1
|
Alawadi M, Fakhari AR, Bayatloo MR, Nojavan S. Carboxymethylated maltodextrin as a chiral selector for the separation of some basic drug enantiomers using capillary electrophoresis. J Chromatogr A 2023; 1708:464335. [PMID: 37696127 DOI: 10.1016/j.chroma.2023.464335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/17/2023] [Accepted: 08/26/2023] [Indexed: 09/13/2023]
Abstract
In this work, carboxymethylated maltodextrin (Cm-MD) was successfully synthesized as an efficient anionic chiral selector and applied for the enantiomer separation of some basic drugs including tramadol, venlafaxine, verapamil, hydroxyzine, citalopram, fluoxetine, and amlodipine by capillary electrophoresis (CE). The synthesized chiral selector was characterized by the nuclear magnetic resonance and Fourier transform infrared spectrophotometry. Under the optimized Cm-MD modified CE conditions (background electrolyte: phosphate buffer (pH 5.0, 50 mM) containing 5% (w/v) Cm-MD; applied voltage: 20 kV; and capillary column temperature: 25 °C), successful enantiomer separation of all studied chiral drugs were observed. By comparison of Cm-MD and MD for enantiomer separation of the model drugs, it was revealed that Cm-MD exhibits a higher resolution in comparison to the MD modified CE. This enhanced resolution could be attributed to the electrostatic interactions between the cationic drugs and anionic Cm-MD and opposite direction mobility of the host-guest complex relative to the chiral analyte. The optimized Cm-MD modified CE method was successfully used for the assay of the enantiomers of citalopram and venlafaxine in commercial tablets. The proposed method showed the linear range of 5.0-150.0 mg/L and 10.0-150.0 mg/L for both enantiomers of citalopram and venlafaxine, respectively. The limits of quantification were 5.0 and 10.0 mg/L for the enantiomers of citalopram and venlafaxine, respectively. The limit of detection for all enantiomers was found to be < 3.0 mg/L. Intra- and inter-day RSDs (n = 4) were less than 9.7%. The relative errors were less than 9.4% for all enantiomers. The obtained results in this research show that Cm-MD as a new, efficient and inexpensive chiral selector can be used for enantiomer separation of basic drugs using the CE technique.
Collapse
Affiliation(s)
- Mustafa Alawadi
- Department of Analytical Chemistry and Pollutants, Shahid Beheshti University, Tehran, Iran
| | - Ali Reza Fakhari
- Department of Analytical Chemistry and Pollutants, Shahid Beheshti University, Tehran, Iran.
| | - Mohammad Reza Bayatloo
- Department of Analytical Chemistry and Pollutants, Shahid Beheshti University, Tehran, Iran
| | - Saeed Nojavan
- Department of Analytical Chemistry and Pollutants, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
2
|
Sepasi T, Ghadiri T, Ebrahimi-Kalan A, Bani F, Talebi M, Rahbarghazi R, Khodakarimi S, Beyrampour-Basmenj H, Seidi K, Abbaspour-Ravasjani S, Sadeghi MR, Zarebkohan A, Gao H. CDX-modified chitosan nanoparticles remarkably reduce therapeutic dose of fingolimod in the EAE model of mice. Int J Pharm 2023; 636:122815. [PMID: 36907279 DOI: 10.1016/j.ijpharm.2023.122815] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 02/20/2023] [Accepted: 03/05/2023] [Indexed: 03/13/2023]
Abstract
Fingolimod (Fin), an FDA-approved drug, is used to control relapsing-remitting multiple sclerosis (MS). This therapeutic agent faces crucial drawbacks like poor bioavailability rate, risk of cardiotoxicity, potent immunosuppressive effects, and high cost. Here, we aimed to assess the therapeutic efficacy of nano-formulated Fin in a mouse model of experimental autoimmune encephalomyelitis (EAE). Results showed the suitability of the present protocol in the synthesis of Fin-loaded CDX-modified chitosan (CS) nanoparticles (NPs) (Fin@CSCDX) with suitable physicochemical features. Confocal microscopy confirmed the appropriate accumulation of synthesized NPs within the brain parenchyma. Compared to the control EAE mice, INF-γ levels were significantly reduced in the group that received Fin@CSCDX (p < 0.05). Along with these data, Fin@CSCDX reduced the expression of TBX21, GATA3, FOXP3, and Rorc associated with the auto-reactivation of T cells (p < 0.05). Histological examination indicated a low-rate lymphocyte infiltration into the spinal cord parenchyma after the administration of Fin@CSCDX. Of note, HPLC data revealed that the concentration of nano-formulated Fin was about 15-fold less than Fin therapeutic doses (TD) with similar reparative effects. Neurological scores were similar in both groups that received nano-formulated fingolimod 1/15th of free Fin therapeutic amounts. Fluorescence imaging indicated that macrophages and especially microglia can efficiently uptake Fin@CSCDX NPs, leading to the regulation of pro-inflammatory responses. Taken together, current results indicated that CDX-modified CS NPs provide a suitable platform not only for the efficient reduction of Fin TD but also these NPs can target the brain immune cells during neurodegenerative disorders.
