1
|
Okumura H, Itoh SG, Zen H, Nakamura K. Dissociation process of polyalanine aggregates by free electron laser irradiation. PLoS One 2023; 18:e0291093. [PMID: 37683014 PMCID: PMC10491298 DOI: 10.1371/journal.pone.0291093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Polyalanine (polyA) disease-causative proteins with an expansion of alanine repeats can be aggregated. Although curative treatments for polyA diseases have not been explored, the dissociation of polyA aggregates likely reduces the cytotoxicity of polyA. Mid-infrared free electron laser (FEL) successfully dissociated multiple aggregates. However, whether the FEL dissociates polyA aggregates like other aggregates has not been tested. Here, we show that FEL at 6.1 μm experimentally weakened the extent of aggregation of a peptide with 13 alanine repeats (13A), and the irradiated 13A exerted lesser cytotoxicity to neuron-like cells than non-irradiated 13A. Then, we applied molecular dynamics (MD) simulation to follow the dissociation process by FEL. We successfully observed how the intermolecular β-sheet of polyA aggregates was dissociated and separated into monomers with helix structures upon FEL irradiation. After the dissociation by FEL, water molecules inhibited the reformation of polyA aggregates. We recently verified the same dissociation process using FEL-treated amyloid-β aggregates. Thus, a common mechanism underlies the dissociation of different protein aggregates that cause different diseases, polyA disease and Alzheimer's disease. However, MD simulation indicated that polyA aggregates are less easily dissociated than amyloid-β aggregates and require longer laser irradiation due to hydrophobic alanine repeats.
Collapse
Affiliation(s)
- Hisashi Okumura
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Aichi, Japan
| | - Satoru G Itoh
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Aichi, Japan
| | - Heishun Zen
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto, Japan
| | - Kazuhiro Nakamura
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Maebashi, Gunma, Japan
| |
Collapse
|
2
|
Jiang Z, Yu Q, Zhao Z, Song X, Zhang Y. Reason for the increased electroactivity of extracellular polymeric substances with electrical stimulation: Structural change of α-helix peptide of protein. WATER RESEARCH 2023; 238:119995. [PMID: 37156101 DOI: 10.1016/j.watres.2023.119995] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/05/2023] [Accepted: 04/23/2023] [Indexed: 05/10/2023]
Abstract
Electroactivity is an important parameter to assess the ability of the extracellular polymeric substance (EPS) of microorganisms to participate in extracellular respiration. Many reports have found that the electroactivity of microbial sludge could be enhanced with electrical stimulation, but the reason remains unclear. The results of this study showed that the current generation of the three microbial electrolysis cells increased by 1.27-1.76 times during 49 days of electrical stimulation, but the typical electroactive microorganisms were not enriched. Meanwhile, the capacitance and conductivity of EPS of sludge after the electrical stimulation increased by 1.32-1.83 times and 1.27-1.32 times, respectively. In-situ FTIR analysis indicated that the electrical stimulation could lead to the polarization of amide groups in the protein, likely affecting the protein structure related to the electroactivity. Accordingly, the dipole moment of the α-helix peptide of protein of sludge increased from 220 D to 280 D after the electrical stimulation, which was conducive to electron transfer in the α-helix peptide. Moreover, the vertical ionization potential and ELUMO-EHOMO energy gap of the C-terminal in the α-helix peptide decreased from 4.43 eV to 4.10 eV and 0.41 eV to 0.24 eV, respectively, which indicated that the α-helix was easier to serve as the electron transfer site of electron hopping. These results meant that the enhancement of the dipole moment of the α-helix peptide unchoked the electron transfer chain of the protein, which was the main reason for the increased electroactivity of EPS protein.
Collapse
Affiliation(s)
- Zhihao Jiang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Qilin Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zhiqiang Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xingyuan Song
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yaobin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
3
|
Fukuhara D, Yamauchi M, Itoh SG, Okumura H. Ingenuity in performing replica permutation: How to order the state labels for improving sampling efficiency. J Comput Chem 2023; 44:534-545. [PMID: 36346137 PMCID: PMC10099539 DOI: 10.1002/jcc.27020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/11/2022]
Abstract
In the replica-permutation method, an advanced version of the replica-exchange method, all combinations of replicas and parameters are considered for parameter permutation, and a list of all the combinations is prepared. Here, we report that the temperature transition probability depends on how the list is created, especially in replica permutation with solute tempering (RPST). We found that the transition probabilities decrease at large replica indices when the combinations are sequentially assigned to the state labels as in the originally proposed list. To solve this problem, we propose to modify the list by randomly assigning the combinations to the state labels. We performed molecular dynamics simulations of amyloid-β(16-22) peptides using RPST with the "randomly assigned" list (RPST-RA) and RPST with the "sequentially assigned" list (RPST-SA). The results show the decreases in the transition probabilities in RPST-SA are eliminated, and the sampling efficiency is improved in RPST-RA.
