratoire de Chimie
des Processus Biologiques, UMR 8229 CNRS, Collège de France, Université Paris 6, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Marc Fontecave
- Laboratoire de Chimie
des Processus Biologiques, UMR 8229 CNRS, Collège de France, Université Paris 6, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France
| |
Collapse
|
16
|
Biasin E, van Driel TB, Kjær KS, Dohn AO, Christensen M, Harlang T, Chabera P, Liu Y, Uhlig J, Pápai M, Németh Z, Hartsock R, Liang W, Zhang J, Alonso-Mori R, Chollet M, Glownia JM, Nelson S, Sokaras D, Assefa TA, Britz A, Galler A, Gawelda W, Bressler C, Gaffney KJ, Lemke HT, Møller KB, Nielsen MM, Sundström V, Vankó G, Wärnmark K, Canton SE, Haldrup K. Femtosecond X-Ray Scattering Study of Ultrafast Photoinduced Structural Dynamics in Solvated [Co(terpy)_{2}]^{2+}. PHYSICAL REVIEW LETTERS 2016; 117:013002. [PMID: 27419566 DOI: 10.1103/physrevlett.117.013002] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Indexed: 05/11/2023]
Abstract
We study the structural dynamics of photoexcited [Co(terpy)_{2}]^{2+} in an aqueous solution with ultrafast x-ray diffuse scattering experiments conducted at the Linac Coherent Light Source. Through direct comparisons with density functional theory calculations, our analysis shows that the photoexcitation event leads to elongation of the Co-N bonds, followed by coherent Co-N bond length oscillations arising from the impulsive excitation of a vibrational mode dominated by the symmetrical stretch of all six Co-N bonds. This mode has a period of 0.33 ps and decays on a subpicosecond time scale. We find that the equilibrium bond-elongated structure of the high spin state is established on a single-picosecond time scale and that this state has a lifetime of ∼7 ps.
Collapse
Affiliation(s)
- Elisa Biasin
- Department of Physics, Technical University of Denmark, Fysikvej 307, DK-2800 Kongens Lyngby, Denmark
| | - Tim Brandt van Driel
- Department of Physics, Technical University of Denmark, Fysikvej 307, DK-2800 Kongens Lyngby, Denmark
| | - Kasper S Kjær
- Department of Physics, Technical University of Denmark, Fysikvej 307, DK-2800 Kongens Lyngby, Denmark
- Department of Chemical Physics, Lund University, Box 118, S-22100 Lund, Sweden
- PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Asmus O Dohn
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800 Kongens Lyngby, Denmark
| | - Morten Christensen
- Department of Physics, Technical University of Denmark, Fysikvej 307, DK-2800 Kongens Lyngby, Denmark
| | - Tobias Harlang
- Department of Chemical Physics, Lund University, Box 118, S-22100 Lund, Sweden
| | - Pavel Chabera
- Department of Chemical Physics, Lund University, Box 118, S-22100 Lund, Sweden
| | - Yizhu Liu
- Department of Chemical Physics, Lund University, Box 118, S-22100 Lund, Sweden
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, Lund SE-22100, Sweden
| | - Jens Uhlig
- Department of Chemical Physics, Lund University, Box 118, S-22100 Lund, Sweden
| | - Mátyás Pápai
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800 Kongens Lyngby, Denmark
- Wigner Research Centre for Physics, Hungarian Academy Sciences, H-1525 Budapest, Hungary
| | - Zoltán Németh
- Wigner Research Centre for Physics, Hungarian Academy Sciences, H-1525 Budapest, Hungary
| | - Robert Hartsock
- PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Winnie Liang
- PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Jianxin Zhang
- School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| | - Roberto Alonso-Mori
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Matthieu Chollet
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - James M Glownia
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Silke Nelson
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Dimosthenis Sokaras
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Tadesse A Assefa
- European XFEL GmbH, Albert-Einstein-Ring 19, D-22761 Hamburg, Germany
| | - Alexander Britz
- European XFEL GmbH, Albert-Einstein-Ring 19, D-22761 Hamburg, Germany
| | - Andreas Galler
- European XFEL GmbH, Albert-Einstein-Ring 19, D-22761 Hamburg, Germany
| | - Wojciech Gawelda
- European XFEL GmbH, Albert-Einstein-Ring 19, D-22761 Hamburg, Germany
