1
|
Hao Y, Wang L, Huang LF. Lanthanide-doped MoS 2 with enhanced oxygen reduction activity and biperiodic chemical trends. Nat Commun 2023; 14:3256. [PMID: 37277362 DOI: 10.1038/s41467-023-39100-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 05/30/2023] [Indexed: 06/07/2023] Open
Abstract
Molybdenum disulfide has broad applications in catalysis, optoelectronics, and solid lubrication, where lanthanide (Ln) doping can be used to tune its physicochemical properties. The reduction of oxygen is an electrochemical process important in determining fuel cell efficiency, or a possible environmental-degradation mechanism for nanodevices and coatings consisting of Ln-doped MoS2. Here, by combining density-functional theory calculations and current-potential polarization curve simulations, we show that the dopant-induced high oxygen reduction activity at Ln-MoS2/water interfaces scales as a biperiodic function of Ln type. A defect-state pairing mechanism, which selectively stabilizes the hydroxyl and hydroperoxyl adsorbates on Ln-MoS2, is proposed for the activity enhancement, and the biperiodic chemical trend in activity is found originating from the similar trends in intraatomic 4f-5d6s orbital hybridization and interatomic Ln-S bonding. A generic orbital-chemistry mechanism is described for explaining the simultaneous biperiodic trends observed in many electronic, thermodynamic, and kinetic properties.
Collapse
Affiliation(s)
- Yu Hao
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 315201, Ningbo, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Liping Wang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 315201, Ningbo, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Liang-Feng Huang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 315201, Ningbo, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China.
- Research Center for Advanced Interdisciplinary Sciences, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 315201, Ningbo, China.
| |
Collapse
|
2
|
Zhang X, Zhang X, Zheng H, Kuang S, Liu X, Liao W. Yttrium Separation by Phosphorylcarboxylic Acid and the Underlying Tetrad Effect along Lanthanide Unveiled from Different Microscopic Interactions. FUNDAMENTAL RESEARCH 2023. [DOI: 10.1016/j.fmre.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
3
|
Sui Z, Wang J, Huang D, Wang X, Dai R, Wang Z, Zheng X, Zhang Z, Wu Q. Orthorhombic-to-Hexagonal Phase Transition of REF 3 (RE = Sm to Lu and Y) under High Pressure. Inorg Chem 2022; 61:15408-15415. [PMID: 36126270 DOI: 10.1021/acs.inorgchem.2c01891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
For the famous functional REF3 family, there exist two typical structures, that is, orthorhombic phase and hexagonal phase. In the present work, high pressure behaviors of the orthorhombic phase REF3 (RE = Sm to Lu and Y) were investigated by experimental methods and first-principles calculations. The pressure-induced phase transitions of GdF3, TbF3, YbF3, and LuF3 were studied by using in situ photoluminescence measurements in the diamond anvil cell. At room temperature, all these four compounds follow the phase transition route from orthorhombic to hexagonal phase at 5.5-20.6 GPa. The pressure ranges of phase transition are 5.5-9.3, 8.4-11.9, 13.5-20.3, and 14.8-20.6 GPa for GdF3, TbF3, YbF3, and LuF3, respectively. In combination with first-principles calculations, we infer that all orthorhombic REF3 members from Sm-Lu and Y obey the same orthorhombic-to-hexagonal phase transition rules under high pressures. For lanthanide trifluorides, the transition pressures increase as zero pressure volumes of REF3 in the orthorhombic phase become smaller. As the calculation results show, this is because the difference in value of energy from the two structures is larger. This work not only provides precise structural change but also benefits the understanding of two typical structures for rare-earth trifluorides, which may play a significant role in the applications of REF3.