Collapse
Affiliation(s)
- Daiki Fukuhara
- Department of Structural Molecular Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan.,Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Japan
| | - Masataka Yamauchi
- Department of Structural Molecular Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan.,Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Japan
| | - Satoru G Itoh
- Department of Structural Molecular Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan.,Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Japan
| | - Hisashi Okumura
- Department of Structural Molecular Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan.,Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Japan
| |
Collapse
|
4
|
Abstract
It is known that oligomers of amyloid-β (Aβ) peptide are associated with Alzheimer's disease. Aβ has two isoforms: Aβ40 and Aβ42. Although the difference between Aβ40 and Aβ42 is only two additional C-terminal residues, Aβ42 aggregates much faster than Aβ40. It is unknown what role the C-terminal two residues play in accelerating aggregation. Since Aβ42 is more toxic than Aβ40, its oligomerization process needs to be clarified. Moreover, clarifying the differences between the oligomerization processes of Aβ40 and Aβ42 is essential to elucidate the key factors of oligomerization. Therefore, to investigate the dimerization process, which is the early oligomerization process, Hamiltonian replica-permutation molecular dynamics simulations were performed for Aβ40 and Aβ42. We identified a key residue, Arg5, for the Aβ42 dimerization. The two additional residues in Aβ42 allow the C-terminus to form contact with Arg5 because of the electrostatic attraction between them, and this contact stabilizes the β-hairpin. This β-hairpin promotes dimer formation through the intermolecular β-bridges. Thus, we examined the effects of amino acid substitutions of Arg5, thereby confirming that the mutations remarkably suppressed the aggregation of Aβ42. Moreover, the mutations of Arg5 suppressed the Aβ40 aggregation. It was found by analyzing the simulations that Arg5 is important for Aβ40 to form intermolecular contacts. Thus, it was clarified that the role of Arg5 in the oligomerization process varies due to the two additional C-terminal residues.
Collapse
Affiliation(s)
- Satoru
G. Itoh
- Institute
for Molecular Science, National Institutes
of Natural Sciences, Okazaki, Aichi 444-8787, Japan,Exploratory
Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan,Department
of Structural Molecular Science, SOKENDAI
(The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan
| | - Maho Yagi-Utsumi
- Institute
for Molecular Science, National Institutes
of Natural Sciences, Okazaki, Aichi 444-8787, Japan,Exploratory
Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan,Department
of Functional Molecular Science, SOKENDAI
(The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan,Graduate
School of Pharmaceutical Sciences, Nagoya
City University, Nagoya, Aichi 465-8603, Japan
| | - Koichi Kato
- Institute
for Molecular Science, National Institutes
of Natural Sciences, Okazaki, Aichi 444-8787, Japan,Exploratory
Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan,Department
of Functional Molecular Science, SOKENDAI
(The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan,Graduate
School of Pharmaceutical Sciences, Nagoya
City University, Nagoya, Aichi 465-8603, Japan
| | - Hisashi Okumura
- Institute
for Molecular Science, National Institutes
of Natural Sciences, Okazaki, Aichi 444-8787, Japan,Exploratory
Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan,Department
of Structural Molecular Science, SOKENDAI
(The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan,
| |
Collapse
|
5
|
Molecular Dynamics Simulation Studies on the Aggregation of Amyloid-β Peptides and Their Disaggregation by Ultrasonic Wave and Infrared Laser Irradiation. Molecules 2022; 27:molecules27082483. [PMID: 35458686 PMCID: PMC9030874 DOI: 10.3390/molecules27082483] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/29/2022] [Accepted: 04/07/2022] [Indexed: 01/02/2023] Open
Abstract
Alzheimer’s disease is understood to be caused by amyloid fibrils and oligomers formed by aggregated amyloid-β (Aβ) peptides. This review article presents molecular dynamics (MD) simulation studies of Aβ peptides and Aβ fragments on their aggregation, aggregation inhibition, amyloid fibril conformations in equilibrium, and disruption of the amyloid fibril by ultrasonic wave and infrared laser irradiation. In the aggregation of Aβ, a β-hairpin structure promotes the formation of intermolecular β-sheet structures. Aβ peptides tend to exist at hydrophilic/hydrophobic interfaces and form more β-hairpin structures than in bulk water. These facts are the reasons why the aggregation is accelerated at the interface. We also explain how polyphenols, which are attracting attention as aggregation inhibitors of Aβ peptides, interact with Aβ. An MD simulation study of the Aβ amyloid fibrils in equilibrium is also presented: the Aβ amyloid fibril has a different structure at one end from that at the other end. The amyloid fibrils can be destroyed by ultrasonic wave and infrared laser irradiation. The molecular mechanisms of these amyloid fibril disruptions are also explained, particularly focusing on the function of water molecules. Finally, we discuss the prospects for developing treatments for Alzheimer’s disease using MD simulations.
