1
|
Iuzzolino G, Perrella F, Valadan M, Petrone A, Altucci C, Rega N. Photophysics of a nucleic acid-protein crosslinking model strongly depends on solvation dynamics: an experimental and theoretical study. Phys Chem Chem Phys 2024; 26:11755-11769. [PMID: 38563904 DOI: 10.1039/d3cp06254f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
We present a combined experimental and theoretical study of the photophysics of 5-benzyluracil (5BU) in methanol, which is a model system for interactions between nucleic acids and proteins. A molecular dynamics study of 5BU in solution through efficient DFT-based hybrid ab initio potentials revealed a remarkable conformational flexibility - allowing the population of two main conformers - as well as specific solute-solvent interactions, which both appear as relevant factors for the observed 5BU optical absorption properties. The simulated absorption spectrum, calculated on such an ensemble, enabled a molecular interpretation of the experimental UV-Vis lowest energy band, which is also involved in the induced photo-reactivity upon irradiation. In particular, the first two excited states (mainly involving the uracil moiety) both contribute to the 5BU lowest energy absorption. Moreover, as a key finding, the nature and brightness of such electronic transitions are strongly influenced by 5BU conformation and the microsolvation of its heteroatoms.
Collapse
Affiliation(s)
- Gabriele Iuzzolino
- Scuola Superiore Meridionale, Largo San Marcellino 10, Napoli I-80138, Italy
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, via Cintia 21, Napoli I-80126, Italy.
| | - Fulvio Perrella
- Scuola Superiore Meridionale, Largo San Marcellino 10, Napoli I-80138, Italy
| | - Mohammadhassan Valadan
- Dipartimento di Scienze Biomediche Avanzate, Università degli Studi di Napoli Federico II, via Pansini 5, Napoli I-80131, Italy
- Istituto Nazionale di Fisica Nucleare, Unità di Napoli, via Cintia 21, Napoli I-80126, Italy
| | - Alessio Petrone
- Scuola Superiore Meridionale, Largo San Marcellino 10, Napoli I-80138, Italy
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, via Cintia 21, Napoli I-80126, Italy.
- Istituto Nazionale di Fisica Nucleare, Unità di Napoli, via Cintia 21, Napoli I-80126, Italy
| | - Carlo Altucci
- Dipartimento di Scienze Biomediche Avanzate, Università degli Studi di Napoli Federico II, via Pansini 5, Napoli I-80131, Italy
- Istituto Nazionale di Fisica Nucleare, Unità di Napoli, via Cintia 21, Napoli I-80126, Italy
- Istituto di Scienze Applicate e Sistemi Intelligenti "Eduardo Caianiello", URT UNINA, via Cintia 21, Napoli I-80126, Italy
| | - Nadia Rega
- Scuola Superiore Meridionale, Largo San Marcellino 10, Napoli I-80138, Italy
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, via Cintia 21, Napoli I-80126, Italy.
- Istituto Nazionale di Fisica Nucleare, Unità di Napoli, via Cintia 21, Napoli I-80126, Italy
| |
Collapse
|
2
|
Perrella F, Petrone A, Rega N. Understanding Charge Dynamics in Dense Electronic Manifolds in Complex Environments. J Chem Theory Comput 2023; 19:626-639. [PMID: 36602443 PMCID: PMC9878732 DOI: 10.1021/acs.jctc.2c00794] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Indexed: 01/06/2023]
Abstract
Photoinduced charge transfer (CT) excited states and their relaxation mechanisms can be highly interdependent on the environment effects and the consequent changes in the electronic density. Providing a molecular interpretation of the ultrafast (subpicosecond) interplay between initial photoexcited states in such dense electronic manifolds in condensed phase is crucial for improving and understanding such phenomena. Real-time time-dependent density functional theory is here the method of choice to observe the charge density, explicitly propagated in an ultrafast time domain, along with all time-dependent properties that can be easily extracted from it. A designed protocol of analysis for real-time electronic dynamics to be applied to time evolving electronic density related properties to characterize both in time and in space CT dynamics in complex systems is here introduced and validated, proposing easy to be read cross-correlation maps. As case studies to test such tools, we present the photoinduced charge-transfer electronic dynamics of 5-benzyluracil, a mimic of nucleic acid/protein interactions, and the metal-to-ligand charge-transfer electronic dynamics in water solution of [Ru(dcbpy)2(NCS)2]4-, dcbpy = (4,4'-dicarboxy-2,2'-bipyridine), or "N34-", a dye sensitizer for solar cells. Electrostatic and explicit ab initio treatment of solvent molecules have been compared in the latter case, revealing the importance of the accurate modeling of mutual solute-solvent polarization on CT kinetics. We observed that explicit quantum mechanical treatment of solvent slowed down the charge carriers mobilities with respect to the gas-phase. When all water molecules were modeled instead as simpler embedded point charges, the electronic dynamics appeared enhanced, with a reduced hole-electron distance and higher mean velocities due to the close fixed charges and an artificially increased polarization effect. Such analysis tools and the presented case studies can help to unveil the influence of the electronic manifold, as well as of the finite temperature-induced structural distortions and the environment on the ultrafast charge motions.