Collapse
Affiliation(s)
- Zhilei Sui
- Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan 621900, China
| | - Junke Wang
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Da Huang
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiangqi Wang
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Rucheng Dai
- The Centre for Physical Experiments, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhongping Wang
- The Centre for Physical Experiments, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xianxu Zheng
- Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan 621900, China
| | - Zengming Zhang
- The Centre for Physical Experiments, University of Science and Technology of China, Hefei, Anhui 230026, China.,Key Laboratory of Strongly-Coupled Quantum Matter Physics, School of Physical Sciences, University of Science and Technology of China, Chinese Academy of Sciences, Hefei, Anhui 230026, China
| | - Qiang Wu
- Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan 621900, China
| |
Collapse
|
4
|
Sergentu DC, Autschbach J. Covalency in actinide(iv) hexachlorides in relation to the chlorine K-edge X-ray absorption structure. Chem Sci 2022; 13:3194-3207. [PMID: 35414875 PMCID: PMC8926251 DOI: 10.1039/d1sc06454a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/03/2022] [Indexed: 12/02/2022] Open
Abstract
Chlorine K-edge X-ray absorption near edge structure (XANES) in actinideIV hexachlorides, [AnCl6]2- (An = Th-Pu), is calculated with relativistic multiconfiguration wavefunction theory (WFT). Of particular focus is a 3-peak feature emerging from U toward Pu, and its assignment in terms of donation bonding to the An 5f vs. 6d shells. With or without spin-orbit coupling, the calculated and previously measured XANES spectra are in excellent agreement with respect to relative peak positions, relative peak intensities, and peak assignments. Metal-ligand bonding analyses from WFT and Kohn-Sham theory (KST) predict comparable An 5f and 6d covalency from U to Np and Pu. Although some frontier molecular orbitals in the KST calculations display increasing An 5f-Cl 3p mixing from Th to Pu, because of energetic stabilization of 5f relative to the Cl 3p combinations of the matching symmetry, increasing hybridization is neither seen in the WFT natural orbitals, nor is it reflected in the calculated bond orders. The appearance of the pre-edge peaks from U to Pu and their relative intensities are rationalized simply by the energetic separation of transitions to 6d t2g versus transitions to weakly-bonded and strongly stabilized a2u, t2u and t1u orbitals with 5f character. The study highlights potential pitfalls when interpreting XANES spectra based on ground state Kohn-Sham molecular orbitals.
Collapse
Affiliation(s)
- Dumitru-Claudiu Sergentu
- Department of Chemistry, University at Buffalo State University of New York Buffalo NY 14260-3000 USA
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo State University of New York Buffalo NY 14260-3000 USA
| |
Collapse
|
5
|
Yoshida T, Shabana A, Zhang H, Izuogu DC, Sato T, Fuku K, Abe H, Horii Y, Cosquer G, Hoshino N, Akutagawa T, Thom AJW, Takaishi S, Yamashita M. Insight into the Gd–Pt Bond: Slow Magnetic Relaxation of a Heterometallic Gd–Pt Complex. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20210429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Takefumi Yoshida
- Department of Chemistry, Graduate School of Science Tohoku University, 6-3 Aza-Aoba, Aramaki, Sendai 980-8578, Japan
| | - Ahmed Shabana
- Department of Chemistry, Graduate School of Science Tohoku University, 6-3 Aza-Aoba, Aramaki, Sendai 980-8578, Japan
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Haitao Zhang
- Department of Chemistry, Graduate School of Science Tohoku University, 6-3 Aza-Aoba, Aramaki, Sendai 980-8578, Japan
| | - David Chukwuma Izuogu
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road, Cambridge, CB2 1EW, UK
- Department of Pure and Industrial Chemistry University of Nigeria, Nsukka, 410001, Enugu State (Nigeria)
| | - Tetsu Sato
- Department of Chemistry, Graduate School of Science Tohoku University, 6-3 Aza-Aoba, Aramaki, Sendai 980-8578, Japan
| | - Kentaro Fuku
- Department of Chemistry, Graduate School of Science Tohoku University, 6-3 Aza-Aoba, Aramaki, Sendai 980-8578, Japan
| | - Hitoshi Abe
- Institute of Materials Structure Science High Energy Accelerator Research Organization (KEK) 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
- Department of Materials Structure Science, School of High Energy Accelerator Science, SOKENDAI(the Graduate University for Advanced Studies) 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
- 7Graduate School of Science and Engineering, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan
| | - Yoji Horii
- Department of Chemistry, Nara Womens` University, Kitauoyanishimachi, Nara 630-8503, Japan
| | - Goulven Cosquer
- Department of Chemistry, Graduate School of Science Hiroshima University, 1-3-1 Kagamiyama Higashihiroshima 739-8526, Japan
| | - Norihisa Hoshino
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Japan
| | - Tomoyuki Akutagawa
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Japan
| | - Alex J. W. Thom
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road, Cambridge, CB2 1EW, UK
| | - Shinya Takaishi
- Department of Chemistry, Graduate School of Science Tohoku University, 6-3 Aza-Aoba, Aramaki, Sendai 980-8578, Japan
| | - Masahiro Yamashita
- Department of Chemistry, Graduate School of Science Tohoku University, 6-3 Aza-Aoba, Aramaki, Sendai 980-8578, Japan
- School of Materials Science and Engineering Nankai University, Tianjin 300350, P.R. China
| |
Collapse
|
6
|
Sergentu DC, Autschbach J. X-ray absorption spectra of f-element complexes: insight from relativistic multiconfigurational wavefunction theory. Dalton Trans 2022; 51:1754-1764. [PMID: 35022645 DOI: 10.1039/d1dt04075h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
X-ray absorption near edge structure (XANES) spectroscopy, coupled with ab initio calculations, has emerged as the state-of-the-art tool for elucidating the metal-ligand bonding in f-element complexes. This highlight presents recent efforts in calculating XANES spectra of lanthanide and actinide compounds with relativistic multiconfiguration wavefunction approaches that account for differences in donation bonding in the ground state (GS) versus a core-excited state (ES), multiplet effects, and spin-orbit-coupling. With the GS and ES wavefunctions available, including spin-orbit effects, an arsenal of chemical bonding tools that are popular among chemists can be applied to rationalize the observed intensities in terms of covalent bonding.
Collapse
Affiliation(s)
- Dumitru-Claudiu Sergentu
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260-3000, USA.
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260-3000, USA.
| |
Collapse
|
7
|
Abstract
Property-optimized Gaussian basis sets of split-valence, triple-zeta valence, and quadruple-zeta valence quality are developed for the lanthanides Ce-Lu for use with small-core relativistic effective core potentials. They are constructed in a systematic fashion by augmenting def2 orbital basis sets with diffuse basis functions and minimizing negative static isotropic polarizabilities of lanthanide atoms with respect to basis set exponents within the unrestricted Hartree-Fock method. The basis set quality is assessed using a test set of 70 molecules containing the lanthanides in their common oxidation states and f electron occupations. 5d orbital occupation turns out to be the determining factor for the basis set convergence of polarizabilities in lanthanide atoms and the molecular test set. Therefore, two series of property-optimized basis sets are defined. The augmented def2-SVPD, def2-TZVPPD, and def2-QZVPPD basis sets balance the accuracy of polarizabilities across lanthanide oxidation states. The relative errors in atomic and molecular polarizability calculations are ≤8% for augmented split-valence basis sets, ≤ 2.5% for augmented triple-zeta valence basis sets, and ≤1% for augmented quadruple-zeta valence basis sets. In addition, extended def2-TZVPPDD and def2-QZVPPDD are provided for accurate calculations of lanthanide atoms and neutral clusters. The property-optimized basis sets developed in this work are shown to accurately reproduce electronic absorption spectra of a series of LnCp3 '- complexes (Cp' = C5H4SiMe3, Ln = Ce-Nd, Sm) with time-dependent density functional theory.