Collapse
|
6
|
Miyazawa K, Itoh SG, Yoshida Y, Arakawa K, Okumura H. Tardigrade Secretory-Abundant Heat-Soluble Protein Varies Entrance Propensity Depending on the Amino-Acid Sequence. J Phys Chem B 2022; 126:2361-2368. [PMID: 35316056 DOI: 10.1021/acs.jpcb.1c10788] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Secretory-abundant heat-soluble (SAHS) proteins, which constitute a protein family unique to tardigrades, are thought to be essential for anhydrobiosis. Our previous study has revealed that one of the SAHS proteins of Ramazzottius varieornatus (RvSAHS1) has a more flexible entrance than a mammalian fatty-acid-binding protein, which has a crystal structure similar to that of RvSAHS1. Recently, SAHS paralogs that are expressed abundantly and specifically in the early embryos of this tardigrade and Hypsibius exemplaris have been identified. Comparing these amino-acid sequences with that of RvSAHS1, we have found characteristic differences as I113F and D146T. In this study, we investigate I113F and D146T mutants' properties of RvSAHS1 using molecular dynamics simulations and compare the structures and fluctuations of their entrances with those of the wild type. The two mutants exhibit different properties at the entrance of the β-barrel structure. The I113F mutant tends to close the entrance more than the wild type due to the enhanced hydrophobic network inside the cavity. The D146T mutant, in contrast to the I113F mutant, tends to open the entrance. The mechanism by which this mutation opens the entrance is also discussed. Even though only a single mutation located far from the entrance is added to the wild type, there is a clear difference in the tendency to open and close the β-barrel entrance. It indicates that the entrance properties of the SAHS protein are sensitive to the amino-acid sequence.
Collapse
Affiliation(s)
- Kazuhisa Miyazawa
- Department of Structural Molecular Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi 444-8787, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan.,Institute for Molecular Science (IMS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan
| | - Satoru G Itoh
- Department of Structural Molecular Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi 444-8787, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan.,Institute for Molecular Science (IMS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan
| | - Yuki Yoshida
- Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0017, Japan.,Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa 252-0882, Japan
| | - Kazuharu Arakawa
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan.,Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0017, Japan.,Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa 252-0882, Japan.,Faculty of Environment and Information Studies, Keio University, Fujisawa 252-0882, Japan
| | - Hisashi Okumura
- Department of Structural Molecular Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi 444-8787, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan.,Institute for Molecular Science (IMS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
7
|
Fukuhara D, Itoh SG, Okumura H. Replica permutation with solute tempering for molecular dynamics simulation and its application to the dimerization of amyloid-β fragments. J Chem Phys 2022; 156:084109. [DOI: 10.1063/5.0081686] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We propose the replica permutation with solute tempering (RPST) by combining the replica-permutation method (RPM) and the replica exchange with solute tempering (REST). Temperature permutations are performed among more than two replicas in RPM, whereas temperature exchanges are performed between two replicas in the replica-exchange method (REM). The temperature transition in RPM occurs more efficiently than in REM. In REST, only the temperatures of the solute region, the solute temperatures, are exchanged to reduce the number of replicas compared to REM. Therefore, RPST is expected to be an improved method taking advantage of these methods. For comparison, we applied RPST, REST, RPM, and REM to two amyloid-β(16–22) peptides in explicit water. We calculated the transition ratio and the number of tunneling events in the temperature space and the number of dimerization events of amyloid-β(16–22) peptides. The results indicate that, in RPST, the number of replicas necessary for frequent random walks in the temperature and conformational spaces is reduced compared to the other three methods. In addition, we focused on the dimerization process of amyloid-β(16–22) peptides. The RPST simulation with a relatively small number of replicas shows that the two amyloid-β(16–22) peptides form the intermolecular antiparallel β-bridges due to the hydrophilic side-chain contact between Lys and Glu and hydrophobic side-chain contact between Leu, Val, and Phe, which stabilizes the dimer of the peptides.
Collapse
Affiliation(s)
- Daiki Fukuhara
- Department of Structural Molecular Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Satoru G. Itoh
- Department of Structural Molecular Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Hisashi Okumura
- Department of Structural Molecular Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
8
|
All-Atom Molecular Dynamics Simulation Methods for the Aggregation of Protein and Peptides: Replica Exchange/Permutation and Nonequilibrium Simulations. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2340:197-220. [PMID: 35167076 DOI: 10.1007/978-1-0716-1546-1_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Protein aggregates are associated with more than 40 serious human diseases. To understand the formation mechanism of protein aggregates at atomic level, all-atom molecular dynamics (MD) simulation is a powerful computational tool. In this chapter, we review the all-atom MD simulation methods that are useful for study on the protein aggregation. We first explain conventional MD simulation methods in physical statistical ensembles, such as the canonical and isothermal-isobaric ensembles. We then describe the generalized-ensemble algorithms such as replica-exchange and replica-permutation MD methods. These methods can overcome a difficulty, in which simulations tend to get trapped in local-minimum free-energy states. Finally we explain the nonequilibrium MD method. Some simulation results based on these methods are also presented.
