1
|
Shang C, Cao Y, Zhang Y, Ma M, Sun C. Paying Comprehensive Attention to the ESPT Mechanism and Luminescent Property of Salicylic Acid and Its Derivatives in Various Microenvironments. ADVANCED THEORY AND SIMULATIONS 2022. [DOI: 10.1002/adts.202200400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Changjiao Shang
- College of Science Northeast Forestry University Harbin Heilongjiang 150040 China
| | - Yunjian Cao
- College of Science Northeast Forestry University Harbin Heilongjiang 150040 China
| | - Yajie Zhang
- College of Science Northeast Forestry University Harbin Heilongjiang 150040 China
| | - Min Ma
- College of Science Northeast Forestry University Harbin Heilongjiang 150040 China
| | - Chaofan Sun
- College of Science Northeast Forestry University Harbin Heilongjiang 150040 China
| |
Collapse
|
2
|
Brovarets’ OO, Hovorun DM. Intramolecular tautomerization of the quercetin molecule due to the proton transfer: QM computational study. PLoS One 2019; 14:e0224762. [PMID: 31751372 PMCID: PMC6874073 DOI: 10.1371/journal.pone.0224762] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 10/20/2019] [Indexed: 12/21/2022] Open
Abstract
Quercetin molecule (3, 3', 4', 5, 7-pentahydroxyflavone, C15H10O7) is an important flavonoid compound of natural origin, consisting of two aromatic A and B rings linked through the C ring with endocyclic oxygen atom and five hydroxyl groups attached to the 3, 3', 4', 5 and 7 positions. This molecule is found in many foods and plants, and is known to have a wide range of therapeutic properties, like an anti-oxidant, anti-toxic, anti-inflammatory etc. In this study for the first time we have revealed and investigated the pathways of the tautomeric transformations for the most stable conformers of the isolated quercetin molecule (Brovarets' & Hovorun, 2019) via the intramolecular proton transfer. Energetic, structural, dynamical and polar characteristics of these transitions, in particular relative Gibbs free and electronic energies, characteristics of the intramolecular specific interactions-H-bonds and attractive van der Waals contacts, have been analysed in details. It was demonstrated that the most probable process among all investigated is the proton transfer from the O3H hydroxyl group of the C ring to the C2' carbon atom of the C2'H group of the B ring along the intramolecular O3H…C2' H-bond with the further formation of the C2'H2 group. It was established that the proton transfer from the hydroxyl groups to the carbon atoms of the neighboring CH groups is assisted at the transition states by the strong intramolecular HCH…O H-bond (~28.5 kcal∙mol-1). The least probable path of the proton transfer-from the C8H group to the endocyclic O1 oxygen atom-causes the decyclization of the C ring in some cases. It is shortly discussed the biological importance of the obtained results.
Collapse
Affiliation(s)
- Ol’ha O. Brovarets’
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Dmytro M. Hovorun
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Department of Molecular Biotechnology and Bioinformatics, Institute of High Technologies, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| |
Collapse
|
3
|
Jin L, Shi S, Song X, Zhao C, Lu J, An C, Xu P, Wang Z, Qin G. The deamination mechanism of 5,6‐dihydrocytosine and 5,6‐dihydro‐5‐methylcytosine under typical bisulfite condition. J PHYS ORG CHEM 2019. [DOI: 10.1002/poc.3990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lingxia Jin
- Shaanxi Key Laboratory of Catalysis, School of Chemical and Environment ScienceShaanxi University of Technology Hanzhong China
| | - Shengnan Shi
- Shaanxi Key Laboratory of Catalysis, School of Chemical and Environment ScienceShaanxi University of Technology Hanzhong China
| | - Xiaoling Song
- Shaanxi Key Laboratory of Catalysis, School of Chemical and Environment ScienceShaanxi University of Technology Hanzhong China
| | - Caibin Zhao
- Shaanxi Key Laboratory of Catalysis, School of Chemical and Environment ScienceShaanxi University of Technology Hanzhong China
| | - Jiufu Lu
- Shaanxi Key Laboratory of Catalysis, School of Chemical and Environment ScienceShaanxi University of Technology Hanzhong China
| | - Chen An
- Shaanxi Key Laboratory of Catalysis, School of Chemical and Environment ScienceShaanxi University of Technology Hanzhong China
| | - Pingping Xu
- Shaanxi Key Laboratory of Catalysis, School of Chemical and Environment ScienceShaanxi University of Technology Hanzhong China
| | - Zhengguo Wang
- Shaanxi Key Laboratory of Catalysis, School of Chemical and Environment ScienceShaanxi University of Technology Hanzhong China
| | - Gongwei Qin
- Shaanxi Key Laboratory of Catalysis, School of Chemical and Environment ScienceShaanxi University of Technology Hanzhong China
| |
Collapse
|
4
|
Brovarets' OO, Oliynyk TA, Hovorun DM. Novel Tautomerisation Mechanisms of the Biologically Important Conformers of the Reverse Löwdin, Hoogsteen, and Reverse Hoogsteen G *·C * DNA Base Pairs via Proton Transfer: A Quantum-Mechanical Survey. Front Chem 2019; 7:597. [PMID: 31620420 PMCID: PMC6759773 DOI: 10.3389/fchem.2019.00597] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/12/2019] [Indexed: 11/22/2022] Open
Abstract