Collapse
Affiliation(s)
- Dmitrij Rappoport
- Department of Chemistry, University of California, Irvine, California 92697, USA
| |
Collapse
|
8
|
XUE D, SUN C, CHEN X. Hybridized valence electrons of 4f0–145d0–16s2: the chemical bonding nature of rare earth elements. J RARE EARTH 2017. [DOI: 10.1016/s1002-0721(17)60984-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Huang W, Jiang N, Schwarz WHE, Yang P, Li J. Diversity of Chemical Bonding and Oxidation States in MS 4 Molecules of Group 8 Elements. Chemistry 2017; 23:10580-10589. [PMID: 28516506 DOI: 10.1002/chem.201701117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Indexed: 11/11/2022]
Abstract
The geometric and electronic ground-state structures of 30 isomers of six MS4 molecules (M=Group 8 metals Fe, Ru, Os, Hs, Sm, and Pu) have been studied by using quantum-chemical density functional theory and correlated wavefunction approaches. The MS4 species were compared to analogous MO4 species recently investigated (W. Huang, W.-H. Xu, W. H. E. Schwarz, J. Li, Inorg. Chem. 2016, 55, 4616). A metal oxidation state (MOS) with a high value of eight appeared in the low-spin singlet Td geometric species (Os,Hs)S4 and (Ru,Os,Hs)O4 , whereas a low MOS of two appeared in the high-spin septet D2d species Fe(S2 )2 and (slightly excited) metastable Fe(O2 )2 . The ground states of all other molecules had intermediate MOS values, with S2- , S22- , S21- (and O2- , O1- , O22- , O21- ) ligands bonded by ionic, covalent, and correlative contributions. The known tendencies toward lower MOS on going from oxides to sulfides, from Hs to Os to Ru, and from Pu to Sm, and the specific behavior of Fe, were found to arise from the different atomic orbital energies and radii of the (n-1)p core and (n-1)d and (n-2)f valence shells of the metal atoms in row n of the periodic table. The comparative results of the electronic and geometric structures of the MO4 and MS4 species provides insight into the periodicity of oxidation states and bonding.
Collapse
Affiliation(s)
- Wei Huang
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, 100084, P.R. China
| | - Ning Jiang
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, 100084, P.R. China
| | - W H Eugen Schwarz
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, 100084, P.R. China.,Physical and Theoretical Chemistry, University of Siegen, Siegen, 57068, Germany
| | - Ping Yang
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA.,Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory, Richland, Washington, 953002, USA
| | - Jun Li
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, 100084, P.R. China.,Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory, Richland, Washington, 953002, USA
| |
Collapse
|
10
|
Pu Z, Yu W, Roy SK, Li C, Ao B, Liu T, Shuai M, Wang X. Insights into the enhanced CeN triple bond in the HCeN molecule. Phys Chem Chem Phys 2017; 19:8216-8222. [DOI: 10.1039/c7cp00419b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, an experimental study of the vibrational spectra of HCeN was carried out in solid argon, followed by theoretical investigations of molecular structures and the nature of CeN bond.
Collapse
Affiliation(s)
- Zhen Pu
- China Academy of Engineering and Physics
- Mianyang
- P. R. China
| | - Wenjie Yu
- Shanghai Key Lab of Chemical Assessment and Sustainability School of Chemical Science and Engineering
- Tongji University
- Shanghai
- P. R. China
| | - Soumendra K. Roy
- Institute of Theoretical and Computational Chemistry Shaanxi key Laboratory of Catalysis
- School of Chemical & Environmental Science
- Shaanxi University of Technology
- Hanzhong
- P. R. China
| | - Chaoyang Li
- China Academy of Engineering and Physics
- Mianyang
- P. R. China
| | - Bingyun Ao
- China Academy of Engineering and Physics
- Mianyang
- P. R. China
| | - Tianwei Liu
- China Academy of Engineering and Physics
- Mianyang
- P. R. China
| | - Maobing Shuai
- China Academy of Engineering and Physics
- Mianyang
- P. R. China
| | - Xuefeng Wang
- China Academy of Engineering and Physics
- Mianyang
- P. R. China
| |
Collapse
|
11
|
Duignan TJ, Autschbach J. Impact of the Kohn–Sham Delocalization Error on the 4f Shell Localization and Population in Lanthanide Complexes. J Chem Theory Comput 2016; 12:3109-21. [DOI: 10.1021/acs.jctc.6b00238] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Thomas J. Duignan
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States
| |
Collapse
|
12
|
Huang W, Xu WH, Schwarz WHE, Li J. On the Highest Oxidation States of Metal Elements in MO4 Molecules (M = Fe, Ru, Os, Hs, Sm, and Pu). Inorg Chem 2016; 55:4616-25. [PMID: 27074099 DOI: 10.1021/acs.inorgchem.6b00442] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Metal tetraoxygen molecules (MO4, M = Fe, Ru, Os, Hs, Sm, Pu) of all metal atoms M with eight valence electrons are theoretically studied using density functional and correlated wave function approaches. The heavier d-block elements Ru, Os, Hs are confirmed to form stable tetraoxides of Td symmetry in (1)A1 electronic states with empty metal d(0) valence shell and closed-shell O(2-) ligands, while the 3d-, 4f-, and 5f-elements Fe, Sm, and Pu prefer partial occupation of their valence shells and peroxide or superoxide ligands at lower symmetry structures with various spin couplings. The different geometric and electronic structures and chemical bonding types of the six iso-stoichiometric species are explained in terms of atomic orbital energies and orbital radii. The variations found here contribute to our general understanding of the periodic trends of oxidation states across the periodic table.