Collapse
|
9
|
Tachi Y, Itoh SG, Okumura H. Molecular dynamics simulations of amyloid-β peptides in heterogeneous environments. Biophys Physicobiol 2022; 19:1-18. [PMID: 35666692 PMCID: PMC9135617 DOI: 10.2142/biophysico.bppb-v19.0010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/31/2022] [Indexed: 12/01/2022] Open
Affiliation(s)
- Yuhei Tachi
- Department of Physics, Graduate school of Science, Nagoya University
| | - Satoru G. Itoh
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences
| | - Hisashi Okumura
- Institute for Molecular Science, National Institutes of Natural Sciences
| |
Collapse
|
10
|
Dynamic properties of SARS-CoV and SARS-CoV-2 RNA-dependent RNA polymerases studied by molecular dynamics simulations. Chem Phys Lett 2021; 778:138819. [PMID: 34127868 PMCID: PMC8189741 DOI: 10.1016/j.cplett.2021.138819] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 01/18/2023]
Abstract
One of the promising drug targets against COVID-19 is an RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2. The tertiary structures of the SARS-CoV-2 and SARS-CoV RdRps are almost the same. However, the RNA-synthesizing activity of the SARS-CoV RdRp is higher than that of the SARS-CoV-2 RdRp. We performed molecular dynamics simulations and found differences in their dynamic properties. In the SARS-CoV RdRp, motifs A-G, which form the active site, are up to 63% closer to each other. We also observed cooperative domain motion in the SARS-CoV RdRp. Such dynamic differences may cause the activity differences between the two RdRps.
Collapse
|
11
|
Miyazawa K, Itoh SG, Watanabe H, Uchihashi T, Yanaka S, Yagi-Utsumi M, Kato K, Arakawa K, Okumura H. Tardigrade Secretory-Abundant Heat-Soluble Protein Has a Flexible β-Barrel Structure in Solution and Keeps This Structure in Dehydration. J Phys Chem B 2021; 125:9145-9154. [PMID: 34375104 DOI: 10.1021/acs.jpcb.1c04850] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Secretory-abundant heat-soluble (SAHS) proteins are unique heat-soluble proteins of Tardigrada and are believed to play an essential role in anhydrobiosis, a latent state of life induced by desiccation. To investigate the dynamic properties, molecular dynamics (MD) simulations of a SAHS protein, RvSAHS1, were performed in solution and under dehydrating conditions. For comparison purposes, MD simulations of a human liver-type fatty-acid binding protein (LFABP) were performed in solution. Furthermore, high-speed atomic force microscopy observations were conducted to ascertain the results of the MD simulations. Three properties of RvSAHS1 were found as follows. (1) The entrance region of RvSAHS1 is more flexible and can be more extensive in solutions compared with that of a human LFABP because there is no salt bridge between the βD and βE strands. (2) The intrinsically disordered domain in the N-terminal region significantly fluctuates and can form an amphiphilic α-helix. (3) The size of the entrance region gets smaller along with dehydration, keeping the β-barrel structure. Overall, the obtained results provide atomic-level dynamics of SAHS proteins.
Collapse
Affiliation(s)
- Kazuhisa Miyazawa
- Department of Structural Molecular Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi 444-8787, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan.,Institute for Molecular Science (IMS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan
| | - Satoru G Itoh
- Department of Structural Molecular Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi 444-8787, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan.,Institute for Molecular Science (IMS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan
| | - Hiroki Watanabe
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan.,Department of Physics, Nagoya University, Nagoya 464-8602, Japan
| | - Takayuki Uchihashi
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan.,Department of Physics, Nagoya University, Nagoya 464-8602, Japan.,Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya 464-8601, Japan
| | - Saeko Yanaka
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan.,Institute for Molecular Science (IMS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan.,Department of Functional Molecular Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi 444-8787, Japan.,Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi 465-8603, Japan
| | - Maho Yagi-Utsumi
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan.,Institute for Molecular Science (IMS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan.,Department of Functional Molecular Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi 444-8787, Japan.,Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi 465-8603, Japan
| | - Koichi Kato
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan.,Institute for Molecular Science (IMS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan.,Department of Functional Molecular Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi 444-8787, Japan.,Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi 465-8603, Japan
| | - Kazuharu Arakawa
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan.,Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0017, Japan.,Faculty of Environment and Information Studies, Keio University, Fujisawa 252-0882, Japan.,Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa 252-0882, Japan
| | - Hisashi Okumura
- Department of Structural Molecular Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi 444-8787, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan.,Institute for Molecular Science (IMS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
12
|
Okumura H, Itoh SG. Molecular dynamics simulations of amyloid-β(16-22) peptide aggregation at air-water interfaces. J Chem Phys 2021; 152:095101. [PMID: 33480728 DOI: 10.1063/1.5131848] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Oligomers of amyloid-β (Aβ) peptides are known to be related to Alzheimer's disease, and their formation is accelerated at hydrophilic-hydrophobic interfaces, such as the cell membrane surface and air-water interface. Here, we report molecular dynamics simulations of aggregation of Aβ(16-22) peptides at air-water interfaces. First, 100 randomly distributed Aβ(16-22) peptides moved to the interface. The high concentration of peptides then accelerated their aggregation and formation of antiparallel β-sheets. Two layers of oligomers were observed near the interface. In the first layer from the interface, the oligomer with less β-bridges exposed the hydrophobic residues to the air. The second layer consisted of oligomers with more β-bridges that protruded into water. They are more soluble in water because the hydrophobic residues are covered by N- and C-terminal hydrophilic residues that are aligned well along the oligomer edge. These results indicate that amyloid protofibril formation mainly occurs in the second layer.