Collapse
Affiliation(s)
- Tina Sepasi
- Department of Medical Nanotechnology, Advanced Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tahereh Ghadiri
- Department of Neuroscience and Cognitive, Advanced Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Ebrahimi-Kalan
- Department of Neuroscience and Cognitive, Advanced Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Bani
- Department of Medical Nanotechnology, Advanced Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Talebi
- Stem Cells Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cells Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Applied Cell Sciences, Advanced Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sina Khodakarimi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Neuroscience and Cognitive, Advanced Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hanieh Beyrampour-Basmenj
- Department of Medical Biotechnology, Advanced Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khaled Seidi
- Polymer Research Laboratory, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | | | - Mohammad-Reza Sadeghi
- Department of Medical Biotechnology, Advanced Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Zarebkohan
- Department of Medical Nanotechnology, Advanced Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, PR China.
| |
Collapse
|
3
|
Modified Poly(Lactic Acid) Epoxy Resin Using Chitosan for Reactive Blending with Epoxidized Natural Rubber: Analysis of Annealing Time. Polymers (Basel) 2022; 14:polym14061085. [PMID: 35335415 PMCID: PMC8949308 DOI: 10.3390/polym14061085] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 02/05/2023] Open
Abstract
Poly(lactic acid) was melt-blended with epoxy resin without hardener and chitosan (CTS) to prepare modified PLA (PLAEC). Epoxy resin 5% and CTS 1–20% (wt/wt) were incorporated into PLA during melt mixing. PLAEC was melt-blended with an epoxidized natural rubber (ENR) 80/20 wt. The PLAEC CTS 1% blended with ENR (PLAEC1/ENR) showed a high tensile strength (30 MPa) and elongation at break (7%). The annealing process at 80 °C for 0–15 min maintained a tensile strength of approximately 30 MPa. SEM images of the PLAE/ENR blend showed phase inversion from co-continuous to ENR particle dispersion in the PLA matrix with the addition of CTS, whereas the annealing time reduced the hole sizes of the extracted ENR phase due to the shrinkage of PLA by crystallization. Thermal properties were observed by DSC and a Vicat softening test. The annealing process increased the crystallinity and Vicat softening temperature of the PLAEC1/ENR blend. Reactions of −COOH/epoxy groups and epoxy/−NH2 groups occurred during PLAE and PLAEC preparation, respectively. FTIR confirmed the reaction between the −NH2 groups of CTS in PLAEC and the epoxy groups of ENR. This reaction increased the mechanical properties, while the annealing process improved the morphology and thermal properties of the blend.
Collapse
|
4
|
Huang L, Jin S, Bao F, Tang S, Yang J, Peng K, Chen Y. Construction of a physically cross-linked carrageenan/chitosan/calcium ion double-network hydrogel for 3-Nitro-1, 2, 4-triazole-5-one removal. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127510. [PMID: 34879513 DOI: 10.1016/j.jhazmat.2021.127510] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/27/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
3-Nitro-1, 2, 4-triazole-5-one (NTO) is an important insensitive explosive. The discharge of NTO wastewater not only pollutes the environment but also causes the economic loss of the valuable explosive. Currently, the NTO wastewater in industrial production is often treated with activated carbon adsorbents. There are no green, efficient and specific adsorption materials for the NTO treatment yet. In the present work, polymer materials suitable for NTO adsorption were screened by molecular dynamics simulation. With the optimized materials, a carrageenan/chitosan/calcium ion physically cross-linked double network hydrogel (KC/CTS/Ca2+ PCDNH) was successfully prepared by the semi-soluble-acidified sol-gel conversion method. The structure and NTO adsorption performance of the hydrogel were investigated by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). The NTO adsorption kinetics, isotherm, and thermodynamics were further studied to understand the adsorption behavior and mechanism. In addition, the adsorbed NTO was successfully released and recovered by soaking the hydrogel in NaOH solution. Our work has provided an environmentally friendly and targeted preparation method of NTO adsorbent materials for NTO wastewater treatment.
Collapse
Affiliation(s)
- Lun Huang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Shaohua Jin
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Fang Bao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Shuxian Tang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Jueying Yang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Kelin Peng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Yu Chen
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, PR China.
| |
Collapse
|
5
|
Bai M, Yang M, Gong J, Xu H, Wei Z. Progress and Principle of Drug Nanocrystals for Tumor Targeted Delivery. AAPS PharmSciTech 2021; 23:41. [PMID: 34964079 DOI: 10.1208/s12249-021-02200-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/09/2021] [Indexed: 12/26/2022] Open
Abstract
Drugs are referred to as drug nanocrystals when they exist as nanoscale crystal structures. This kind of nanocarrier has been widely utilized to increase the solubility and absorption for poorly aqueous soluble drugs after oral administration, or prolong the drug circulation when intravenous administration. The systemic cytotoxicity caused by antitumor drugs usually come from the nonspecific drug distribution. To solve the disadvantage of poor targetability, drug nanocrystals for tumor targeted delivery have been developed in recent years. In this review, the targeting mechanisms of various surface modified drug nanocrystals are introduced with the focus on passive targeting, active targeting and stimuli-responsive targeting in details. Function and application of common surface modified materials are also discussed.
Collapse
|
6
|
Zohri M, Arefian E, Akbari Javar H, Gazori T, Aghaee-Bakhtiari SH, Taheri M, Fatahi Y, Azadi A, Khoshayand MR, Ghahremani MH. Potential of chitosan/alginate nanoparticles as a non-viral vector for gene delivery: Formulation and optimization using D-optimal design. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112262. [PMID: 34474821 DOI: 10.1016/j.msec.2021.112262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/03/2021] [Accepted: 06/11/2021] [Indexed: 12/24/2022]
Abstract
Chitosan/alginate (Chi/Alg) nanoparticles as a non-viral vector for the Smad4 encoding plasmid were optimized utilizing D-optimal design based on the nanoparticles/plasmid ratio, Chi/Alg MW, and preparation method type. Following the optimization and validation of the best formula, morphology studies and FTIR measurements were performed to evaluate the optimized Chi/Alg/S NPs. Toxicity (MTT assay) and transfection studies were performed for the best formula in comparison with Lipofectamine 2000, and Polyethyleneimine (PEI) and evaluated using Green Fluorescence Protein (GFP) assay, Flow cytometry, and RT-PCR. The model predicted a particle size of 111 nm, loading efficacy (LE) of 43%, cumulative release (CMR) of 39%, the ζ-potential of +50 mV, and PDI of 0.13. The predicted point condition was as follows: NP ratio = 13, Chi/Alg MW ratio = 2.35, and preparation method type = 1. Microscopic findings revealed that the shape of nanoparticles was spherical. The Chi/Alg/S nanoparticles showed no toxicity and transfection efficacy of 29.9% was observed in comparison with Lipofectamine (35.5%) and PEI (30.9%).
Collapse
Affiliation(s)
- Maryam Zohri
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Hamid Akbari Javar
- Departments of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Taraneh Gazori
- Trita Nanomedicine Research Center (TNRC), Trita Third Millennium Pharmaceuticals, 1917733831 Tehran, Iran
| | - Seyed Hamid Aghaee-Bakhtiari
- Bioinformatics Research Group, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojtaba Taheri
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Yousef Fatahi
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Azadi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Khoshayand
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Ghahremani
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
7
|
Lin MHC, Lai PS, Chang LC, Huang WC, Lee MH, Chen KT, Chung CY, Yang JT. Characterization and Optimization of Chitosan-Coated Polybutylcyanoacrylate Nanoparticles for the Transfection-Guided Neural Differentiation of Mouse Induced Pluripotent Stem Cells. Int J Mol Sci 2021; 22:8741. [PMID: 34445447 PMCID: PMC8395893 DOI: 10.3390/ijms22168741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/07/2021] [Accepted: 08/11/2021] [Indexed: 01/04/2023] Open
Abstract
Gene transfection is a valuable tool for analyzing gene regulation and function, and providing an avenue for the genetic engineering of cells for therapeutic purposes. Though efficient, the potential concerns over viral vectors for gene transfection has led to research in non-viral alternatives. Cationic polyplexes such as those synthesized from chitosan offer distinct advantages such as enhanced polyplex stability, cellular uptake, endo-lysosomal escape, and release, but are limited by the poor solubility and viscosity of chitosan. In this study, the easily synthesized biocompatible and biodegradable polymeric polysorbate 80 polybutylcyanoacrylate nanoparticles (PS80 PBCA NP) are utilized as the backbone for surface modification with chitosan, in order to address the synthetic issues faced when using chitosan alone as a carrier. Plasmid DNA (pDNA) containing the brain-derived neurotrophic factor (BDNF) gene coupled to a hypoxia-responsive element and the cytomegalovirus promotor gene was selected as the genetic cargo for the in vitro transfection-guided neural-lineage specification of mouse induced pluripotent stem cells (iPSCs), which were assessed by immunofluorescence staining. The chitosan-coated PS80 PBCA NP/BDNF pDNA polyplex measured 163.8 ± 1.8 nm and zeta potential measured -34.8 ± 1.8 mV with 0.01% (w/v) high molecular weight chitosan (HMWC); the pDNA loading efficiency reached 90% at a nanoparticle to pDNA weight ratio of 15, which also corresponded to enhanced polyplex stability on the DNA stability assay. The HMWC-PS80 PBCA NP/BDNF pDNA polyplex was non-toxic to mouse iPSCs for up to 80 μg/mL (weight ratio = 40) and enhanced the expression of BDNF when compared with PS80 PBCA NP/BDNF pDNA polyplex. Evidence for neural-lineage specification of mouse iPSCs was observed by an increased expression of nestin, neurofilament heavy polypeptide, and beta III tubulin, and the effects appeared superior when transfection was performed with the chitosan-coated formulation. This study illustrates the versatility of the PS80 PBCA NP and that surface decoration with chitosan enabled this delivery platform to be used for the transfection-guided differentiation of mouse iPSCs.
Collapse
Affiliation(s)
- Martin Hsiu-Chu Lin
- Department of Neurosurgery, Chang Gung Memorial Hospital, Chia-Yi Branch, Chia-Yi 61363, Taiwan; (M.H.-C.L.); (W.-C.H.); (M.-H.L.); (K.-T.C.)
- Department of Chemistry, National Chung Hsing University, Taichung 40227, Taiwan;
- PhD Programme of Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung 40227, Taiwan
| | - Ping-Shan Lai
- Department of Chemistry, National Chung Hsing University, Taichung 40227, Taiwan;
| | - Li-Ching Chang
- Department of Dentistry, Chang Gung Memorial Hospital, Chia-Yi Branch, Chia-Yi 61363, Taiwan;
- Department of Nursing, Chang Gung University of Science and Technology, Chia-Yi 61363, Taiwan
| | - Wei-Chao Huang
- Department of Neurosurgery, Chang Gung Memorial Hospital, Chia-Yi Branch, Chia-Yi 61363, Taiwan; (M.H.-C.L.); (W.-C.H.); (M.-H.L.); (K.-T.C.)
| | - Ming-Hsueh Lee
- Department of Neurosurgery, Chang Gung Memorial Hospital, Chia-Yi Branch, Chia-Yi 61363, Taiwan; (M.H.-C.L.); (W.-C.H.); (M.-H.L.); (K.-T.C.)
| | - Kuo-Tai Chen
- Department of Neurosurgery, Chang Gung Memorial Hospital, Chia-Yi Branch, Chia-Yi 61363, Taiwan; (M.H.-C.L.); (W.-C.H.); (M.-H.L.); (K.-T.C.)
| | - Chiu-Yen Chung
- Department of Neurosurgery, Chang Gung Memorial Hospital, Chia-Yi Branch, Chia-Yi 61363, Taiwan; (M.H.-C.L.); (W.-C.H.); (M.-H.L.); (K.-T.C.)
| | - Jen-Tsung Yang
- Department of Neurosurgery, Chang Gung Memorial Hospital, Chia-Yi Branch, Chia-Yi 61363, Taiwan; (M.H.-C.L.); (W.-C.H.); (M.-H.L.); (K.-T.C.)
- College of Medicine, School of Traditional Chinese Medicine, Chang Gung University, Tao-Yuan 33302, Taiwan
| |
Collapse
|
8
|
Azizkhani M, Sodanlo A. Antioxidant activity of
Eryngium campestre
L.,
Froriepia subpinnata
, and
Mentha spicata
L. polyphenolic extracts nanocapsulated in chitosan and maltodextrin. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.15120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Maryam Azizkhani
- Department of Food Hygiene Faculty of Veterinary Medicine Amol University of Special Modern Technologies Amol Iran
| | - Azam Sodanlo
- Department of Food Hygiene Faculty of Veterinary Medicine Amol University of Special Modern Technologies Amol Iran
| |
Collapse
|
9
|
Al-Nemrawi NK, Alsharif SSM, Alzoubi KH, Alkhatib RQ. Preparation and characterization of insulin chitosan-nanoparticles loaded in buccal films. Pharm Dev Technol 2019; 24:967-974. [PMID: 31092092 DOI: 10.1080/10837450.2019.1619183] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Chitosan nanoparticles loaded with insulin (IN-CS-NPs) were prepared using ionic gelation method using sodium tripolyphophate as a crosslinker. Later the nanoparticles (NPs) were dispersed in buccal films. The physicochemical properties and the morphology of the nanoparticles were characterized. The stability and release of insulin from the NPs were investigated. Buccal films were prepared separately and their properties such as the weight, thickness, pH, and mucoadhesiveness were investigated. The best film was used to disperse IN-CS-NPs and the loaded film was characterized. The nanoparticles size, polydispersity index, zeta potential, entrapment efficacy, and the loading capacity were 325.07 ± 1.32 nm, 0.38 ± 0.03 and 8.41 ± 0.80 mV, and 73.27 and 18.03%, respectively. The weight and thickness of the loaded film with IN-CS-NPs were 23.0 ± 3.0 mg and 0.32 ± 0.04 mm, respectively and the mucoadhesive force was 2.3 ± 0.2 N. The drug was stable in the NPs and in the films for three months, and its release was controlled by the film and the nanoparticles. Finally, the films loaded with IN-CS-NPs were studied in vivo and were compared to the commercially available insulin. The films prepared in this work were found to decrease glucose level significantly in diabetic rats.
Collapse
Affiliation(s)
- Nusaiba K Al-Nemrawi
- a Department of Pharmaceutical Technology, Faculty of Pharmacy , Jordan University of Science and Technology , Irbid , Jordan
| | - Sara S M Alsharif
- b Department of Applied Biological Sciences, Faculty of Scienceand Art , Jordan University of Science and Technology , Irbid , Jordan
| | - Karem H Alzoubi
- c Department of Clinical Pharmacy, Facultyof Pharmacy , Jordan University of Science and Technology , Irbid , Jordan
| | - Rami Q Alkhatib
- b Department of Applied Biological Sciences, Faculty of Scienceand Art , Jordan University of Science and Technology , Irbid , Jordan
| |
Collapse
|
10
|
Cheng YF, Zhang JY, Wang YB, Li CM, Lu ZS, Hu XF, Xu LQ. Deposition of catechol-functionalized chitosan and silver nanoparticles on biomedical titanium surfaces for antibacterial application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:649-656. [DOI: 10.1016/j.msec.2019.01.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 12/21/2018] [Accepted: 01/06/2019] [Indexed: 01/01/2023]
|
11
|
Panão Costa J, Carvalho S, Jesus S, Soares E, Marques AP, Borges O. Optimization of Chitosan-α-casein Nanoparticles for Improved Gene Delivery: Characterization, Stability, and Transfection Efficiency. AAPS PharmSciTech 2019; 20:132. [PMID: 30820699 DOI: 10.1208/s12249-019-1342-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 02/12/2019] [Indexed: 11/30/2022] Open
Abstract
Among non-viral vectors, the cationic polymer chitosan has gained attention as a gene delivery system. We hypothesized that the addition of casein into the nanoparticle's structure would facilitate a proper gene transfer. The work herein presented aimed to optimize the production method of chitosan-casein nanoparticles (ChiCas NPs) and to test their ability as a gene delivery system. ChiCas NPs formulation optimization was carried out by analyzing several characteristics such as NP size, zeta potential, and chitosan and casein incorporation efficacy. The best formulation developed presented small and homogenous particle size (around 335 nm) and positive zeta potential (≈ + 38 mV), and showed to be stable for 34 weeks both, at 4°C and 20°C. The particles were further used to entrap or to adsorb DNA and form NPs-DNA complexes. In vitro transfection studies, carried out in COS-7 cells, suggested a low transfection efficiency of the different NPs:DNA ratios tested, comparatively to the positive control. Nonetheless, we could observe that the complexes with larger sizes presented better transfection results than those with smaller diameters. To conclude, ChiCas NPs have great technological potential since the preparation process is very simple, and the DNA incorporation efficacy is very high and shows to be physically very stable. The NPs:DNA ratio still needs to be optimized with the aim of achieving better transfection results and being able to anticipate a high gene expression on DNA-based vaccination studies.
Collapse
|
12
|
Zheng Y, Su C, Zhao L, Shi Y. Chitosan nanoparticle-mediated co-delivery of shAtg-5 and gefitinib synergistically promoted the efficacy of chemotherapeutics through the modulation of autophagy. J Nanobiotechnology 2017; 15:28. [PMID: 28399862 PMCID: PMC5387274 DOI: 10.1186/s12951-017-0261-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/20/2017] [Indexed: 12/12/2022] Open
Abstract
Background Autophagy reportedly plays vital and complex roles in many diseases. During times of starvation or energy deficiency, autophagy will occur at higher levels to provide cells with the nutrients or energy necessary to survive in stressful conditions. Some anti-cancer drugs induce protective autophagy and reduce cell apoptosis. Autophagy can adversely affect apoptosis, and blocking autophagy will increase the sensitivity of cells to apoptosis signals. Methods We designed chitosan nanoparticles (NPs) to promote the co-delivery of gefitinib (an anti-cancer drug) and shRNA-expressing plasmid DNA that targets the Atg-5 gene (shAtg-5) as an autophagy inhibitor to improve anti-cancer effects and autophagy mediation. Results The results showed that when compared to treatment with a single drug, chitosan NPs were able to facilitate the intracellular distribution of NPs, and they improved the transfection efficiency of gene in vitro. The co-delivery of gefitinib and shAtg-5 increased cytotoxicity, induced significant apoptosis through the prohibition of autophagy, and markedly inhibited tumor growth in vivo. Conclusions The co-delivery of gefitinib/shAtg-5 in chitosan NPs produced superior anti-cancer efficacy via the internalization effect of NPs, while blocking autophagy with shAtg-5 enhanced the synergistic antitumor efficacy of gefitinib.
Collapse
Affiliation(s)
- Yan Zheng
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, People's Republic of China
| | - Chang Su
- School of Veterinary Medicine, Jinzhou Medical University, Jinzhou, 121000, People's Republic of China
| | - Liang Zhao
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, People's Republic of China.
| | - Yijie Shi
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, People's Republic of China.
| |
Collapse
|
13
|
Abstract
Photoluminescent behaviours of chitosan were investigated. Photoluminescence can be observed from aqueous solution of chitosan, and CO2 treatment can improve the intensity of photoluminescence. The maximum emission is obtained with an excitation at ~336 nm, and the emission wavelength is dependent on the excitation wavelength with a longer excitation wavelength leading to a longer emission wavelength. The chemistry of chitosan before and after CO2 treatment was characterised; and the results reflect that carbamato anion is formed via the reaction between the amines and CO2, and is the fluorophore of the photoluminescence observed. Furthermore, chitosan was applied as an imaging agent for imaging MCF-7 cells using confocal microscopy. Blue and bright green imaging of the cells can be obtained via tuning the excitation and emission wavelength. Together with a low cytotoxicity reflected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide evaluation, fluorescent chitosan is promising for bio-imaging.
Collapse
|
14
|
Lam PL, Lee KKH, Ho YW, Wong RSM, Tong SW, Cheng CH, Lam KH, Tang JCO, Bian ZX, Gambari R, Kok SHL, Chui CH. The development of chitosan based microcapsules as delivery vehicles for orally administered daunorubicin. RSC Adv 2014. [DOI: 10.1039/c4ra00195h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|