Collapse
Affiliation(s)
- Wei Huang
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University , Beijing 100084, China
| | - Wen-Hua Xu
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University , Beijing 100084, China
| | - W H E Schwarz
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University , Beijing 100084, China
| | - Jun Li
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University , Beijing 100084, China
| |
Collapse
|
13
|
Vent-Schmidt T, Riedel S. Investigation of Praseodymium Fluorides: A Combined Matrix-Isolation and Quantum-Chemical Study. Inorg Chem 2015; 54:11114-20. [PMID: 26544761 DOI: 10.1021/acs.inorgchem.5b01175] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The chemistry of the lanthanides is mostly dominated by compounds in the oxidation state +III. Only few compounds of Ce, Pr, and Tb are known with the metal in the +IV oxidation state. Removal of the last f-electron on praseodymium +IV would lead to a closed-shell system with formal oxidation state V. In this work we investigated the stability of the PrF5 molecule by theory and matrix-isolation techniques through the reaction of laser-ablated praseodymium atoms with fluorine in excess of neon, argon, krypton, or neat fluorine. Besides the known PrF3 molecule, unreported IR bands for PrF4 could be observed, and there is evidence for the formation of PrF and PrF2 but not for the formation of PrF5.
Collapse
Affiliation(s)
- Thomas Vent-Schmidt
- Institut für Anorganische und Analytische Chemie, Albert-Ludwigs-Universität Freiburg , Albertstr.21, 79104 Freiburg, Germany
| | - Sebastian Riedel
- Institut für Chemie und Biochemie, Freie Universität Berlin , Fabeckstr.34-36, 14195 Berlin, Germany
| |
Collapse
|
14
|
Xu W, Ji WX, Wang SG. The electronic configurations of LnX (Ln=La–Eu, X=O, S, Se, Te): A FON–DFT investigation. COMPUT THEOR CHEM 2015. [DOI: 10.1016/j.comptc.2015.06.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Ji WX, Xu W, Schwarz WHE, Wang SG. Ionic bonding of lanthanides, as influenced by d- and f-atomic orbitals, by core-shells and by relativity. J Comput Chem 2015; 36:449-58. [PMID: 25565146 DOI: 10.1002/jcc.23820] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 11/26/2014] [Accepted: 12/01/2014] [Indexed: 12/12/2022]
Abstract
Lanthanide trihalide molecules LnX3 (X = F, Cl, Br, I) were quantum chemically investigated, in particular detail for Ln = Lu (lutetium). We applied density functional theory (DFT) at the nonrelativistic and scalar and SO-coupled relativistic levels, and also the ab initio coupled cluster approach. The chemically active electron shells of the lanthanide atoms comprise the 5d and 6s (and 6p) valence atomic orbitals (AO) and also the filled inner 4f semivalence and outer 5p semicore shells. Four different frozen-core approximations for Lu were compared: the (1s(2) -4d(10) ) [Pd] medium core, the [Pd+5s(2) 5p(6) = Xe] and [Pd+4f(14) ] large cores, and the [Pd+4f(14) +5s(2) 5p(6) ] very large core. The errors of LuX bonding are more serious on freezing the 5p(6) shell than the 4f(14) shell, more serious upon core-freezing than on the effective-core-potential approximation. The LnX distances correlate linearly with the AO radii of the ionic outer shells, Ln(3+) -5p(6) and X(-) -np(6) , characteristic for dominantly ionic Ln(3+) -X(-) binding. The heavier halogen atoms also bind covalently with the Ln-5d shell. Scalar relativistic effects contract and destabilize the LuX bonds, spin orbit coupling hardly affects the geometries but the bond energies, owing to SO effects in the free atoms. The relativistic changes of bond energy BE, bond length Re , bond force k, and bond stretching frequency vs do not follow the simple rules of Badger and Gordy (Re ∼BE∼k∼vs ). The so-called degeneracy-driven covalence, meaning strong mixing of accidentally near-degenerate, nearly nonoverlapping AOs without BE contribution is critically discussed.