Collapse
Affiliation(s)
- Fulvio Perrella
- Department
of Chemical Sciences, University of Napoli
Federico II, Complesso Universitario di
M.S. Angelo, via Cintia 21, I-80126, Napoli, Italy
| | - Alessio Petrone
- Department
of Chemical Sciences, University of Napoli
Federico II, Complesso Universitario di
M.S. Angelo, via Cintia 21, I-80126, Napoli, Italy
- Scuola
Superiore Meridionale, Largo San Marcellino 10, I-80138, Napoli, Italy
- Istituto
Nazionale Di Fisica Nucleare, sezione di Napoli, Complesso Universitario di Monte S. Angelo ed. 6, via Cintia, 80126, Napoli, Italia
| | - Nadia Rega
- Department
of Chemical Sciences, University of Napoli
Federico II, Complesso Universitario di
M.S. Angelo, via Cintia 21, I-80126, Napoli, Italy
- Scuola
Superiore Meridionale, Largo San Marcellino 10, I-80138, Napoli, Italy
- Istituto
Nazionale Di Fisica Nucleare, sezione di Napoli, Complesso Universitario di Monte S. Angelo ed. 6, via Cintia, 80126, Napoli, Italia
- CRIB,
Centro Interdipartimentale di Ricerca sui Biomateriali, Piazzale Tecchio 80, I-80125, Napoli, Italy
| |
Collapse
|
3
|
Bende A, Farcaş AA, Toşa V. Theoretical Study of Light-Induced Crosslinking Reaction Between Pyrimidine DNA Bases and Aromatic Amino Acids. Front Bioeng Biotechnol 2022; 9:806415. [PMID: 35111737 PMCID: PMC8801568 DOI: 10.3389/fbioe.2021.806415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Abstract
Low-lying electronic excited states and their relaxation pathways as well as energetics of the crosslinking reaction between uracil as a model system for pyrimidine-type building blocks of DNA and RNA and benzene as a model system for aromatic groups of tyrosine (Tyr) and phenylalanine (Phe) amino acids have been studied in the framework of density functional theory. The equilibrium geometries of the ground and electronic excited states as well as the crossing points between the potential energy surfaces of the uracil–benzene complex were computed. Based on these results, different relaxation pathways of the electronic excited states that lead to either back to the initial geometry configuration or the dimerization between the six-membered rings of the uracil–benzene complex have been identified, and the energetic conditions for their occurrence are discussed. It can be concluded that the DNA–protein crosslinking reaction can be induced by the external electromagnetic field via the dimerization reaction between the six-membered rings of the uracil–benzene pair at the electronic excited-state level of the complex. In the case of the uracil–phenol complex, the configuration of the cyclic adduct (dimerized) conformation is less likely to be formed.