- Institute of Physics, Jan Kochanowski University, 25-406 Kielce, Poland
| | | | - Kelly J Gaffney
- PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Henrik T Lemke
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- SwissFEL, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Klaus B Møller
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800 Kongens Lyngby, Denmark
| | - Martin M Nielsen
- Department of Physics, Technical University of Denmark, Fysikvej 307, DK-2800 Kongens Lyngby, Denmark
| | - Villy Sundström
- Department of Chemical Physics, Lund University, Box 118, S-22100 Lund, Sweden
| | - György Vankó
- Wigner Research Centre for Physics, Hungarian Academy Sciences, H-1525 Budapest, Hungary
| | - Kenneth Wärnmark
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, Lund SE-22100, Sweden
| | - Sophie E Canton
- IFG Structural Dynamics of (Bio)chemical Systems, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Goettingen, Germany
- FS-SCS, Structural Dynamics with Ultra-short Pulsed X-rays, Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, D-22607 Hamburg, Germany
| | - Kristoffer Haldrup
- Department of Physics, Technical University of Denmark, Fysikvej 307, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
17
|
Radoń M, Gąssowska K, Szklarzewicz J, Broclawik E. Spin-State Energetics of Fe(III) and Ru(III) Aqua Complexes: Accurate ab Initio Calculations and Evidence for Huge Solvation Effects. J Chem Theory Comput 2016; 12:1592-605. [DOI: 10.1021/acs.jctc.5b01234] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mariusz Radoń
- Faculty
of Chemistry, Jagiellonian University, ul. Ingardena 3, 30-060 Kraków, Poland
| | - Katarzyna Gąssowska
- Faculty
of Chemistry, Jagiellonian University, ul. Ingardena 3, 30-060 Kraków, Poland
| | - Janusz Szklarzewicz
- Faculty
of Chemistry, Jagiellonian University, ul. Ingardena 3, 30-060 Kraków, Poland
| | - Ewa Broclawik
- J.
Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30-239 Kraków, Poland
| |
Collapse
|
18
|
Stępniewski A, Radoń M, Góra-Marek K, Broclawik E. Ammonia-modified Co(II) sites in zeolites: spin and electron density redistribution through the Co(II)-NO bond. Phys Chem Chem Phys 2016; 18:3716-29. [PMID: 26761131 DOI: 10.1039/c5cp07452e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electronic factors essential for the bonding of a non-innocent NO ligand to ammonia-modified Co(2+) sites in cobalt-exchanged zeolites are examined for small cluster models using DFT and advanced correlated wave function calculations. The analysis of charge transfer processes between the NO ligand and the cobalt center involves two protocols: valence-bond expansion of the multiconfiguration CASSCF wave function (in terms of fragment-localized active orbitals) and spin-resolved natural orbitals for chemical valence (SR-NOCV). Applicability of SR-NOCV analysis to transition metal complexes involving non-innocent fragments is critically assessed and the approach based on the CASSCF wave function turns out to be much more robust and systematic for all studied models. It is shown that the character and direction of electron density redistribution through the Co-N-O bond, quantified by relative share of the Co(II)-NO(0), Co(III)-NO(-), and Co(I)-NO(+) resonance structures in the total wave function, fully rationalize the activation of the N-O bond upon NH3 co-ligation (evidenced by calculated and measured red-shift of the NO stretching frequency and commonly ascribed to enhanced backdonation). The huge red-shift of νN-O is attributed to an effective electron transfer between the ammonia-modified Co(ii) centers and the NO antibonding π*-orbitals (related to the increased share of the Co(III)-NO(-) form). Unexpectedly, the effect is stronger for the singlet complex with three NH3 ligands than for that with five NH3 ligands bound to the cobalt center. Our results also indicate that high-efficiency electron transfers between the Co(ii) center and the NO ligand may be enabled for the selected spin state and disabled for the other spin state of the adduct. This illustrates how the cobalt center may serve to fine-tune the electronic communication between the NO ligand and its binding site.
Collapse
Affiliation(s)
- Adam Stępniewski
- Jerzy Haber Institute of Catalysis PAS, Niezapominajek 8, 30-239 Krakow, Poland.
| | | | | | | |
Collapse
|
19
|
Mebs S, Braun B, Kositzki R, Limberg C, Haumann M. Abrupt versus Gradual Spin-Crossover in Fe(II)(phen)2(NCS)2 and Fe(III)(dedtc)3 Compared by X-ray Absorption and Emission Spectroscopy and Quantum-Chemical Calculations. Inorg Chem 2015; 54:11606-24. [PMID: 26624918 DOI: 10.1021/acs.inorgchem.5b01822] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular spin-crossover (SCO) compounds are attractive for information storage and photovoltaic technologies. We compared two prototypic SCO compounds with Fe(II)N6 (1, [Fe(phen)2(NCS)2], with phen = 1,10-phenanthroline) or Fe(III)S6 (2, [Fe(dedtc)3], with dedtc = N,N'-diethyldithiocarbamate) centers, which show abrupt (1) or gradual (2) thermally induced SCO, using K-edge X-ray absorption and Kβ emission spectroscopy (XAS/XES) in a 8-315 K temperature range, single-crystal X-ray diffraction (XRD), and density functional theory (DFT). Core-to-valence and valence-to-core electronic transitions in the XAS/XES spectra and bond lengths change from XRD provided benchmark data, verifying the adequacy of the TPSSh/TZVP DFT approach for the description of low-spin (LS) and high-spin (HS) species. Determination of the spin densities, charge distributions, bonding descriptors, and valence-level configurations, as well as similar experimental and calculated enthalpy changes (ΔH), suggested that the varying metal-ligand bonding properties and deviating electronic structures converge to similar enthalpic contributions to the free-energy change (ΔG) and thus presumably are not decisive for the differing SCO behavior of 1 and 2. Rather, SCO seems to be governed by vibrational contributions to the entropy changes (ΔS) in both complexes. Intra- and intermolecular interactions in crystals of 1 and 2 were identified by atoms-in-molecules analysis. Thermal excitation of individual dedtc ligand vibrations accompanies the gradual SCO in 2. In contrast, extensive inter- and intramolecular phen/NCS vibrational mode coupling may be an important factor in the cooperative SCO behavior of 1.
Collapse
Affiliation(s)
- Stefan Mebs
- Institut für Experimentalphysik, Freie Universität Berlin , 14195 Berlin, Germany
| | - Beatrice Braun
- Institut für Chemie, Humboldt-Universität zu Berlin , 12489 Berlin, Germany
| | - Ramona Kositzki
- Institut für Experimentalphysik, Freie Universität Berlin , 14195 Berlin, Germany
| | - Christian Limberg
- Institut für Chemie, Humboldt-Universität zu Berlin , 12489 Berlin, Germany
| | - Michael Haumann
- Institut für Experimentalphysik, Freie Universität Berlin , 14195 Berlin, Germany
| |
Collapse
|
20
|
Ioannidis EI, Kulik HJ. Towards quantifying the role of exact exchange in predictions of transition metal complex properties. J Chem Phys 2015. [DOI: 10.1063/1.4926836] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Efthymios I. Ioannidis
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Heather J. Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
21
|
Borgogno A, Rastrelli F, Bagno A. Predicting the spin state of paramagnetic iron complexes by DFT calculation of proton NMR spectra. Dalton Trans 2015; 43:9486-96. [PMID: 24823843 DOI: 10.1039/c4dt00671b] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Many transition-metal complexes easily change their spin state S in response to external perturbations (spin crossover). Determining such states and their dynamics can play a central role in the understanding of useful properties such as molecular magnetism or catalytic behavior, but is often far from straightforward. In this work we demonstrate that, at a moderate computational cost, density functional calculations can predict the correct ground spin state of Fe(ii) and Fe(iii) complexes and can then be used to determine the (1)H NMR spectra of all spin states. Since the spectral features are remarkably different according to the spin state, calculated (1)H NMR resonances can be used to infer the correct spin state, along with supporting the structure elucidation of numerous paramagnetic complexes.
Collapse
Affiliation(s)
- Andrea Borgogno
- Dipartimento di Scienze Chimiche, Università di Padova, via Marzolo, 1 - 35131 Padova, Italy.
| | | | | |
Collapse
|
22
|
Mai BK, Kim Y. The Kinetic Isotope Effect as a Probe of Spin Crossover in the CH Activation of Methane by the FeO+Cation. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201411309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
23
|
Mai BK, Kim Y. The Kinetic Isotope Effect as a Probe of Spin Crossover in the CH Activation of Methane by the FeO+Cation. Angew Chem Int Ed Engl 2015; 54:3946-51. [DOI: 10.1002/anie.201411309] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 01/08/2015] [Indexed: 11/09/2022]
|
24
|
Minkin VI, Starikova AA, Starikov AG. Valence tautomeric dinuclear adducts of Co(ii) diketonates with redox-active diquinones for the design of spin qubits: computational modeling. Dalton Trans 2015; 44:1982-91. [DOI: 10.1039/c4dt03053b] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DFT calculations performed on dinuclear adducts of Co(ii) diketonates with redox-active diquinones showed that with the proper structural tuning of the ligands, these paramagnetic complexes possess the properties required in a 2-qubit molecular system.
Collapse
Affiliation(s)
- Vladimir I. Minkin
- Institute of Physical and Organic Chemistry at Southern Federal University
- Rostov on Don
- Russian Federation
- Southern Scientific Center of the Russian Academy of Sciences
- Rostov on Don
| | - Alyona A. Starikova
- Institute of Physical and Organic Chemistry at Southern Federal University
- Rostov on Don
- Russian Federation
| | - Andrey G. Starikov
- Southern Scientific Center of the Russian Academy of Sciences
- Rostov on Don
- Russian Federation
| |
Collapse
|
25
|
Brooker S. Spin crossover with thermal hysteresis: practicalities and lessons learnt. Chem Soc Rev 2015; 44:2880-92. [DOI: 10.1039/c4cs00376d] [Citation(s) in RCA: 386] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Memory applications of spin crossover require bistability: magnetic data must be appropriately collected and reported, and consideration given to lifetimes.
Collapse
Affiliation(s)
- Sally Brooker
- Department of Chemistry and MacDiarmid Institute for Advanced Materials and Nanotechnology
- University of Otago
- Dunedin
- New Zealand
| |
Collapse
|
26
|
Zhang Y. Predicting critical temperatures of iron(II) spin crossover materials: Density functional theory plus U approach. J Chem Phys 2014; 141:214703. [DOI: 10.1063/1.4902542] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
27
|
Aravena D, Castillo ZA, Muñoz MC, Gaspar AB, Yoneda K, Ohtani R, Mishima A, Kitagawa S, Ohba M, Real JA, Ruiz E. Guest Modulation of Spin-Crossover Transition Temperature in a Porous Iron(II) Metal-Organic Framework: Experimental and Periodic DFT Studies. Chemistry 2014; 20:12864-73. [DOI: 10.1002/chem.201402292] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Indexed: 11/10/2022]
|
28
|
Houghton BJ, Deeth RJ. Spin-State Energetics of FeIIComplexes - The Continuing Voyage Through the Density Functional Minefield. Eur J Inorg Chem 2014. [DOI: 10.1002/ejic.201402253] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
29
|
Radoń M. Spin-State Energetics of Heme-Related Models from DFT and Coupled Cluster Calculations. J Chem Theory Comput 2014; 10:2306-21. [DOI: 10.1021/ct500103h] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Mariusz Radoń
- Faculty of Chemistry, Jagiellonian University in Kraków, ul. Ingardena 3, 30-060 Kraków, Poland
| |
Collapse
|
30
|
Rudavskyi A, Havenith RWA, Broer R, de Graaf C, Sousa C. Explanation of the site-specific spin crossover in Fe(mtz)6(BF4)2. Dalton Trans 2013; 42:14702-9. [DOI: 10.1039/c3dt52027g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|