Collapse
Affiliation(s)
- Hisashi Okumura
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Satoru G Itoh
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
13
|
Okumura H, Itoh SG, Nakamura K, Kawasaki T. Role of Water Molecules and Helix Structure Stabilization in the Laser-Induced Disruption of Amyloid Fibrils Observed by Nonequilibrium Molecular Dynamics Simulations. J Phys Chem B 2021; 125:4964-4976. [PMID: 33961416 DOI: 10.1021/acs.jpcb.0c11491] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Water plays a crucial role in the formation and destruction of biomolecular structures. The mechanism for destroying biomolecular structures was thought to be an active breaking of hydrogen bonds by water molecules. However, using nonequilibrium molecular dynamics simulations, in which an amyloid-β amyloid fibril was destroyed via infrared free-electron laser (IR-FEL) irradiation, we discovered a new mechanism, in which water molecules disrupt protein aggregates. The intermolecular hydrogen bonds formed by C═O and N-H in the fibril are broken at each pulse of laser irradiation. These bonds spontaneously re-form after the irradiation in many cases. However, when a water molecule happens to enter the gap between C═O and N-H, it inhibits the re-formation of the hydrogen bonds. Such sites become defects in the regularly aligned hydrogen bonds, from which all hydrogen bonds in the intermolecular β-sheet are broken as the fraying spreads. This role of water molecules is entirely different from other known mechanisms. This new mechanism can explain the recent experiments showing that the amyloid fibrils are not destroyed by laser irradiation under dry conditions. Additionally, we found that helix structures form more after the amyloid disruption; this is because the resonance frequency is different in a helix structure. Our findings provide a theoretical basis for the application of IR-FEL to the future treatment of amyloidosis.
Collapse
Affiliation(s)
- Hisashi Okumura
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan.,Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan.,Department of Structural Molecular Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan
| | - Satoru G Itoh
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan.,Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan.,Department of Structural Molecular Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan
| | - Kazuhiro Nakamura
- Department of Laboratory Sciences, Graduate School of Health Sciences, Gunma University, Maebashi, Gunma 371-8514, Japan
| | - Takayasu Kawasaki
- IR Free Electron Laser Research Center, Research Institute for Science and Technology, Organization for Research Advancement, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| |
Collapse
|
14
|
Yamauchi M, Okumura H. Dimerization of α-Synuclein Fragments Studied by Isothermal-Isobaric Replica-Permutation Molecular Dynamics Simulation. J Chem Inf Model 2021; 61:1307-1321. [PMID: 33625841 DOI: 10.1021/acs.jcim.0c01056] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Aggregates and fibrils of intrinsically disordered α-synuclein are associated with Parkinson's disease. Within a non-amyloid β component (NAC) spanning from the 61st to the 95th residue of α-synuclein, an 11-residue segment called NACore (68GAVVTGVTAVA78) is an essential region for both fibril formation and cytotoxicity. Although NACore peptides alone are known to form aggregates and amyloid fibrils, the mechanisms of aggregation and fibrillation remain unknown. This study investigated the dimerization process of NACore peptides as the initial stage of the aggregation and fibrillation processes. We performed an isothermal-isobaric replica-permutation molecular dynamics simulation, which is one of the efficient sampling methods, for the two NACore peptides in explicit water over 96 μs. The simulation succeeded in sampling a variety of dimer structures. An analysis of secondary structure revealed that most of the NACore dimers form intermolecular β-bridges. In particular, more antiparallel β-bridges were observed than parallel β-bridges. We also found that intramolecular secondary structures such as α-helix and antiparallel β-bridge are stabilized in the pre-dimer state. However, we identified that the intermolecular β-bridges tend to form directly between residues with no specific structure rather than via the intramolecular β-bridges. This is because the NACore peptides still have a low propensity to form the intramolecular secondary structures even though they are stabilized in the pre-dimer state.
Collapse
Affiliation(s)
- Masataka Yamauchi
- Department of Structural Molecular Science, The Graduate University for Advanced Studies(SOKENDAI), Okazaki, Aichi 444-8787, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan.,Institute for Molecular Science (IMS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Hisashi Okumura
- Department of Structural Molecular Science, The Graduate University for Advanced Studies(SOKENDAI), Okazaki, Aichi 444-8787, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan.,Institute for Molecular Science (IMS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
15
|
Promotion and Inhibition of Amyloid-β Peptide Aggregation: Molecular Dynamics Studies. Int J Mol Sci 2021; 22:ijms22041859. [PMID: 33668406 PMCID: PMC7918115 DOI: 10.3390/ijms22041859] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 01/06/2023] Open
Abstract
Aggregates of amyloid-β (Aβ) peptides are known to be related to Alzheimer’s disease. Their aggregation is enhanced at hydrophilic–hydrophobic interfaces, such as a cell membrane surface and air-water interface, and is inhibited by polyphenols, such as myricetin and rosmarinic acid. We review molecular dynamics (MD) simulation approaches of a full-length Aβ peptide, Aβ40, and Aβ(16–22) fragments in these environments. Since these peptides have both hydrophilic and hydrophobic amino acid residues, they tend to exist at the interfaces. The high concentration of the peptides accelerates the aggregation there. In addition, Aβ40 forms a β-hairpin structure, and this structure accelerates the aggregation. We also describe the inhibition mechanism of the Aβ(16–22) aggregation by polyphenols. The aggregation of Aβ(16–22) fragments is caused mainly by the electrostatic attraction between charged amino acid residues known as Lys16 and Glu22. Since polyphenols form hydrogen bonds between their hydroxy and carboxyl groups and these charged amino acid residues, they inhibit the aggregation.
Collapse
|
16
|
Involvement of pore helix in voltage-dependent inactivation of TRPM5 channel. Heliyon 2021; 7:e06102. [PMID: 33553759 PMCID: PMC7848652 DOI: 10.1016/j.heliyon.2021.e06102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 11/21/2020] [Accepted: 01/22/2021] [Indexed: 12/05/2022] Open
Abstract
The transient receptor potential melastatin 5 (TRPM5) channel is a monovalent-permeable cation channel that is activated by intracellular Ca2+. Expression of TRPM5 has been shown in taste cells, pancreas, brainstem and olfactory epithelium, and this channel is thought to be involved in controlling membrane potentials. In whole-cell patch-clamp recordings, TRPM5 exhibited voltage-dependent inactivation at negative membrane potentials and time constant of voltage-dependent inactivation of TRPM5 did not depend on the intracellular Ca2+ concentrations between 100 and 500 nM. Alanine substitution at Y913 and I916 in the pore helix of TRPM5 increased time constant of voltage-dependent inactivation. Meanwhile, voltage-dependent inactivation was reduced in TRPM5 mutants having glycine substitution at L901, Y913, Q915 and I916 in the pore helix. From these results, we conclude that the pore helix in the outer pore loop might play a role in voltage-dependent inactivation of TRPM5.
Collapse
|
17
|
Ngoc LLN, Itoh SG, Sompornpisut P, Okumura H. Replica-permutation molecular dynamics simulations of an amyloid-β(16–22) peptide and polyphenols. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137913] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Chakraborty D, Chebaro Y, Wales DJ. A multifunnel energy landscape encodes the competing α-helix and β-hairpin conformations for a designed peptide. Phys Chem Chem Phys 2020; 22:1359-1370. [PMID: 31854397 DOI: 10.1039/c9cp04778f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Depending on the amino acid sequence, as well as the local environment, some peptides have the capability to fold into multiple secondary structures. Conformational switching between such structures is a key element of protein folding and aggregation. Specifically, understanding the molecular mechanism underlying the transition from an α-helix to a β-hairpin is critical because it is thought to be a harbinger of amyloid assembly. In this study, we explore the energy landscape for an 18-residue peptide (DP5), designed by Araki and Tamura to exhibit equal propensities for the α-helical and β-hairpin forms. We find that the degeneracy is encoded in the multifunnel nature of the underlying free energy landscape. In agreement with experiment, we also observe that mutation of tyrosine at position 12 to serine shifts the equilibrium in favor of the α-helix conformation, by altering the landscape topography. The transition from the α-helix to the β-hairpin is a complex stepwise process, and occurs via collapsed coil-like intermediates. Our findings suggest that even a single mutation can tune the emergent features of the landscape, providing an efficient route to protein design. Interestingly, the transition pathways for the conformational switch seem to be minimally perturbed upon mutation, suggesting that there could be universal microscopic features that are conserved among different switch-competent protein sequences.
Collapse
Affiliation(s)
- Debayan Chakraborty
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, UK.
| | - Yassmine Chebaro
- Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104, INSERM U964, Université de Strasbourg, 67404 Illkirch, France
| | - David J Wales
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, UK.
| |
Collapse
|
19
|
Structural and fluctuational difference between two ends of Aβ amyloid fibril: MD simulations predict only one end has open conformations. Sci Rep 2016; 6:38422. [PMID: 27934893 PMCID: PMC5146922 DOI: 10.1038/srep38422] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 11/08/2016] [Indexed: 02/02/2023] Open
Abstract
Aβ amyloid fibrils, which are related to Alzheimer’s disease, have a cross-β structure consisting of two β-sheets: β1 and β2. The Aβ peptides are thought to be serially arranged in the same molecular conformation along the fibril axis. However, to understand the amyloid extension mechanism, we must understand the amyloid fibril structure and fluctuation at the fibril end, which has not been revealed to date. Here, we reveal these features by all-atom molecular dynamics (MD) simulations of Aβ42 and Aβ40 fibrils in explicit water. The structure and fluctuation were observed to differ between the two ends. At the even end, the Aβ peptide always took a closed form wherein β1 and β2 were closely spaced. The Aβ peptide fluctuated more at the odd end and took an open form wherein the two β-sheets were well separated. The differences are attributed to the stronger β-sheet formation by the β1 exposed at the even end than the β2 exposed at the odd end. Along with the small fluctuations at the even end, these results explain why the fibril extends from one end only, as observed in experiments. Our MD results agree well with recent observations by high-speed atomic force microscopy.
Collapse
|
20
|
Xie L, Chen ZN. Enhanced molecular dynamics simulation of the transformation between α-helix and β-hairpin structures for peptide. Mol Phys 2016. [DOI: 10.1080/00268976.2016.1161249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Liangxu Xie
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Zhe-Ning Chen
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
21
|
Ikebe J, Umezawa K, Higo J. Enhanced sampling simulations to construct free-energy landscape of protein-partner substrate interaction. Biophys Rev 2016; 8:45-62. [PMID: 28510144 PMCID: PMC5425738 DOI: 10.1007/s12551-015-0189-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 12/07/2015] [Indexed: 01/08/2023] Open
Abstract
Molecular dynamics (MD) simulations using all-atom and explicit solvent models provide valuable information on the detailed behavior of protein-partner substrate binding at the atomic level. As the power of computational resources increase, MD simulations are being used more widely and easily. However, it is still difficult to investigate the thermodynamic properties of protein-partner substrate binding and protein folding with conventional MD simulations. Enhanced sampling methods have been developed to sample conformations that reflect equilibrium conditions in a more efficient manner than conventional MD simulations, thereby allowing the construction of accurate free-energy landscapes. In this review, we discuss these enhanced sampling methods using a series of case-by-case examples. In particular, we review enhanced sampling methods conforming to trivial trajectory parallelization, virtual-system coupled multicanonical MD, and adaptive lambda square dynamics. These methods have been recently developed based on the existing method of multicanonical MD simulation. Their applications are reviewed with an emphasis on describing their practical implementation. In our concluding remarks we explore extensions of the enhanced sampling methods that may allow for even more efficient sampling.
Collapse
Affiliation(s)
- Jinzen Ikebe
- Molecular Modeling and Simulation Group, Japan Atomic Energy Agency, 8-1-7 Umemidai, Kizugawa, Kyoto, 619-0215, Japan
| | - Koji Umezawa
- Department of Pure and Applied Physics, Waseda University, Okubo 3-4-1, Shinjuku-Ku, Tokyo, 169-8555, Japan
| | - Junichi Higo
- Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
22
|
Itoh SG, Okumura H. Replica-permutation method to enhance sampling efficiency. MOLECULAR SIMULATION 2015. [DOI: 10.1080/08927022.2014.923576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Itoh SG, Okumura H. Dimerization process of amyloid-β(29-42) studied by the Hamiltonian replica-permutation molecular dynamics simulations. J Phys Chem B 2014; 118:11428-36. [PMID: 25192386 DOI: 10.1021/jp505984e] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The amyloid-β peptides form amyloid fibrils which are associated with Alzheimer's disease. Amyloid-β(29-42) is its C-terminal fragment and a critical determinant of the amyloid formation rate. This fragment forms the amyloid fibril by itself. However, the fragment conformation in the fibril has yet to be determined. The oligomerization process including the dimerization process is also still unknown. The dimerization process corresponds to an early process of the amyloidogenesis. In order to investigate the dimerization process and conformations, we applied the Hamiltonian replica-permutation method, which is a better alternative to the Hamiltonian replica-exchange method, to two amyloid-β(29-42) molecules in explicit water solvent. At the first step of the dimerization process, two amyloid-β(29-42) molecules came close to each other and had intermolecular side chain contacts. When two molecules had the intermolecular side chain contacts, the amyloid-β(29-42) tended to have intramolecular secondary structures, especially β-hairpin structures. The two molecules had intermolecular β-bridge structures by coming much closer at the second step of the dimerization process. Formation of these intermolecular β-bridge structures was induced by the β-hairpin structures. The intermolecular β-sheet structures elongated at the final step. Structures of the amyloid-β(29-42) in the monomer and dimer states are also shown with the free-energy landscapes, which were obtained by performing efficient sampling in the conformational space in our simulations.
Collapse
Affiliation(s)
- Satoru G Itoh
- Department of Theoretical and Computational Molecular Science, Institute for Molecular Science , Okazaki, Aichi 444-8585, Japan
| | | |
Collapse
|
24
|
Itoh SG, Morishita T, Okumura H. Decomposition-order effects of time integrator on ensemble averages for the Nosé-Hoover thermostat. J Chem Phys 2014; 139:064103. [PMID: 23947839 DOI: 10.1063/1.4817194] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Decomposition-order dependence of time development integrator on ensemble averages for the Nosé-Hoover dynamics is discussed. Six integrators were employed for comparison, which were extensions of the velocity-Verlet or position-Verlet algorithm. Molecular dynamics simulations by these integrators were performed for liquid-argon systems with several different time steps and system sizes. The obtained ensemble averages of temperature and potential energy were shifted from correct values depending on the integrators. These shifts increased in proportion to the square of the time step. Furthermore, the shifts could not be removed by increasing the number of argon atoms. We show the origin of these ensemble-average shifts analytically. Our discussion can be applied not only to the liquid-argon system but also to all MD simulations with the Nosé-Hoover thermostat. Our recommended integrators among the six integrators are presented to obtain correct ensemble averages.
Collapse
Affiliation(s)
- Satoru G Itoh
- Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Okazaki, Aichi 444-8585, Japan.
| | | | | |
Collapse
|
25
|
Okumura H, Itoh SG. Amyloid fibril disruption by ultrasonic cavitation: nonequilibrium molecular dynamics simulations. J Am Chem Soc 2014; 136:10549-52. [PMID: 24987794 DOI: 10.1021/ja502749f] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We describe the disruption of amyloid fibrils of Alzheimer's amyloid-β peptides by ultrasonic cavitation. For this purpose, we performed nonequilibrium all-atom molecular dynamics simulations with sinusoidal pressure and visualized the process with movies. When the pressure is negative, a bubble is formed, usually at hydrophobic residues in the transmembrane region. Most β-strands maintain their secondary structures in the bubble. When the pressure becomes positive, the bubble collapses, and water molecules crash against the hydrophilic residues in the nontransmembrane region to disrupt the amyloid. Shorter amyloids require longer sonication times for disruption because they do not have enough hydrophobic residues to serve as a nucleus to form a bubble. These results agree with experiments in which monodispersed amyloid fibrils were obtained by ultrasonication.
Collapse
Affiliation(s)
- Hisashi Okumura
- Research Center for Computational Science, Institute for Molecular Science , Okazaki, Aichi 444-8585, Japan
| | | |
Collapse
|
26
|
Chiang HL, Chen CJ, Okumura H, Hu CK. Transformation between α-helix and β-sheet structures of one and two polyglutamine peptides in explicit water molecules by replica-exchange molecular dynamics simulations. J Comput Chem 2014; 35:1430-7. [PMID: 24831733 DOI: 10.1002/jcc.23633] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 04/11/2014] [Accepted: 04/18/2014] [Indexed: 12/25/2022]
Abstract
Aggregation of polyglutamine peptides with β-sheet structures is related to some important neurodegenerative diseases such as Huntington's disease. However, it is not clear how polyglutamine peptides form the β-sheets and aggregate. To understand this problem, we performed all-atom replica-exchange molecular dynamics simulations of one and two polyglutamine peptides with 10 glutamine residues in explicit water molecules. Our results show that two polyglutamine peptides mainly formed helix or coil structures when they are separated, as in the system with one-polyglutamine peptide. As the interpeptide distance decreases, the intrapeptide β-sheet structure sometimes appear as an intermediate state, and finally the interpeptide β-sheets are formed. We also find that the polyglutamine dimer tends to form the antiparallel β-sheet conformations rather than the parallel β-sheet, which is consistent with previous experiments and a coarse-grained molecular dynamics simulation.
Collapse
Affiliation(s)
- Hsin-Lin Chiang
- Department of Physics, National Tsing Hua University, Hsinchu, 30013, Taiwan; Institute of Physics, Academia Sinica, Taipei, 11529, Taiwan
| | | | | | | |
Collapse
|
27
|
Kokubo H, Tanaka T, Okamoto Y. Two-dimensional replica-exchange method for predicting protein-ligand binding structures. J Comput Chem 2013; 34:2601-14. [DOI: 10.1002/jcc.23427] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 08/08/2013] [Accepted: 08/11/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Hironori Kokubo
- Pharmaceutical Research Division; Medicinal Chemistry Research Laboratories, Takeda Pharmaceutical Co., Ltd.; 26-1 Muraoka-Higashi 2-chome Fujisawa Kanagawa 251-8585 Japan
| | - Toshimasa Tanaka
- Pharmaceutical Research Division; Medicinal Chemistry Research Laboratories, Takeda Pharmaceutical Co., Ltd.; 26-1 Muraoka-Higashi 2-chome Fujisawa Kanagawa 251-8585 Japan
| | - Yuko Okamoto
- Department of Physics; Graduate School of Science; Nagoya University; Furo-cho, Chikusa-ku Nagoya Aichi 464-8602 Japan
- Structural Biology Research Center; Graduate School of Science; Nagoya University; Furo-cho, Chikusa-ku Nagoya Aichi 464-8602 Japan
- Center for Computational Science; Graduate School of Engineering; Nagoya University; Furo-cho Chikusa-ku Nagoya Aichi 464-8603 Japan
- Information Technology Center; Nagoya University; Furo-cho, Chikusa-ku Nagoya Aichi 464-8601 Japan
| |
Collapse
|
28
|
Itoh SG, Okumura H. Hamiltonian replica-permutation method and its applications to an alanine dipeptide and amyloid-β(29-42) peptides. J Comput Chem 2013; 34:2493-7. [PMID: 23925979 DOI: 10.1002/jcc.23402] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 07/10/2013] [Accepted: 07/17/2013] [Indexed: 11/08/2022]
Abstract
We propose the Hamiltonian replica-permutation method (RPM) (or multidimensional RPM) for molecular dynamics and Monte Carlo simulations, in which parameters in the Hamiltonian are permuted among more than two replicas with the Suwa-Todo algorithm. We apply the Coulomb RPM, which is one of realization of the Hamiltonian RPM, to an alanine dipeptide and to two amyloid-β(29-42) molecules. The Hamiltonian RPM realizes more efficient sampling than the Hamiltonian replica-exchange method. We illustrate the protein misfolding funnel of amyloid-β(29-42) and reveal its dimerization pathways.
Collapse
Affiliation(s)
- Satoru G Itoh
- Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Okazaki, Aichi, 444-8585, Japan; Department of Structural Molecular Science, The Graduate University for Advanced Studies, Okazaki, Aichi, 444-8585, Japan
| | | |
Collapse
|