Collapse
Affiliation(s)
- Wen-Xin Ji
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
| | | | | | | |
Collapse
|
16
|
Ji WX, Xu W, Xiao Y, Wang SG. Does the 4f-shell contribute to bonding in tetravalent lanthanide halides? J Chem Phys 2014; 141:244316. [DOI: 10.1063/1.4904722] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Wen-Xin Ji
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China
- School of Chemistry and Chemical Engineering, Ningxia University, 750015 Yinchuan, China
| | - Wei Xu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Yi Xiao
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Shu-Guang Wang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China
| |
Collapse
|
17
|
Sørensen TJ, Hill LR, Tilney JA, Blackburn OA, Jones MW, Tropiano M, Faulkner S. Self-Assembly between Dicarboxylate Ions and Dinuclear Lanthanide Complexes: A Surprisingly Complicated Problem. Eur J Inorg Chem 2014. [DOI: 10.1002/ejic.201402169] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
18
|
Zhang Y, Yang Y, Jiang H. 3d–4f Magnetic Interaction with Density Functional Theory Plus U Approach: Local Coulomb Correlation and Exchange Pathways. J Phys Chem A 2013; 117:13194-204. [DOI: 10.1021/jp4103228] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yachao Zhang
- Beijing
National Laboratory
of Molecular Sciences, State Key Laboratory of Rare Earth Materials
Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yang Yang
- Beijing
National Laboratory
of Molecular Sciences, State Key Laboratory of Rare Earth Materials
Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Hong Jiang
- Beijing
National Laboratory
of Molecular Sciences, State Key Laboratory of Rare Earth Materials
Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
19
|
Huang W, Xu WH, Su J, Schwarz WHE, Li J. Oxidation states, geometries, and electronic structures of plutonium tetroxide PuO4 isomers: is octavalent Pu viable? Inorg Chem 2013; 52:14237-45. [PMID: 24274785 DOI: 10.1021/ic402170q] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In neutral chemical compounds, the highest known oxidation state of all elements in the Periodic Table is +VIII. While PuO4 is viewed as an exotic Pu(+VIII) complex, we have shown here that no stable electronic homologue of octavalent RuO4 and OsO4 exists for PuO4, even though Pu has the same number of eight valence electrons as Ru and Os. Using quantum chemical approaches at the levels of quasi-relativistic DFT, MP2, CCSD(T), and CASPT2, we find the ground state of PuO4 as a quintet (5)C2v-(PuO2)(+)(O2)(-) complex with the leading valence configuration of an (f(3))plutonyl(V) unit, loosely coupled to a superoxido (π*(3))O2(-) ligand. This stable isomer is likely detectable as a transient species, while the previously suggested planar (1)D4h-Pu(VIII)O4 isomer is only metastable. Through electronic structure analyses, the bonding and the oxidation states are explained and rationalized. We have predicted the characteristics of the electronic and vibrational spectra to assist future experimental identification of (PuO2)(+)(O2)(-) by IR, UV-vis, and ionization spectroscopy.
Collapse
Affiliation(s)
- Wei Huang
- Department of Chemistry & Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University , Beijing 100084, China
| | | | | | | | | |
Collapse
|