Collapse
Affiliation(s)
- Attila Bende
- Molecular and Biomolecular Physics Department, National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
- *Correspondence: Attila Bende,
| | - Alex-Adrian Farcaş
- Molecular and Biomolecular Physics Department, National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
- Faculty of Physics, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Valer Toşa
- Molecular and Biomolecular Physics Department, National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| |
Collapse
|
4
|
Zhao L, Zheng H, Zhan K, Guo Y, Liu B, Xu G. Position of the Benzene Ring Substituent Regulates the Excited-State Deactivation Process of the Benzyluracil Systems. J Phys Chem A 2021; 125:165-174. [PMID: 33373221 DOI: 10.1021/acs.jpca.0c08980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A systematic theoretical study of the regulating effect of the substituent position on the photoinduced deactivation process of the benzyluracil systems has been performed based on the high-level static electronic structure calculations and on-the-fly full-dimensional excited-state dynamics simulations. Similarities and differences coexist for the two systems by comparative studies on the photoinduced deactivation process of the 5-benzyluracil (5-BU) and 6-benzyluracil (6-BU) systems. They both obey an S2 → S1 → S0 two-step decay pattern, and the decay coordinates of the S2 → S1 and S1 → S0 processes are mainly driven by the elongation of the bridging bond and the out-of-plane ring deformation motion, respectively. However, the puckering motion occurring at the C2 atom in the uracil fragment dominates the decay pathway of the 5-BU system. On the contrary, the puckering motion at the C5 atom in the benzene fragment mainly drives the decay coordinate of the 6-BU system. Therefore, the substituent position could play significant roles in the deactivation process of the benzyluracil systems. Moreover, the S1 → S0 decay process of the 6-BU system consists of five pathways, possessing a more complex deactivation picture than the 5-BU system. The fitted time scale of the puckering motion is compatible with the experimentally observed lifetimes. This work provides a fundamental understanding of the photophysical and photochemical properties of the benzyluracil systems and can give rational suggestions to further design or regulate the bionic molecular systems.
Collapse
Affiliation(s)
- Li Zhao
- School of Science, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Haixia Zheng
- School of Science, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Kaiyun Zhan
- School of Science, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Yahui Guo
- School of Science, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Bing Liu
- School of Science, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Guiyin Xu
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
5
|
Imperatore C, Valadan M, Tartaglione L, Persico M, Ramunno A, Menna M, Casertano M, Dell’Aversano C, Singh M, d’Aulisio Garigliota ML, Bajardi F, Morelli E, Fattorusso C, Altucci C, Varra M. Exploring the Photodynamic Properties of Two Antiproliferative Benzodiazopyrrole Derivatives. Int J Mol Sci 2020; 21:ijms21041246. [PMID: 32069905 PMCID: PMC7072997 DOI: 10.3390/ijms21041246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/07/2020] [Accepted: 02/11/2020] [Indexed: 02/07/2023] Open
Abstract
The identification of molecules whose biological activity can be properly modulated by light is a promising therapeutic approach aimed to improve drug selectivity and efficacy on the molecular target and to limit the side effects compared to traditional drugs. Recently, two photo-switchable diastereomeric benzodiazopyrrole derivatives 1RR and 1RS have been reported as microtubules targeting agents (MTAs) on human colorectal carcinoma p53 null cell line (HCT 116 p53-/-). Their IC50 was enhanced upon Light Emitting Diode (LED) irradiation at 435 nm and was related to their cis form. Here we have investigated the photo-responsive behavior of the acid derivatives of 1RR and 1RS, namely, d1RR and d1RS, in phosphate buffer solutions at different pH. The comparison of the UV spectra, acquired before and after LED irradiation, indicated that the trans→cis conversion of d1RR and d1RS is affected by the degree of ionization. The apparent rate constants were calculated from the kinetic data by means of fast UV spectroscopy and the conformers of the putative ionic species present in solution (pH range: 5.7–8.0) were modelled. Taken together, our experimental and theoretical results suggest that the photo-conversions of transd1RR/d1RS into the corresponding cis forms and the thermal decay of cisd1RR/d1RS are dependent on the presence of diazonium form of d1RR/d1RS. Finally, a photo-reaction was detected only for d1RR after prolonged LED irradiation in acidic medium, and the resulting product was characterized by means of Liquid Chromatography coupled to High resolution Mass Spectrometry (LC-HRMS) and Nuclear Magnetic Resonance (NMR) spectroscopy.
Collapse
Affiliation(s)
- Concetta Imperatore
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (C.I.); (L.T.); (M.P.); (M.M.); (M.C.); (C.D.); (E.M.)
| | - Mohammadhassan Valadan
- Department of Physics “Ettore Pancini”, University of Naples Federico II, 80126 Naples, Italy; (M.V.); (M.S.); (F.B.)
| | - Luciana Tartaglione
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (C.I.); (L.T.); (M.P.); (M.M.); (M.C.); (C.D.); (E.M.)
- CoNISMa–Italian Interuniversity Consortium on Marine Sciences, Piazzale Flaminio 9, 00196 Rome, Italy
| | - Marco Persico
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (C.I.); (L.T.); (M.P.); (M.M.); (M.C.); (C.D.); (E.M.)
| | - Anna Ramunno
- Department of Pharmacy/DIFARMA, University of Salerno, 84084 Fisciano, Salerno, Italy; (A.R.); (M.L.d.G.)
| | - Marialuisa Menna
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (C.I.); (L.T.); (M.P.); (M.M.); (M.C.); (C.D.); (E.M.)
| | - Marcello Casertano
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (C.I.); (L.T.); (M.P.); (M.M.); (M.C.); (C.D.); (E.M.)
| | - Carmela Dell’Aversano
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (C.I.); (L.T.); (M.P.); (M.M.); (M.C.); (C.D.); (E.M.)
- CoNISMa–Italian Interuniversity Consortium on Marine Sciences, Piazzale Flaminio 9, 00196 Rome, Italy
| | - Manjot Singh
- Department of Physics “Ettore Pancini”, University of Naples Federico II, 80126 Naples, Italy; (M.V.); (M.S.); (F.B.)
| | | | - Francesco Bajardi
- Department of Physics “Ettore Pancini”, University of Naples Federico II, 80126 Naples, Italy; (M.V.); (M.S.); (F.B.)
| | - Elena Morelli
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (C.I.); (L.T.); (M.P.); (M.M.); (M.C.); (C.D.); (E.M.)
| | - Caterina Fattorusso
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (C.I.); (L.T.); (M.P.); (M.M.); (M.C.); (C.D.); (E.M.)
- Correspondence: (C.F.); (C.A.); (M.V.); Tel.: +39-081-678544 (C.F.); +39-081-676293 (C.A.); +39-081-678540 (M.V.)
| | - Carlo Altucci
- Department of Physics “Ettore Pancini”, University of Naples Federico II, 80126 Naples, Italy; (M.V.); (M.S.); (F.B.)
- Correspondence: (C.F.); (C.A.); (M.V.); Tel.: +39-081-678544 (C.F.); +39-081-676293 (C.A.); +39-081-678540 (M.V.)
| | - Michela Varra
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (C.I.); (L.T.); (M.P.); (M.M.); (M.C.); (C.D.); (E.M.)
- Correspondence: (C.F.); (C.A.); (M.V.); Tel.: +39-081-678544 (C.F.); +39-081-676293 (C.A.); +39-081-678540 (M.V.)
| |
Collapse
|
6
|
Valadan M, Pomarico E, Della Ventura B, Gesuele F, Velotta R, Amoresano A, Pinto G, Chergui M, Improta R, Altucci C. A multi-scale time-resolved study of photoactivated dynamics in 5-benzyl uracil, a model for DNA/protein interactions. Phys Chem Chem Phys 2019; 21:26301-26310. [PMID: 31686060 DOI: 10.1039/c9cp03839f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We combine fluorescence up-conversion and time correlated single photon counting experiments to investigate the 5-benzyl uracil excited state dynamics in methanol from 100 fs up to several ns. This molecule has been proposed as a model for DNA/protein interactions. Our results show emission bands at about 310 and 350 nm that exhibit bi-exponential sub-ps decays. Calculations, including solvent effects by a mixed discrete-continuum model, indicate that the Franck Condon region is characterized by significant coupling between the excited states of the benzyl and the uracil moieties, mirrored by the short-lived emission at 310 nm. Two main ground state recovery pathways are identified, both contributing to the 350 nm emission. The first 'photophysical' decay path involves a ππ* excited state localized on the uracil and is connected to the ground electronic state by an easily accessible crossing with S0, accounting for the short lifetime component. Simulations indicate that a possible second pathway is characterized by exciplex formation, with partial benzene → uracil charge transfer character, that may lead instead to photocyclization. The relevance of our results is discussed in view of the photoactivated dynamics of DNA/protein complexes, with implications on their interaction mechanisms.
Collapse
Affiliation(s)
- Mohammadhassan Valadan
- Department of Physics "Ettore Pancini", University of Naples "Federico II", Naples, 80126, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Isac DL, Airinei A, Maftei D, Humelnicu I, Mocci F, Laaksonen A, Pinteală M. On the Charge-Transfer Excitations in Azobenzene Maleimide Compounds: A Theoretical Study. J Phys Chem A 2019; 123:5525-5536. [DOI: 10.1021/acs.jpca.9b02082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dragos Lucian Isac
- “Petru Poni” Institute of Macromolecular Chemistry Iasi, Grigore Ghica Voda Al. No. 41A, 700487 Iasi, Romania
| | - Anton Airinei
- “Petru Poni” Institute of Macromolecular Chemistry Iasi, Grigore Ghica Voda Al. No. 41A, 700487 Iasi, Romania
| | - Dan Maftei
- Department of Chemistry, “Alexandru Ioan Cuza” University of Iasi, Carol I Blvd. No 11, 700506 Iasi, Romania
| | - Ionel Humelnicu
- Department of Chemistry, “Alexandru Ioan Cuza” University of Iasi, Carol I Blvd. No 11, 700506 Iasi, Romania
| | - Francesca Mocci
- “Petru Poni” Institute of Macromolecular Chemistry Iasi, Grigore Ghica Voda Al. No. 41A, 700487 Iasi, Romania
- Department of Chemical and Geological Sciences, University of Cagliari, I-09042 Monserrato, Italy
| | - Aatto Laaksonen
- “Petru Poni” Institute of Macromolecular Chemistry Iasi, Grigore Ghica Voda Al. No. 41A, 700487 Iasi, Romania
- Department of Materials and Environmental Chemistry, Division of Physical Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Mariana Pinteală
- “Petru Poni” Institute of Macromolecular Chemistry Iasi, Grigore Ghica Voda Al. No. 41A, 700487 Iasi, Romania
| |
Collapse
|
8
|
Castrovilli MC, Trabattoni A, Bolognesi P, O'Keeffe P, Avaldi L, Nisoli M, Calegari F, Cireasa R. Ultrafast Hydrogen Migration in Photoionized Glycine. J Phys Chem Lett 2018; 9:6012-6016. [PMID: 30253105 DOI: 10.1021/acs.jpclett.8b02089] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Hydrogen migration in the glycine cation has been investigated using a combination of a short train of attosecond extreme ultraviolet pulses with few-optical-cycle near-infrared pulses. The yield of the photofragments produced has been measured as a function of pump-probe delay. These time-dependent measurements reveal the presence of a hydrogen migration process occurring in 48 fs. Previous mass spectrometric experiments and theoretical calculations have allowed us to identify the conformations and cation states involved in the process induced by the broad band extreme ultraviolet radiation.
Collapse
Affiliation(s)
- M C Castrovilli
- Istituto Struttura della Materia, ISM-CNR , 00016 Monterotondo Scalo, Roma , Italy
- Institute for Photonics and Nanotechnologies, IFN-CNR , 20133 Milano , Italy
| | - A Trabattoni
- Department of Physics , Politecnico di Milano , 20133 Milano , Italy
- CFEL-DESY , Notkerstrasse 85 , 22607 Hamburg , Germany
| | - P Bolognesi
- Istituto Struttura della Materia, ISM-CNR , 00016 Monterotondo Scalo, Roma , Italy
| | - P O'Keeffe
- Istituto Struttura della Materia, ISM-CNR , 00016 Monterotondo Scalo, Roma , Italy
| | - L Avaldi
- Istituto Struttura della Materia, ISM-CNR , 00016 Monterotondo Scalo, Roma , Italy
| | - M Nisoli
- Institute for Photonics and Nanotechnologies, IFN-CNR , 20133 Milano , Italy
- Department of Physics , Politecnico di Milano , 20133 Milano , Italy
| | - F Calegari
- Institute for Photonics and Nanotechnologies, IFN-CNR , 20133 Milano , Italy
- CFEL-DESY , Notkerstrasse 85 , 22607 Hamburg , Germany
- Department of Physics , University of Hamburg , 20355 Hamburg , Germany
| | - R Cireasa
- Institut des Sciences Moléculaires d'Orsay, CNRS , Université Paris Sud , 91400 Orsay, France
| |
Collapse
|
9
|
Micciarelli M, Curchod BFE, Bonella S, Altucci C, Valadan M, Rothlisberger U, Tavernelli I. Characterization of the Photochemical Properties of 5-Benzyluracil via Time-Dependent Density Functional Theory. J Phys Chem A 2017; 121:3909-3917. [PMID: 28467074 DOI: 10.1021/acs.jpca.6b12799] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We present a detailed study of the excited state properties of 5-benzyluracil (5BU) in the gas phase and in implicit solvent using different electronic structure approaches ranging from time-dependent density functional theory in the linear response regime (LR-TDDFT) to a set of different wave-function-based methods for excited states, namely perturbed coupled cluster (CC2), algebraic diagrammatic construction method to second order (ADC(2)), and perturbed configuration interaction (CIS(D)). 5BU has been used to investigate DNA base-amino acid interactions. In particular, it served as a model of protein-DNA photoinduced cross-linking. While LR-TDDFT is computationally the most efficient first-principles approach for static and dynamic simulations of this bichromophoric system, its accuracy is difficult to assess due to the presence of excited states with charge transfer character. In this work, the performance of different exchange correlation functionals is compared against accurate benchmarks obtained either from high level wave-function-based methods or directly from experimental absorption spectra. Our investigation shows that accurate results for the excitation energies can be obtained using the hybrid meta-GGA functional M06. In view of dynamical studies of the relaxation of 5BU after photoexcitation, we also show that the PBE functional, while failing in the Franck-Condon region, provides qualitatively good results for the characterisation of a possible photocyclization path.
Collapse
Affiliation(s)
- M Micciarelli
- Department of Physics, University of Rome "La Sapienza" , Ple A. Moro 5, 00185 Rome, Italy
| | | | | | - C Altucci
- Department of Physics, University of Naples "Federico II" , Via Cintia, 26-80126 Napoli, Italy
| | - M Valadan
- Department of Physics, University of Naples "Federico II" , Via Cintia, 26-80126 Napoli, Italy
| | | | - I Tavernelli
- Zurich Research Laboratory, IBM Research GmbH , 8803 Rüschlikon, Switzerland
| |
Collapse
|
10
|
Upadhyaya HP. Dynamics of OH formation in the photodissociation of enolic-acetonylacetone at 193nm. J Photochem Photobiol A Chem 2016. [DOI: 10.1016/j.jphotochem.2015.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
11
|
Bende A, Toşa V. Modeling laser induced molecule excitation using real-time time-dependent density functional theory: application to 5- and 6-benzyluracil. Phys Chem Chem Phys 2015; 17:5861-71. [DOI: 10.1039/c4cp03869j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The fully propagated real time-dependent density functional theory method has been applied to study the laser–molecule interaction in 5- and 6-benzyluracil (5BU and 6BU).
Collapse
Affiliation(s)
- Attila Bende
- Molecular and Biomolecular Physics Department
- National Institute for Research and Development of Isotopic and Molecular Technologies
- RO-400293 Cluj-Napoca
- Romania
| | - Valer Toşa
- Molecular and Biomolecular Physics Department
- National Institute for Research and Development of Isotopic and Molecular Technologies
- RO-400293 Cluj-Napoca
- Romania
| |
Collapse
|
12
|
Micciarelli M, Valadan M, Della Ventura B, Di Fabio G, De Napoli L, Bonella S, Röthlisberger U, Tavernelli I, Altucci C, Velotta R. Photophysics and photochemistry of a DNA-protein cross-linking model: a synergistic approach combining experiments and theory. J Phys Chem B 2014; 118:4983-92. [PMID: 24742276 DOI: 10.1021/jp4115018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The photophysical and photochemical properties of 5-benzyluracil and 5,6-benzyluracil, the latter produced by photocyclization of the former through irradiation with femtosecond UV laser pulses, are investigated both experimentally and theoretically. The absorption spectra of the two molecules are compared, and the principal electronic transitions involved are discussed, with particular emphasis on the perturbation induced on the two chromophore species (uracil and benzene) by their proximity. The photoproduct formation for different irradiation times was verified with high-performance liquid chromatography and nuclear magnetic resonance measurements. The steady-state fluorescence demonstrates that the fluorescence is a distinctive physical observable for detection and selective identification of 5- and 5,6-benzyluracil. The principal electronic decay paths of the two molecules, obtained through TDDFT calculations, explain the features observed in the emission spectra and the photoreactivity of 5-benzyluracil. The order of magnitude of the lifetime of the excited states is derived with steady-state fluorescence anisotropy measurements and rationalized with the help of the computational findings. Finally, the spectroscopic data collected are used to derive the photocyclization and fluorescence quantum yields. In obtaining a global picture of the photophysical and photochemical properties of the two molecules, our findings demonstrates that the use of 5-benzyluracil as a model system to study the proximity relations of a DNA base with a close-lying aromatic amino acid is valid at a local level since the main characteristics of the decay processes from the excited states of the uracil/thymine molecules remain almost unchanged in 5-benzyluracil, the main perturbation arising from the presence of the close-lying aromatic group.
Collapse
Affiliation(s)
- Marco Micciarelli
- Department of Physics, University of Naples Federico II , Via Cintia, 26, 80126 Napoli, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|