For the first time, in this study with the use of QM/QTAIM methods we have exhaustively investigated the tautomerization of the biologically-important conformers of the G*·C* DNA base pair-reverse Löwdin G*·C*(rWC), Hoogsteen G*'·C*(H), and reverse Hoogsteen G*'·C*(rH) DNA base pairs-via the single (SPT) or double (DPT) proton transfer along the neighboring intermolecular H-bonds. These tautomeric reactions finally lead to the formation of the novel G· C O 2 * (rWC), G N 2 * · C(rWC), G*'N2·C(rWC), G N 7 * · C(H), and G*'N7·C(rH) DNA base mispairs. Gibbs free energies of activation for these reactions are within the range 3.64-31.65 kcal·mol-1 in vacuum under normal conditions. All TSs are planar structures (Cs symmetry) with a single exception-the essentially non-planar transition state TSG*·C*(rWC)↔G+·C-(rWC) (C1 symmetry). Analysis of the kinetic parameters of the considered tautomerization reactions indicates that in reality only the reverse Hoogsteen G*'·C*(rH) base pair undergoes tautomerization. However, the population of its tautomerised state G*'N7·C(rH) amounts to an insignificant value-2.3·10-17. So, the G*·C*(rWC), G*'·C*(H), and G*'·C*(rH) base pairs possess a permanent tautomeric status, which does not depend on proton mobility along the neighboring H-bonds. The investigated tautomerization processes were analyzed in details by applying the author's unique methodology-sweeps of the main physical and chemical parameters along the intrinsic reaction coordinate (IRC). In general, the obtained data demonstrate the tautomeric mobility and diversity of the G*·C* DNA base pair.
Collapse
Affiliation(s)
- Ol'ha O. Brovarets'
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Department of Pharmacology, Bohomolets National Medical University, Kyiv, Ukraine
| | - Timothy A. Oliynyk
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Dmytro M. Hovorun
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Department of Molecular Biotechnology and Bioinformatics, Institute of High Technologies, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
- Department of Pathophysiology, Bohomolets National Medical University, Kyiv, Ukraine
| |
Collapse
|
5
|
Brovarets’ OO, Hovorun DM. Conformational transitions of the quercetin molecule via the rotations of its rings: a comprehensive theoretical study. J Biomol Struct Dyn 2019; 38:2865-2883. [DOI: 10.1080/07391102.2019.1645734] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ol’ha O. Brovarets’
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Department of Pharmacology, Bohomolets National Medical University, Kyiv, Ukraine
| | - Dmytro M. Hovorun
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Department of Molecular Biotechnology and Bioinformatics, Institute of High Technologies, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
- Department of Pathophysiology, Bohomolets National Medical University, Kyiv, Ukraine
| |
Collapse
|
6
|
Zhang Z, Lu C, Wang P, Li A, Zhang H, Xu S. Structural Basis and Mechanism for Vindoline Dimers Interacting with α,β-Tubulin. ACS OMEGA 2019; 4:11938-11948. [PMID: 31460305 PMCID: PMC6682054 DOI: 10.1021/acsomega.9b00947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 06/26/2019] [Indexed: 06/10/2023]
Abstract
Vinblastine and its derivatives used in clinics as antitumor drugs often cause drug resistance and some serious side effects; thus, it is necessary to study new vinblastine analogues with strong anticancer cytotoxicity and low toxicity. We designed a dimer molecule using two vindoline-bonded dimer vindoline (DVB) and studied its interaction with α,β-tubulin through the double-sided adhesive mechanism to explore its anticancer cytotoxicity. In our work, DVB was docked into the interface between α-tubulin and β-tubulin to construct a complex protein structure, and then it was simulated for 100 ns using the molecular dynamics technology to become a stable and refined complex protein structure. Based on such a refined structure, the quantum chemistry at the level of the MP2/6-31G(d,p) method was used to calculate the binding energies for DVB interacting with respective residues. By the obtained binding energies, the active site residues for interaction with DVB were found. Up to 20 active sites of residues within α,β-tubulin interacting with DVB are labeled in β-Asp179, β-Glu207, β-Tyr210, β-Asp211, β-Phe214, β-Pro222, β-Tyr224, and β-Leu227 and α-Asn249, α-Arg308, α-Lys326, α-Asn329, α-Ala333, α-Thr334, α-Lys336, α-Lys338, α-Arg339, α-Ser340, α-Thr349, and α-Phe351. The total binding energy between DVB and α,β-tubulin is about -251.0 kJ·mol-1. The sampling average force potential (PMF) method was further used to study the dissociation free energy (ΔG) along the separation trajectory of α,β-tubulin under the presence of DVB based on the refined structure of DVB with α,β-tubulin. Because of the presence of DVB within the interface between α- and β-tubulin, ΔG is 252.3 kJ·mol-1. In contrast to the absence of DVB, the separation of pure β-tubulin needs a free energy of 196.9 kJ·mol-1. The data show that the presence of DVB adds more 55.4 kJ·mol-1 of ΔG to hinder the normal separation of α,β-tubulin. Compared to vinblastine existing, the free energy required for the separation of α,β-tubulin is 220.5 kJ·mol-1. Vinblastine and DVB can both be considered through the same double-sided adhesive mechanism to give anticancer cytotoxicity. Because of the presence of DVB, a larger free energy is needed for the separation of α,β-tubulin, which suggests that DVB should have stronger anticancer cytotoxicity than vinblastine and shows that DVB has a broad application prospect.
Collapse
Affiliation(s)
- Zhengqiong Zhang
- College
of Chemical Science and Technology and Pharmacy, Key Laboratory of
Education Ministry for Medicinal Chemistry of Natural Resource, Yunnan University, Kunming 650091, China
| | - Chengqi Lu
- College
of Chemical Science and Technology and Pharmacy, Key Laboratory of
Education Ministry for Medicinal Chemistry of Natural Resource, Yunnan University, Kunming 650091, China
| | - Pei Wang
- College
of Chemical Science and Technology and Pharmacy, Key Laboratory of
Education Ministry for Medicinal Chemistry of Natural Resource, Yunnan University, Kunming 650091, China
| | - Aijing Li
- College
of Chemical Science and Technology and Pharmacy, Key Laboratory of
Education Ministry for Medicinal Chemistry of Natural Resource, Yunnan University, Kunming 650091, China
| | - Hongbo Zhang
- College
of Mathematics, Yunnan Normal University, Kunming 650500, China
| | - Sichuan Xu
- College
of Chemical Science and Technology and Pharmacy, Key Laboratory of
Education Ministry for Medicinal Chemistry of Natural Resource, Yunnan University, Kunming 650091, China
| |
Collapse
|
7
|
Jin L, Qin G, Zhao C, Yu X, Lu J, Meng H. The deamination mechanism of the 5,6-dihydro-6-hydro-6-hydroxylcytosine and 5,6-dihydro-5-methyl-6-hydroxylcytosine under typical bisulfite conditions. Mol Phys 2019. [DOI: 10.1080/00268976.2018.1541105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Lingxia Jin
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, People’s Republic of China
| | - Gongwei Qin
- Bioresources Key Laboratory of Shaanxi Province, College of Biological Science and Technology, Shaanxi University of Technology, Hanzhong, People’s Republic of China
| | - Caibin Zhao
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, People’s Republic of China
| | - Xiaohu Yu
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, People’s Republic of China
| | - Jiufu Lu
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, People’s Republic of China
| | - Hao Meng
- College of Physics and Telecom Engineering, Shaanxi University of Technology, Hanzhong, People’s Republic of China
| |
Collapse
|
8
|
Brovarets’ OO, Hovorun DM. Key microstructural mechanisms of the 2-aminopurine mutagenicity: Results of extensive quantum-chemical research. J Biomol Struct Dyn 2019; 37:2716-2732. [DOI: 10.1080/07391102.2018.1495577] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Ol’ha O. Brovarets’
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Department of Molecular Biotechnology and Bioinformatics, Institute of High Technologies, Taras Shevchenko National University of Kyiv, 2-h Akademika Hlushkova Ave, Kyiv, Ukraine
| | - Dmytro M. Hovorun
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Department of Molecular Biotechnology and Bioinformatics, Institute of High Technologies, Taras Shevchenko National University of Kyiv, 2-h Akademika Hlushkova Ave, Kyiv, Ukraine
| |
Collapse
|
9
|
Jin L, Lv M, Zhao M, Wang R, Zhao C, Lu J, Wang L, Wang W, Wei Y. Formic acid catalyzed isomerization of protonated cytosine: a lower barrier reaction for tautomer production of potential biological importance. Phys Chem Chem Phys 2018; 19:13515-13523. [PMID: 28497833 DOI: 10.1039/c7cp01008g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Tautomerism in nucleotide bases is one of the possible mechanisms of DNA mutation. In spite of numerous studies on the structure and energy of protonated cytosine tautomers, little information is available on the process of their intra- and intermolecular tautomerizations. The catalytic ability of H2O, HCOOH, and the HCOOHH2O group to facilitate the tautomerism of the Cyt2t+ to CytN3+ isomer has been studied. It is shown that the activation free energies of tautomerism in the gas phase are 161.17, 58.96, 26.06, and 15.69 kJ mol-1, respectively, when the reaction is carried out in the absence and presence of H2O, HCOOH, or the HCOOHH2O group. The formation of a doubly hydrogen bonded transition state is central to lowering the activation free energy and facilitating the intramolecular hydrogen atom transfer that is required for isomerization. In the aqueous phase, although the solvent effects of water significantly decrease the activation free energy of intramolecular tautomerization, the isomerization of the Cyt2t+ to CytN3+ isomer remains unfavorable, and the HCOOH and HCOOHH2O group mediated mechanisms are still more favorable. Meanwhile, conventional transition state theory (CTST) followed by Wigner tunneling correction is then applied to estimate the rate constants. The rate constant with Wigner tunneling correction for direct tautomerization is obviously smaller than that of HCOOH-mediated tautomerization, which is the most plausible mechanism. Finally, another important finding is that the product complex (CytN3+HCOOH) is in the rapid tautomeric equilibrium with the reaction complex (Cyt2t+HCOOH) (τ99.9% = 3.84 × 10-12 s), which is implemented by the mechanism of the concerted synchronous double proton transfer. Its lifetime of the formed CytN3+HCOOH complex (τ = 8.33 × 10-9 s) is almost one order of magnitude larger than the time required for the replication machinery to forcibly dissociate a base pair into the monomers during DNA replication (several ns), which is further dissociated into the CytN3+ and HCOOH monomers. The results of the present study demonstrate the feasibility of acid catalysis for DNA base isomerization reactions that would otherwise be forbidden.
Collapse
Affiliation(s)
- Lingxia Jin
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi Sci-Tech University, Hanzhong 723001, China.
| | - Mengdan Lv
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi Sci-Tech University, Hanzhong 723001, China.
| | - Mengting Zhao
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi Sci-Tech University, Hanzhong 723001, China.
| | - Rui Wang
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi Sci-Tech University, Hanzhong 723001, China.
| | - Caibin Zhao
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi Sci-Tech University, Hanzhong 723001, China.
| | - Jiufu Lu
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi Sci-Tech University, Hanzhong 723001, China.
| | - Ling Wang
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi Sci-Tech University, Hanzhong 723001, China.
| | - Wenliang Wang
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Yawen Wei
- Institute of publication Science, Chang'an University, Xi'an 710064, China
| |
Collapse
|
10
|
Brovarets’ OO, Hovorun DM. Atomistic mechanisms of the double proton transfer in the H-bonded nucleobase pairs: QM/QTAIM computational lessons. J Biomol Struct Dyn 2018; 37:1880-1907. [DOI: 10.1080/07391102.2018.1467795] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Ol’ha O. Brovarets’
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine , Kyiv, Ukraine
- Department of Molecular Biotechnology and Bioinformatics, Institute of High Technologies, Taras Shevchenko National University of Kyiv , Kyiv, Ukraine
| | - Dmytro M. Hovorun
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine , Kyiv, Ukraine
- Department of Molecular Biotechnology and Bioinformatics, Institute of High Technologies, Taras Shevchenko National University of Kyiv , Kyiv, Ukraine
| |
Collapse
|
11
|
Jin L, Song X, Cao Z, Luo L, Zhao C, Lu J, Zhang Q. The isomerization of cytosine: Intramolecular hydrogen atom transfer mediated through formic acid. J PHYS ORG CHEM 2018. [DOI: 10.1002/poc.3831] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Lingxia Jin
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science; Shaanxi University of Technology; Hanzhong China
| | - Xiaoling Song
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science; Shaanxi University of Technology; Hanzhong China
| | - Zhe Cao
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science; Shaanxi University of Technology; Hanzhong China
| | - LiYang Luo
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science; Shaanxi University of Technology; Hanzhong China
| | - Caibin Zhao
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science; Shaanxi University of Technology; Hanzhong China
| | - Jiufu Lu
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science; Shaanxi University of Technology; Hanzhong China
| | - Qiang Zhang
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science; Shaanxi University of Technology; Hanzhong China
| |
Collapse
|
12
|
Brovarets' OO, Tsiupa KS, Hovorun DM. Surprising Conformers of the Biologically Important A·T DNA Base Pairs: QM/QTAIM Proofs. Front Chem 2018; 6:8. [PMID: 29536003 PMCID: PMC5835050 DOI: 10.3389/fchem.2018.00008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 01/11/2018] [Indexed: 11/22/2022] Open
Abstract
For the first time novel high-energy conformers-A·T(wWC) (5.36), A·T(wrWC) (5.97), A·T(wH) (5.78), and A·T(wrH) (ΔG = 5.82 kcal·mol-1) (See Graphical Abstract) were revealed for each of the four biologically important A·T DNA base pairs - Watson-Crick A·T(WC), reverse Watson-Crick A·T(rWC), Hoogsteen A·T(H) and reverse Hoogsteen A·T(rH) at the MP2/aug-cc-pVDZ//B3LYP/6-311++G(d,p) level of quantum-mechanical theory in the continuum with ε = 4 under normal conditions. Each of these conformers possesses substantially non-planar wobble (w) structure and is stabilized by the participation of the two anti-parallel N6H/N6H'…O4/O2 and N3H…N6 H-bonds, involving the pyramidalized amino group of the A DNA base as an acceptor and a donor of the H-bonding. The transition states - TSA·T(WC)↔A·T(wWC), TSA·T(rWC)↔A·T(wrWC), TSA·T(H)↔A·T(wH), and TSA·T(rH)↔A·T(wrH), controlling the dipole-active transformations of the conformers from the main plane-symmetric state into the high-energy, significantly non-planar state and vice versa, were localized. They also possess wobble structures similarly to the high-energy conformers and are stabilized by the participation of the N6H/N6H'…O4/O2 and N3H…N6 H-bonds. Discovered conformers of the A·T DNA base pairs are dynamically stable short-lived structures [lifetime τ = (1.4-3.9) ps]. Their possible biological significance and future perspectives have been briefly discussed.
Collapse
Affiliation(s)
- Ol'ha O. Brovarets'
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Department of Molecular Biotechnology and Bioinformatics, Institute of High Technologies, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Kostiantyn S. Tsiupa
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Dmytro M. Hovorun
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Department of Molecular Biotechnology and Bioinformatics, Institute of High Technologies, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| |
Collapse
|
13
|
Brovarets' OO, Tsiupa KS, Hovorun DM. The A·T(rWC)/A·T(H)/A·T(rH) ↔ A·T*(rwWC)/A·T*(wH)/A·T*(rwH) mutagenic tautomerization via sequential proton transfer: a QM/QTAIM study. RSC Adv 2018; 8:13433-13445. [PMID: 35542561 PMCID: PMC9079753 DOI: 10.1039/c8ra01446a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 03/23/2018] [Indexed: 12/14/2022] Open
Abstract
In this study for the first time we have revealed by QM and QTAIM calculations at the MP2/aug-cc-pVDZ//B3LYP/6-311++G(d,p) level of QM theory the novel routes of the mutagenic tautomerization of three biologically important A·T DNA base pairs – reverse Watson–Crick A·T(rWC), Hoogsteen A·T(H) and reverse Hoogsteen A·T(rH) – followed by their rebuilding into the wobble (w) A·T*(rwWC), A·T*(wH) and A·T*(rwH) base mispairs by the participation of the mutagenic tautomers of the DNA bases (denoted by asterisk) and vice versa, thus complementing the physico-chemical property of the canonical A·T(WC) Watson–Crick DNA base pair reported earlier (Brovarets' et al., RSC Adv., 2015, 5, 99594–99605). These non-dissociative tautomeric transformations in the classical A·T(rWC), A·T(H) and A·T(rH) DNA base pairs proceed similarly to the canonical A·T(WC) DNA base pair via the intrapair sequential proton transfer with shifting towards major or minor grooves of DNA followed by further double proton transfer along the intermolecular H-bonds and are controlled by the plane symmetric and highly stable transition states – tight ion pairs formed by the A+ nucleobase, protonated by the N1/N7 nitrogen atoms, and T− nucleobase, deprotonated by the N3H imino group. Comparison of the estimated populations of the tautomerised states (10−21 to 10−14) with similar characteristics for the canonical A·T(WC) DNA base pair (10−8 to 10−7) leads authors to the conclusion, that only a base pair with WC architecture can be a building block of the DNA macromolecule as a genetic material, which is able for the evolutionary self-development. Among all four classical DNA base pairs, only A·T(WC) DNA base pair can ensure the proper rate of the spontaneous point errors of replication in DNA. We discovered tautomeric wobbling of the classical A·T DNA base pairs. This data evidence, that only a base pair with Watson–Crick architecture can be a building block of the DNA macromolecule as a genetic material, which is able for the evolutionary self-development.![]()
Collapse
Affiliation(s)
- Ol'ha O. Brovarets'
- Department of Molecular and Quantum Biophysics
- Institute of Molecular Biology and Genetics
- National Academy of Sciences of Ukraine
- 03680 Kyiv
- Ukraine
| | - Kostiantyn S. Tsiupa
- Department of Molecular and Quantum Biophysics
- Institute of Molecular Biology and Genetics
- National Academy of Sciences of Ukraine
- 03680 Kyiv
- Ukraine
| | - Dmytro M. Hovorun
- Department of Molecular and Quantum Biophysics
- Institute of Molecular Biology and Genetics
- National Academy of Sciences of Ukraine
- 03680 Kyiv
- Ukraine
| |
Collapse
|
14
|
Abdalla S, Obaid A, Al-Marzouki FM. Effects of Environmental Factors and Metallic Electrodes on AC Electrical Conduction Through DNA Molecule. NANOSCALE RESEARCH LETTERS 2017; 12:316. [PMID: 28454482 PMCID: PMC5407417 DOI: 10.1186/s11671-017-2076-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 04/13/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Deoxyribonucleic acid (DNA) is one of the best candidate materials for various device applications such as in electrodes for rechargeable batteries, biosensors, molecular electronics, medical- and biomedical-applications etc. Hence, it is worthwhile to examine the mechanism of charge transport in the DNA molecule, however, still a question without a clear answer is DNA a molecular conducting material (wire), semiconductor, or insulator? The answer, after the published data, is still ambiguous without any confirmed and clear scientific answer. DNA is found to be always surrounded with different electric charges, ions, and dipoles. These surrounding charges and electric barrier(s) due to metallic electrodes (as environmental factors (EFs)) play a substantial role when measuring the electrical conductivity through λ-double helix (DNA) molecule suspended between metallic electrodes. We found that strong frequency dependence of AC-complex conductivity comes from the electrical conduction of EFs. This leads to superimposing serious incorrect experimental data to measured ones. METHODS At 1 MHz, we carried out a first control experiment on electrical conductivity with and without the presence of DNA molecule. If there are possible electrical conduction due to stray ions and contribution of substrate, we will detected them. This control experiment revealed that there is an important role played by the environmental-charges around DNA molecule and any experiment should consider this role. RESULTS AND DISCUSSION We have succeeded to measure both electrical conductivity due to EFs (σ ENV) and electrical conductivity due to DNA molecule (σ DNA) independently by carrying the measurements at different DNA-lengths and subtracting the data. We carried out measurements as a function of frequency (f) and temperature (T) in the ranges 0.1 Hz < f < 1 MHz and 288 K < T < 343 K. The measured conductivity (σ MES) portrays a metal-like behavior at high frequencies near 1 MHz. However, we found that σ DNA was far from this behavior because the conduction due to EFs superimposes σ DNA, in particular at low frequencies. By measuring the electrical conductivity at different lengths: 40, 60, 80, and 100 nm, we have succeeded not only to separate the electrical conduction of the DNA molecule from all EFs effects that surround the molecule, but also to present accurate values of σ DNA and the dielectric constant of the molecule ε'DNA as a function of temperature and frequency. Furthermore, in order to explain these data, we present a model describing the electrical conduction through DNA molecule: DNA is a classical semiconductor with charges, dipoles and ions that result in creation of localized energy-states (LESs) in the extended bands and in the energy gap of the DNA molecule. CONCLUSIONS This model explains clearly the mechanism of charge transfer mechanism in the DNA, and it sheds light on why the charge transfer through the DNA can lead to insulating, semiconducting, or metallic behavior on the same time. The model considers charges on DNA, in the extended bands, either could be free to move under electric field or localized in potential wells/hills. Localization of charges in DNA is an intrinsic structural-property of this solitaire molecule. At all temperatures, the expected increase in thermal-induced charge is attributed to the delocalization of holes (or/and electrons) in potential hills (or/and potential wells) which accurately accounts for the total electric and dielectric behavior through DNA molecule. We succeeded to fit the experimental data to the proposed model with reasonable magnitudes of potential hills/wells that are in the energy range from 0.068 eV.
Collapse
Affiliation(s)
- S. Abdalla
- Department of Physics, Faculty of Science, King Abdulaziz University Jeddah, P.O. Box 80203, Jeddah, 21589 Saudi Arabia
| | - A. Obaid
- Department of Chemistry, Faculty of Science, King Abdulaziz University Jeddah, P.O. Box 80203, Jeddah, 21589 Saudi Arabia
| | - F. M. Al-Marzouki
- Department of Physics, Faculty of Science, King Abdulaziz University Jeddah, P.O. Box 80203, Jeddah, 21589 Saudi Arabia
| |
Collapse
|
15
|
Ebrahimi S, Dabbagh HA, Eskandari K. Arrangement and nature of intermolecular hydrogen bonding in complex biomolecular systems: modeling the vitamin C---L-alanine interaction. Struct Chem 2017. [DOI: 10.1007/s11224-017-1046-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Radhika R, Shankar R, Vijayakumar S, Kolandaivel P. Role of 6-Mercaptopurine in the potential therapeutic targets DNA base pairs and G-quadruplex DNA: insights from quantum chemical and molecular dynamics simulations. J Biomol Struct Dyn 2017; 36:1369-1401. [PMID: 28436311 DOI: 10.1080/07391102.2017.1323013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The theoretical studies on DNA with the anticancer drug 6-Mercaptopurine (6-MP) are investigated using theoretical methods to shed light on drug designing. Among the DNA base pairs considered, 6-MP is stacked with GC with the highest interaction energy of -46.19 kcal/mol. Structural parameters revealed that structure of the DNA base pairs is deviated from the planarity of the equilibrium position due to the formation of hydrogen bonds and stacking interactions with 6-MP. These deviations are verified through the systematic comparison between X-H bond contraction and elongation and the associated blue shift and red shift values by both NBO analysis and vibrational analysis. Bent's rule is verified for the C-H bond contraction in the 6-MP interacted base pairs. The AIM results disclose that the higher values of electron density (ρ) and Laplacian of electron density (∇2ρ) indicate the increased overlap between the orbitals that represent the strong interaction and positive values of the total electron density show the closed-shell interaction. The relative sensitivity of the chemical shift values for the DNA base pairs with 6-MP is investigated to confirm the hydrogen bond strength. Molecular dynamics simulation studies of G-quadruplex DNA d(TGGGGT)4 with 6-MP revealed that the incorporation of 6-MP appears to cause local distortions and destabilize the G-quadruplex DNA.
Collapse
Affiliation(s)
- R Radhika
- a Department of Physics , Bharathiar University , Coimbatore , India
| | - R Shankar
- a Department of Physics , Bharathiar University , Coimbatore , India
| | - S Vijayakumar
- b Department of Medical Physics , Bharathiar University , Coimbatore , India
| | - P Kolandaivel
- a Department of Physics , Bharathiar University , Coimbatore , India
| |
Collapse
|
17
|
Shi Y, Jiang W, Zhang Z, Wang Z. Cooperative vibrational properties of hydrogen bonds in Watson–Crick DNA base pairs. NEW J CHEM 2017. [DOI: 10.1039/c7nj03088f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
For the AT pair, Symst and Strech peaks further shift toward the red, giving the H-bonds an amplified effect (orange arrows).
Collapse
Affiliation(s)
- Yulei Shi
- Beijing Key Laboratory for Terahertz Spectroscopy and Imaging
- Key Laboratory of Terahertz Optoelectronics
- Ministry of Education
- Department of Physics
- Capital Normal University
| | - Wanrun Jiang
- Institute of Atomic and Molecular Physics
- Jilin University
- Changchun 130012
- China
| | - Zhiyuan Zhang
- Institute of Atomic and Molecular Physics
- Jilin University
- Changchun 130012
- China
| | - Zhigang Wang
- Institute of Atomic and Molecular Physics
- Jilin University
- Changchun 130012
- China
- Institute of Theoretical Chemistry
| |
Collapse
|
18
|
Brovarets' OO, Voiteshenko IS, Pérez-Sánchez H, Hovorun DM. A QM/QTAIM research under the magnifying glass of the DPT tautomerisation of the wobble mispairs involving 2-aminopurine. NEW J CHEM 2017. [DOI: 10.1039/c7nj00717e] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, a comprehensive survey of the changes of the physico-chemical parameters at each point of the IRC for the biologically important T·2AP*(w) ↔ T*·2AP(w) and G·2AP*(w) ↔ G*·2AP(w) DPT tautomerisation reactions involved in the point mutations (transitions and transversions) induced by 2-aminopurine (2AP) in DNA is provided.
Collapse
Affiliation(s)
- Ol'ha O. Brovarets'
- Department of Molecular and Quantum Biophysics
- Institute of Molecular Biology and Genetics
- National Academy of Sciences of Ukraine
- 03680 Kyiv
- Ukraine
| | - Ivan S. Voiteshenko
- Department of Molecular Biotechnology and Bioinformatics
- Institute of High Technologies
- Taras Shevchenko National University of Kyiv
- 03022 Kyiv
- Ukraine
| | - Horacio Pérez-Sánchez
- Computer Science Department
- Bioinformatics and High Performance Computing (BIO-HPC) Research Group
- Universidad Católica San Antonio de Murcia (UCAM)
- 30107 Guadalupe (Murcia)
- Spain
| | - Dmytro M. Hovorun
- Department of Molecular and Quantum Biophysics
- Institute of Molecular Biology and Genetics
- National Academy of Sciences of Ukraine
- 03680 Kyiv
- Ukraine
| |
Collapse
|
19
|
Brovarets' OO, Pérez-Sánchez H. Whether 2-aminopurine induces incorporation errors at the DNA replication? A quantum-mechanical answer on the actual biological issue. J Biomol Struct Dyn 2016; 35:3398-3411. [PMID: 27794627 DOI: 10.1080/07391102.2016.1253504] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In this paper, we consider the mutagenic properties of the 2-aminopurine (2AP), which has intrigued molecular biologists, biophysicists and physical chemists for a long time and been widely studied by both experimentalists and theorists. We have shown for the first time using QM calculations, that 2AP very effectively produces incorporation errors binding with cytosine (C) into the wobble (w) C·2AP(w) mispair, which is supported by the N4H⋯N1 and N2H⋯N3 H-bonds and is tautomerized into the Watson-Crick (WC)-like base mispair C*·2AP(WC) (asterisk denotes the mutagenic tautomer of the base), that quite easily in the process of the thermal fluctuations acquires enzymatically competent conformation. 2AP less effectively produces transversions forming the wobble mispair with A base - A·2AP(w), stabilized by the participation of the N6H⋯N1 and N2H⋯N1 H-bonds, followed by further tautomerization A·2AP(w) → A*·2AP(WC) and subsequent conformational transition A*·2AP(WC) → A*·2APsyn thus acquiring enzymatically competent structure. In this case, incorporation errors occur only in those case, when 2AP belongs to the incoming nucleotide. Thus, answering the question posed in the title of the article, we affirm for certain that 2AP induces incorporation errors at the DNA replication. Obtained results are consistent well with numerous experimental data.
Collapse
Affiliation(s)
- Ol'ha O Brovarets'
- a Department of Molecular and Quantum Biophysics , Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine , 150 Akademika Zabolotnoho Str., Kyiv 03680 , Ukraine.,b Department of Molecular Biotechnology and Bioinformatics , Institute of High Technologies, Taras Shevchenko National University of Kyiv , 2-h Akademika Hlushkova Ave., Kyiv 03022 , Ukraine
| | - Horacio Pérez-Sánchez
- c Computer Science Department, Bioinformatics and High Performance Computing (BIO-HPC) Research Group , Universidad Católica San Antonio de Murcia (UCAM) , Murcia 30107 , Spain
| |
Collapse
|
20
|
Palanivel U, Lakshmipathi S. Hydrogen bonds in Zif268 proteins – a theoretical perspective. J Biomol Struct Dyn 2016; 34:1607-24. [DOI: 10.1080/07391102.2015.1085903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Umadevi Palanivel
- Department of Physics, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | | |
Collapse
|
21
|
Brovarets' OO, Hovorun DM. A novel conception for spontaneous transversions caused by homo-pyrimidine DNA mismatches: a QM/QTAIM highlight. Phys Chem Chem Phys 2016. [PMID: 26219928 DOI: 10.1039/c5cp03211c] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We have firstly shown that the T·T(w) and C·C(w) DNA mismatches with wobble (w) geometry stay in slow tautomeric equilibrium with short T·T*(WC) and C·C*(WC) Watson-Crick (WC) mispairs. These non-dissociative tautomeric rearrangements are controlled by the plane-symmetric, highly stable, highly polar and zwitterionic transition states. The obtained results allow us to understand in what way the T·T(w) and C·C(w) mismatches acquire enzymatically competent T·T*(WC) and C·C*(WC) conformations directly in the hydrophobic recognition pocket of a high-fidelity DNA-polymerase, thereby producing thermodynamically non-equilibrium spontaneous transversions. The simplest numerical estimation of the frequency ratio of the TT to CC spontaneous transversions satisfactorily agrees with experimental data.
Collapse
Affiliation(s)
- Ol'ha O Brovarets'
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Akademika Zabolotnoho Str., 03680 Kyiv, Ukraine.
| | | |
Collapse
|
22
|
Brovarets' OO, Hovorun DM. Tautomeric transition between wobble A·C DNA base mispair and Watson-Crick-like A·C* mismatch: microstructural mechanism and biological significance. Phys Chem Chem Phys 2016; 17:15103-10. [PMID: 25994250 DOI: 10.1039/c5cp01568e] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Here, we use MP2/DFT quantum-chemical methods combined with Quantum Theory of Atoms in Molecules to study the tautomeric transition between wobble A·C(w) mismatch and Watson-Crick-like A·C*(WC) base mispair, proceeding non-dissociatively via sequential proton transfer between bases through the planar, highly stable and zwitterionic TS(A∙C-)(A∙C(W)<-->A∙C&(WC)) transition state joined by the participation of (A)N6(+)H∙∙∙N4(-)(C), (A)N1(+)H∙∙∙N4(-)(C) and (A)C2(+)H∙∙∙N3(-)(C) H-bonds. Notably, the A·C(w) ↔ A·C*(WC) tautomerization reaction is accompanied by 10 unique patterns of the specific intermolecular interactions that consistently replace each other. Our data suggest that biologically significant A·C(w) → A·C*(WC) tautomerization is a kinetically controlled pathway for formation of the enzymatically competent Watson-Crick-like A·C*(WC) DNA base mispair in the essentially hydrophobic recognition pocket of the high-fidelity DNA-polymerase, responsible for the occurrence of spontaneous point AC/CA incorporation errors during DNA biosynthesis.
Collapse
Affiliation(s)
- Ol'ha O Brovarets'
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Akademika Zabolotnoho Str., 03680 Kyiv, Ukraine.
| | | |
Collapse
|
23
|
Tolosa S, Hidalgo A, Sansón JA. Theoretical study of enzymatically catalyzed tautomerization of carbon acids in aqueous solution: quantum calculations and steered molecular dynamics simulations. J Mol Model 2016; 22:44. [PMID: 26815031 DOI: 10.1007/s00894-016-2914-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 01/11/2016] [Indexed: 10/22/2022]
Abstract
The thermodynamics and kinetics of enzymatically assisted reactions of carbon acids were studied theoretically in this work. Quantum electronic (QE) structure calculations and steered molecular dynamics (SMD) simulations were carried out. Three 3-butenal tautomerization reactions that proceed from the β,γ-unsaturated reactant (R) to the α,β-unsaturated carbon acid product (P) and occur in two elementary steps through an intermediate (I) were studied, ignoring or including the surrounding aqueous medium in the calculations. The Gibbs free energies of activation of the R ⇆ I enolization and I ⇆ P ketonization steps were found to decrease considerably when residues simulating enzymes were introduced into these processes. Although the processes became slightly more favorable thermodynamically when the solution was included in the simulations, they became less favorable kinetically. The results from SMD simulations of these reactions were qualitatively consistent with the values we obtained using QE as well as those found by other authors in similar studies. Our simulations also allowed us to perform a detailed study of these reactions in solution.
Collapse
Affiliation(s)
- Santiago Tolosa
- Departamento de Ingeniería Química y Química Física, Universidad de Extremadura, Avda. Elvas s/n, 06071, Badajoz, Spain.
| | - Antonio Hidalgo
- Departamento de Ingeniería Química y Química Física, Universidad de Extremadura, Avda. