1
|
Recent update on the role of N-methyl glycine as a building block for the construction of N-heterocyclic frameworks. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022]
|
2
|
Sugimura H, Nakajima K, Yamashita KI, Ogawa T. 20π Antiaromatic Isophlorins without Metallation or Core Modification. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022]
Affiliation(s)
- Haruna Sugimura
- Osaka University School of Science Graduate School of Science: Osaka Daigaku Daigakuin Rigaku Kenkyuka Rigakubu Department of Chemistry JAPAN
| | - Kana Nakajima
- Osaka University School of Science Graduate School of Science: Osaka Daigaku Daigakuin Rigaku Kenkyuka Rigakubu Department of Chemistry JAPAN
| | - Ken-ichi Yamashita
- Graduate School of Science, Osaka University Department of Chemistry 1-1 Machikaneyama, Toyonaka 560-0043 Osaka JAPAN
| | - Takuji Ogawa
- Osaka University School of Science Graduate School of Science: Osaka Daigaku Daigakuin Rigaku Kenkyuka Rigakubu Department of Chemistry JAPAN
| |
Collapse
|
3
|
Sláma V, Cupellini L, Mennucci B. Excitonic Nature of Carotenoid–Phthalocyanine Dyads and Its Role in Transient Absorption Spectra. ACS PHYSICAL CHEMISTRY AU 2022; 2:206-215. [PMID: 35637783 PMCID: PMC9136948 DOI: 10.1021/acsphyschemau.1c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 12/13/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 11/28/2022]
Abstract
![]()
Artificial carotenoid–tetrapyrrole
dyads have been extensively
used as model systems to understand the quenching mechanisms that
occur in light-harvesting complexes during nonphotochemical quenching.
In particular, dyads containing a carotenoid covalently linked to
a zinc phthalocyanine have been studied by transient absorption spectroscopy,
and the observed signals have been interpreted in terms of an excitonically
coupled state involving the lowest excited states of the two fragments.
If present, such excitonic delocalization would have significant implications
on the mechanism of nonphotochemical quenching. Here, we use quantum
chemical calculations to show that this delocalization is not needed
to reproduce the transient absorption spectra. On the contrary, the
observed signals can be explained through excitonic couplings in the
higher-energy manifold of states. We also argue that the covalent
linkage between the two fragments allows for electronic communications,
which complicates the analysis of the spectra based on two independent
but coupled moieties. These findings call for a more thorough reassessment
of the photophysics in these dyads and its implications in the context
of natural nonphotochemical quenching.
Collapse
Affiliation(s)
- Vladislav Sláma
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
| | - Lorenzo Cupellini
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
| | - Benedetta Mennucci
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
| |
Collapse
|
4
|
Ravensbergen J, Pillai S, Méndez-Hernández DD, Frese RN, van Grondelle R, Gust D, Moore TA, Moore AL, Kennis JTM. Dual Singlet Excited-State Quenching Mechanisms in an Artificial Caroteno-Phthalocyanine Light Harvesting Antenna. ACS PHYSICAL CHEMISTRY AU 2022; 2:59-67. [PMID: 35098245 PMCID: PMC8796278 DOI: 10.1021/acsphyschemau.1c00008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 05/26/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 11/29/2022]
Abstract
![]()
Under excess illumination,
photosystem II of plants dissipates
excess energy through the quenching of chlorophyll fluorescence in
the light harvesting antenna. Various models involving chlorophyll
quenching by carotenoids have been proposed, including (i) direct
energy transfer from chlorophyll to the low-lying optically forbidden
carotenoid S1 state, (ii) formation of a collective quenched
chlorophyll–carotenoid S1 excitonic state, (iii)
chlorophyll–carotenoid charge separation and recombination,
and (iv) chlorophyll–chlorophyll charge separation and recombination.
In previous work, the first three processes were mimicked in model
systems: in a Zn-phthalocyanine–carotenoid dyad with an amide
linker, direct energy transfer was observed by femtosecond transient
absorption spectroscopy, whereas in a Zn-phthalocyanine–carotenoid
dyad with an amine linker excitonic quenching was demonstrated. Here,
we present a transient absorption spectroscopic study on a Zn-phthalocyanine–carotenoid
dyad with a phenylene linker. We observe that two quenching phases
of the phthalocyanine excited state exist at 77 and 213 ps in addition
to an unquenched phase at 2.7 ns. Within our instrument response of
∼100 fs, carotenoid S1 features rise which point
at an excitonic quenching mechanism. Strikingly, we observe an additional
rise of carotenoid S1 features at 3.6 ps, which shows that
a direct energy transfer mechanism in an inverted kinetics regime
is also in effect. We assign the 77 ps decay component to excitonic
quenching and the 3.6 ps/213 ps rise and decay components to direct
energy transfer. Our results indicate that dual quenching mechanisms
may be active in the same molecular system, in addition to an unquenched
fraction. Computational chemistry results indicate the presence of
multiple conformers where one of the dihedral angles of the phenylene
linker assumes distinct values. We propose that the parallel quenching
pathways and the unquenched fraction result from such conformational
subpopulations. Our results suggest that it is possible to switch
between different regimes of quenching and nonquenching through a
conformational change on the same molecule, offering insights into
potential mechanisms used in biological photosynthesis to adapt to
light intensity changes on fast time scales.
Collapse
Affiliation(s)
- Janneke Ravensbergen
- Department of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Smitha Pillai
- School of Molecular Sciences and Center for Bioenergy and Photosynthesis, Arizona State University, Tempe, Arizona 85287-1605, United States
| | | | - Raoul N. Frese
- Department of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Rienk van Grondelle
- Department of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Devens Gust
- School of Molecular Sciences and Center for Bioenergy and Photosynthesis, Arizona State University, Tempe, Arizona 85287-1605, United States
| | - Thomas A. Moore
- School of Molecular Sciences and Center for Bioenergy and Photosynthesis, Arizona State University, Tempe, Arizona 85287-1605, United States
| | - Ana L. Moore
- School of Molecular Sciences and Center for Bioenergy and Photosynthesis, Arizona State University, Tempe, Arizona 85287-1605, United States
| | - John T. M. Kennis
- Department of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
5
|
Ghosh A, Ghosh S, Ghosh G, Patra A. Implications of relaxation dynamics of collapsed conjugated polymeric nanoparticles for light-harvesting applications. Phys Chem Chem Phys 2021; 23:14549-14563. [DOI: 10.1039/d1cp01618k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/18/2022]
Abstract
The mechanism of the formation of nanoparticles (collapsed state) from the extended state of polymers and their ultrafast excited state relaxation dynamics are illustrated.
Collapse
Affiliation(s)
- Arnab Ghosh
- School of Materials Sciences
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| | - Srijon Ghosh
- School of Materials Sciences
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| | - Goutam Ghosh
- School of Materials Sciences
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| | - Amitava Patra
- School of Materials Sciences
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
- Institute of Nano Science and Technology
| |
Collapse
|
6
|
Kollenz P, Herten DP, Buckup T. Unravelling the Kinetic Model of Photochemical Reactions via Deep Learning. J Phys Chem B 2020; 124:6358-6368. [PMID: 32589422 DOI: 10.1021/acs.jpcb.0c04299] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/21/2022]
Abstract
Time-resolved spectroscopies have been playing an essential role in the elucidation of the fundamental mechanisms of light-driven processes, particularly in exploring relaxation models for electronically excited molecules. However, the determination of such models from experimentally obtained time-resolved and spectrally resolved data still demands a high degree of intuition, frequently poses numerical challenges, and is often not free from ambiguities. Here, we demonstrate the analysis of time-resolved laser spectroscopy data via a deep learning network to obtain the correct relaxation kinetic model. In its current design, the presented Deep Spectroscopy Kinetic Analysis Network (DeepSKAN) can predict kinetic models (involved states and relaxation pathways) consisting of up to five states, which results in 103 possible different classes, by estimating the probability of occurrence of a given kinetic model class. DeepSKAN was trained with synthetic time-resolved spectra spanning over 4 orders of magnitude in time with a unitless time axis, thereby demonstrating its potential as a universal approach for analyzing data from various time-resolved spectroscopy techniques in different time ranges. By adding the probabilities of each pathway of the top-k models normalized by the total probability, we can determine the relaxation pathways for a given data set with high certainty (up to 99%). Due to its architecture and training, DeepSKAN is robust against experimental noise and typical preanalysis errors like time-zero corrections. Application of DeepSKAN to experimental data is successfully demonstrated for three different photoinduced processes: transient absorption of the retinal isomerization, transient IR spectroscopy of the relaxation of the photoactivated DRONPA, and transient absorption of the dynamics in lycopene. This approach delivers kinetic models and could be a unifying asset in several areas of spectroscopy.
Collapse
Affiliation(s)
- Philipp Kollenz
- Physikalisch Chemisches Institut, Ruprecht-Karls University, D-69120 Heidelberg, Germany
| | - Dirk-Peter Herten
- Physikalisch Chemisches Institut, Ruprecht-Karls University, D-69120 Heidelberg, Germany.,Institute of Cardiovascular Sciences & School of Chemistry, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, B152TT, Birmingham, United Kingdom.,Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Midlands, United Kingdom
| | - Tiago Buckup
- Physikalisch Chemisches Institut, Ruprecht-Karls University, D-69120 Heidelberg, Germany
| |
Collapse
|
7
|
Rodrigues ACD, Rocha MVDC, Lima ESA, Pinho CFD, Santos AMD, Santos FSD, Amaral Sobrinho NMBD. Potential of water lettuce ( Pistia stratiotes L.) for phytoremediation: physiological responses and kinetics of zinc uptake. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 22:1019-1027. [PMID: 32064901 DOI: 10.1080/15226514.2020.1725868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/10/2023]
Abstract
Two greenhouse experiments were carried out to evaluate the phytoremediation potential, physiological responses and zinc (Zn) uptake kinetics of water lettuce (Pistia stratiotes L.). The phytoextraction experiment evaluated four doses of Zn (0.7 mg L-1 - represented the Zn in the nutrient solution, 1.8, 18 and 180 mg L-1 - corresponded to ten, hundred and a thousand times, respectively, the maximum permitted content for fresh water) at four different culture times (24, 48, 72 and 168 h). The Zn uptake kinetics of water lettuce were evaluated at two concentrations of Zn (1.8 and 18 mg L-1). The water lettuce attained the highest percentage removal at the lowest evaluated doses (0.7 and 1.8 mg L-1), reaching a maximum value of approximately 72% removal (when cultivated in 1.8 mg L-1 of Zn after 168 h of culture). The Zn uptake increased with culture time, increasing the synthesis of carotenoids at all doses evaluated. The highest doses of Zn resulted in a reduction in photosynthetic efficiency. The results showed a high potential of water lettuce to absorb and tolerate Zn, accumulating preferably in the roots, demonstrating that these plants are able to absorb large quantities of Zn in contaminated solution.
Collapse
|
8
|
Affiliation(s)
- Alexander P. Demchenko
- Palladin
Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kyiv 01030, Ukraine
| | - Vladimir I. Tomin
- Institute
of Physics, Pomeranian University in Słupsk, ul. Arciszewskiego, 22b, Słupsk 76-200, Poland
| | - Pi-Tai Chou
- Department
of Chemistry, National Taiwan University, 1 Roosevelt Road Section 4, Taipei 106, Taiwan
| |
Collapse
|
9
|
Kumpulainen T, Lang B, Rosspeintner A, Vauthey E. Ultrafast Elementary Photochemical Processes of Organic Molecules in Liquid Solution. Chem Rev 2016; 117:10826-10939. [DOI: 10.1021/acs.chemrev.6b00491] [Citation(s) in RCA: 249] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/16/2022]
Affiliation(s)
- Tatu Kumpulainen
- Department of Physical Chemistry,
Sciences II, University of Geneva, 30 Quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland
| | - Bernhard Lang
- Department of Physical Chemistry,
Sciences II, University of Geneva, 30 Quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland
| | - Arnulf Rosspeintner
- Department of Physical Chemistry,
Sciences II, University of Geneva, 30 Quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland
| | - Eric Vauthey
- Department of Physical Chemistry,
Sciences II, University of Geneva, 30 Quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
10
|
Lee SH, Blake IM, Larsen AG, McDonald JA, Ohkubo K, Fukuzumi S, Reimers JR, Crossley MJ. Synthetically tuneable biomimetic artificial photosynthetic reaction centres that closely resemble the natural system in purple bacteria. Chem Sci 2016; 7:6534-6550. [PMID: 27928494 PMCID: PMC5125414 DOI: 10.1039/c6sc01076h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/08/2016] [Accepted: 06/16/2016] [Indexed: 12/18/2022] Open
Abstract
Porphyrin-based photosynthetic reaction centre (PRC) mimics, ZnPQ-Q2HP-C60 and MP2Q-Q2HP-C60 (M = Zn or 2H), designed to have a similar special-pair electron donor and similar charge-separation distances, redox processes and photochemical reaction rates to those in the natural PRC from purple bacteria, have been synthesised and extensive photochemical studies performed. Mechanisms of electron-transfer reactions are fully investigated using femtosecond and nanosecond transient absorption spectroscopy. In benzonitrile, all models show picosecond-timescale charge-separations and the final singlet charge-separations with the microsecond-timescale. The established lifetimes are long compared to other processes in organic solar cells or other organic light harvesting systems. These rigid, synthetically flexible molecules provide the closest mimics to the natural PRC so far synthesised and present a future direction for the design of light harvesters with controllable absorption, redox, and kinetics properties.
Collapse
Affiliation(s)
- Sai-Ho Lee
- School of Chemistry F11 , The University of Sydney , 2006 , NSW , Australia .
| | - Iain M Blake
- School of Chemistry F11 , The University of Sydney , 2006 , NSW , Australia .
| | - Allan G Larsen
- School of Chemistry F11 , The University of Sydney , 2006 , NSW , Australia .
| | - James A McDonald
- School of Chemistry F11 , The University of Sydney , 2006 , NSW , Australia .
| | - Kei Ohkubo
- Department of Material and Life Science , Graduate School of Engineering , Osaka University , Suita , Osaka 565-0871 , Japan .
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 120-750 , Korea ; Faculty of Science and Engineering , Meijo University , Nagoya , Aichi 468-0073 , Japan
| | - Jeffrey R Reimers
- School of Chemistry F11 , The University of Sydney , 2006 , NSW , Australia . ; International Centre for Quantum and Molecular Structure , Shanghai University , 200444 , Shanghai , China . ; School of Mathematical and Physical Sciences , The University of Technology Sydney , 2007 , NSW , Australia .
| | - Maxwell J Crossley
- School of Chemistry F11 , The University of Sydney , 2006 , NSW , Australia .
| |
Collapse
|
11
|
Fernández-Ariza J, Krick Calderón RM, Rodríguez-Morgade MS, Guldi DM, Torres T. Phthalocyanine–Perylenediimide Cart Wheels. J Am Chem Soc 2016; 138:12963-12974. [DOI: 10.1021/jacs.6b07432] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/17/2022]
Affiliation(s)
- Javier Fernández-Ariza
- Departamento
de Química Orgánica, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Rafael M. Krick Calderón
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), University of Erlangen−Nuremberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | | | - Dirk M. Guldi
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), University of Erlangen−Nuremberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Tomás Torres
- Departamento
de Química Orgánica, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
- IMDEA-Nanociencia, c/ Faraday 9, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
12
|
Pla S, Niemi M, Martín-Gomis L, Fernández-Lázaro F, Lemmetyinen H, Tkachenko NV, Sastre-Santos Á. Charge separation and charge recombination photophysical studies in a series of perylene–C60linear and cyclic dyads. Phys Chem Chem Phys 2016; 18:3598-605. [DOI: 10.1039/c5cp06340j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/16/2023]
Abstract
A new donor–acceptor doubly bridged perylenediimide–fullerene dyad (PDI–C60,DB-3), where the perylenediimide (PDI) acts as a donor, has been synthesized and studied by time-resolved absorption spectroscopy.
Collapse
Affiliation(s)
- S. Pla
- Área de Química Orgánica
- Instituto de Bioingeniería
- Universidad Miguel Hernández
- Elche 03202
- Spain
| | - M. Niemi
- Department of Chemistry and Bioengineering
- Tampere University of Technology
- FI-33101 Tampere
- Finland
| | - L. Martín-Gomis
- Área de Química Orgánica
- Instituto de Bioingeniería
- Universidad Miguel Hernández
- Elche 03202
- Spain
| | - F. Fernández-Lázaro
- Área de Química Orgánica
- Instituto de Bioingeniería
- Universidad Miguel Hernández
- Elche 03202
- Spain
| | - H. Lemmetyinen
- Department of Chemistry and Bioengineering
- Tampere University of Technology
- FI-33101 Tampere
- Finland
| | - N. V. Tkachenko
- Department of Chemistry and Bioengineering
- Tampere University of Technology
- FI-33101 Tampere
- Finland
| | - Á. Sastre-Santos
- Área de Química Orgánica
- Instituto de Bioingeniería
- Universidad Miguel Hernández
- Elche 03202
- Spain
| |
Collapse
|
13
|
Ravensbergen J, Antoniuk-Pablant A, Sherman BD, Kodis G, Megiatto JD, Méndez-Hernández DD, Frese RN, van Grondelle R, Moore TA, Moore AL, Gust D, Kennis JTM. Spectroscopic Analysis of a Biomimetic Model of TyrZ Function in PSII. J Phys Chem B 2015; 119:12156-63. [DOI: 10.1021/acs.jpcb.5b05298] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/29/2022]
Affiliation(s)
- Janneke Ravensbergen
- Department
of Physics and Astronomy, Faculty of Sciences, VU University, De Boelelaan
1081, 1081 HV Amsterdam, The Netherlands
| | - Antaeres Antoniuk-Pablant
- Department of Chemistry & Biochemistry and Center for Bioenergy and Photosynthesis, Arizona State University, Tempe, Arizona 85287-1605, United States
| | - Benjamin D. Sherman
- Department of Chemistry & Biochemistry and Center for Bioenergy and Photosynthesis, Arizona State University, Tempe, Arizona 85287-1605, United States
| | - Gerdenis Kodis
- Department of Chemistry & Biochemistry and Center for Bioenergy and Photosynthesis, Arizona State University, Tempe, Arizona 85287-1605, United States
| | - Jackson D. Megiatto
- Department of Chemistry & Biochemistry and Center for Bioenergy and Photosynthesis, Arizona State University, Tempe, Arizona 85287-1605, United States
| | - Dalvin D. Méndez-Hernández
- Department of Chemistry & Biochemistry and Center for Bioenergy and Photosynthesis, Arizona State University, Tempe, Arizona 85287-1605, United States
| | - Raoul N. Frese
- Department
of Physics and Astronomy, Faculty of Sciences, VU University, De Boelelaan
1081, 1081 HV Amsterdam, The Netherlands
| | - Rienk van Grondelle
- Department
of Physics and Astronomy, Faculty of Sciences, VU University, De Boelelaan
1081, 1081 HV Amsterdam, The Netherlands
| | - Thomas A. Moore
- Department of Chemistry & Biochemistry and Center for Bioenergy and Photosynthesis, Arizona State University, Tempe, Arizona 85287-1605, United States
| | - Ana L. Moore
- Department of Chemistry & Biochemistry and Center for Bioenergy and Photosynthesis, Arizona State University, Tempe, Arizona 85287-1605, United States
| | - Devens Gust
- Department of Chemistry & Biochemistry and Center for Bioenergy and Photosynthesis, Arizona State University, Tempe, Arizona 85287-1605, United States
| | - John T. M. Kennis
- Department
of Physics and Astronomy, Faculty of Sciences, VU University, De Boelelaan
1081, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
14
|
Di Donato M, Ragnoni E, Lapini A, Foggi P, Hiller RG, Righini R. Femtosecond transient infrared and stimulated Raman spectroscopy shed light on the relaxation mechanisms of photo-excited peridinin. J Chem Phys 2015; 142:212409. [DOI: 10.1063/1.4915072] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/15/2022] Open
|
15
|
Ragnoni E, Di Donato M, Iagatti A, Lapini A, Righini R. Mechanism of the Intramolecular Charge Transfer State Formation in all-trans-β-Apo-8′-carotenal: Influence of Solvent Polarity and Polarizability. J Phys Chem B 2014; 119:420-32. [DOI: 10.1021/jp5093288] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/30/2022]
Affiliation(s)
- Elena Ragnoni
- LENS (European
Laboratory for Non-Linear Spectroscopy) via N. Carrara 1, 50019 Sesto Fiorentino (Florence) Italy
- INO (Istituto
Nazionale di Ottica), Largo Fermi 6, 50125 Firenze, Italy
| | - Mariangela Di Donato
- LENS (European
Laboratory for Non-Linear Spectroscopy) via N. Carrara 1, 50019 Sesto Fiorentino (Florence) Italy
- INO (Istituto
Nazionale di Ottica), Largo Fermi 6, 50125 Firenze, Italy
- Dipartimento
di Chimica “Ugo Schiff”, Università di Firenze, via della
Lastruccia 13, 50019 Sesto Fiorentino (Florence), Italy
| | - Alessandro Iagatti
- LENS (European
Laboratory for Non-Linear Spectroscopy) via N. Carrara 1, 50019 Sesto Fiorentino (Florence) Italy
- INO (Istituto
Nazionale di Ottica), Largo Fermi 6, 50125 Firenze, Italy
| | - Andrea Lapini
- LENS (European
Laboratory for Non-Linear Spectroscopy) via N. Carrara 1, 50019 Sesto Fiorentino (Florence) Italy
- INO (Istituto
Nazionale di Ottica), Largo Fermi 6, 50125 Firenze, Italy
- Dipartimento
di Chimica “Ugo Schiff”, Università di Firenze, via della
Lastruccia 13, 50019 Sesto Fiorentino (Florence), Italy
| | - Roberto Righini
- LENS (European
Laboratory for Non-Linear Spectroscopy) via N. Carrara 1, 50019 Sesto Fiorentino (Florence) Italy
- INO (Istituto
Nazionale di Ottica), Largo Fermi 6, 50125 Firenze, Italy
- Dipartimento
di Chimica “Ugo Schiff”, Università di Firenze, via della
Lastruccia 13, 50019 Sesto Fiorentino (Florence), Italy
| |
Collapse
|
16
|
Trinh C, Kirlikovali K, Das S, Ener M, Gray HB, Djurovich P, Bradforth SE, Thompson ME. Symmetry-Breaking Charge Transfer of Visible Light Absorbing Systems: Zinc Dipyrrins. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2014; 118:21834-21845. [PMID: 25270268 PMCID: PMC4174994 DOI: 10.1021/jp506855t] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/09/2014] [Revised: 08/27/2014] [Indexed: 05/12/2023]
Abstract
Zinc dipyrrin complexes with two identical dipyrrin ligands absorb strongly at 450-550 nm and exhibit high fluorescence quantum yields in nonpolar solvents (e.g., 0.16-0.66 in cyclohexane) and weak to nonexistent emission in polar solvents (i.e., <10-3, in acetonitrile). The low quantum efficiencies in polar solvents are attributed to the formation of a nonemissive symmetry-breaking charge transfer (SBCT) state, which is not formed in nonpolar solvents. Analysis using ultrafast spectroscopy shows that in polar solvents the singlet excited state relaxes to the SBCT state in 1.0-5.5 ps and then decays via recombination to the triplet or ground states in 0.9-3.3 ns. In the weakly polar solvent toluene, the equilibrium between a localized excited state and the charge transfer state is established in 11-22 ps.
Collapse
Affiliation(s)
- Cong Trinh
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Kent Kirlikovali
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Saptaparna Das
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Maraia
E. Ener
- California
Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Harry B. Gray
- California
Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Peter Djurovich
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Stephen E. Bradforth
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Mark E. Thompson
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
- E-mail:
| |
Collapse
|
17
|
Di Donato M, Segado Centellas M, Lapini A, Lima M, Avila F, Santoro F, Cappelli C, Righini R. Combination of transient 2D-IR experiments and ab initio computations sheds light on the formation of the charge-transfer state in photoexcited carbonyl carotenoids. J Phys Chem B 2014; 118:9613-30. [PMID: 25050938 DOI: 10.1021/jp505473j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/29/2022]
Abstract
The excited state dynamics of carbonyl carotenoids is very complex because of the coupling of single- and doubly excited states and the possible involvement of intramolecular charge-transfer (ICT) states. In this contribution we employ ultrafast infrared spectroscopy and theoretical computations to investigate the relaxation dynamics of trans-8'-apo-β-carotenal occurring on the picosecond time scale, after excitation in the S2 state. In a (slightly) polar solvent like chloroform, one-dimensional (T1D-IR) and two-dimensional (T2D-IR) transient infrared spectroscopy reveal spectral components with characteristic frequencies and lifetimes that are not observed in nonpolar solvents (cyclohexane). Combining experimental evidence with an analysis of CASPT2//CASSCF ground and excited state minima and energy profiles, complemented with TDDFT calculations in gas phase and in solvent, we propose a photochemical decay mechanism for this system where only the bright single-excited 1Bu(+) and the dark double-excited 2Ag(-) states are involved. Specifically, the initially populated 1Bu(+) relaxes toward 2Ag(-) in 200 fs. In a nonpolar solvent 2Ag(-) decays to the ground state (GS) in 25 ps. In polar solvents, distortions along twisting modes of the chain promote a repopulation of the 1Bu(+) state which then quickly relaxes to the GS (18 ps in chloroform). The 1Bu(+) state has a high electric dipole and is the main contributor to the charge-transfer state involved in the dynamics in polar solvents. The 2Ag(-) → 1Bu(+) population transfer is evidenced by a cross peak on the T2D-IR map revealing that the motions along the same stretching of the conjugated chain on the 2Ag(-) and 1Bu(+) states are coupled.
Collapse
Affiliation(s)
- Mariangela Di Donato
- LENS (European Laboratory for Nonlinear Spectroscopy) via N. Carrara 1, 50019 Sesto Fiorentino (FI), Italy
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Pla S, Martín-Gomis L, Ohkubo K, Fukuzumi S, Fernández-Lázaro F, Sastre-Santos Á. Macrocyclic Dyads Based on C60and Perylenediimides Connected by Click Chemistry. ASIAN J ORG CHEM 2014. [DOI: 10.1002/ajoc.201300235] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022]
|
19
|
Singh K, Sharma S, Sharma A, Kaur P. Regioselective, Direct meso-Functionalization of Sulfur-Bridged 5,16-Dihydro[22]annulene(2.1.2.1). European J Org Chem 2014. [DOI: 10.1002/ejoc.201301171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/11/2022]
|
20
|
Ultrafast energy transfer in ultrathin organic donor/acceptor blend. Sci Rep 2013; 3:2073. [PMID: 23797845 PMCID: PMC3691563 DOI: 10.1038/srep02073] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/17/2013] [Accepted: 06/07/2013] [Indexed: 02/04/2023] Open
Abstract
It is common knowledge that poly(3-hexylthiophene) (P3HT)/[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) blend, a prototype system for bulk heterojunction (BHJ) solar cells, consists of a network of tens of nanometers-large donor-rich and acceptor-rich phases separated by extended finely intermixed border regions where PCBM diffuse into P3HT. Here we specifically address the photo-induced dynamics in a 10 nm thin P3HT/PCBM blend that consists of the intermixed region only. Using the multi-pass transient absorption technique (TrAMP) that enables us to perform ultra high sensitive measurements, we find that the primary process upon photoexcitation is ultrafast energy transfer from P3HT to PCBM. The expected charge separation due to hole transfer from PCBM to P3HT occurs in the 100 ps timescale. The derived picture is much different from the accepted view of ultra-fast electron transfer at the polymer/PCBM interface and provides new directions for the development of efficient devices.
Collapse
|
21
|
Williams RM, Vân Anh N, van Stokkum IHM. Triplet Formation by Charge Recombination in Thin Film Blends of Perylene Red and Pyrene: Developing a Target Model for the Photophysics of Organic Photovoltaic Materials. J Phys Chem B 2013; 117:11239-48. [DOI: 10.1021/jp402086p] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/03/2023]
Affiliation(s)
- René M. Williams
- Molecular
Photonics Group, van’t
Hoff Institute for Molecular Sciences (HIMS), Universiteit van Amsterdam, Science Park 904, 1098 XH Amsterdam,
The Netherlands
| | - Nguyễn Vân Anh
- Molecular
Photonics Group, van’t
Hoff Institute for Molecular Sciences (HIMS), Universiteit van Amsterdam, Science Park 904, 1098 XH Amsterdam,
The Netherlands
| | - Ivo H. M. van Stokkum
- Department
of Physics and Astronomy, Vrije Universiteit, de Boelelaan 1081, 1081 HV Amsterdam,
The Netherlands
| |
Collapse
|
22
|
Vengris M, Larsen DS, Valkunas L, Kodis G, Herrero C, Gust D, Moore T, Moore A, van Grondelle R. Separating annihilation and excitation energy transfer dynamics in light harvesting systems. J Phys Chem B 2013; 117:11372-82. [PMID: 23662680 DOI: 10.1021/jp403301c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/08/2023]
Abstract
The dependence of excitation energy transfer kinetics on the electronic state of the acceptor (ground vs excited) has been resolved with a novel multipulse prePump-Pump-Probe spectroscopy. The primary energy transfer and annihilation dynamics in two model light-harvesting systems were explored: an artificially synthesized carotenoid-zinc-phthalocyanine dyad and a naturally occurring light-harvesting peridinin-chlorophyll protein complex from Amphidinium carterae. Both systems use carotenoid as the primary excitation energy donor with porphyrin chromophores as the acceptor molecules. The prePump-Pump-Probe transient signals were analyzed with Monte Carlo modeling to explicitly address the underlying step-by-step kinetics involved in both excitation migration and annihilation processes. Both energy transfer and annihilation dynamics were demonstrated to occur with approximately the same rate in both systems, regardless of the excitation status of the acceptor pigments. The possible reasons for these observations are discussed in the framework of the Förster energy transfer model.
Collapse
Affiliation(s)
- Mikas Vengris
- Quantum Electronics Department, Faculty of Physics, Vilnius University , Saulėtekio 9-III, 10222 Vilnius, Lithuania
| | | | | | | | | | | | | | | | | |
Collapse
|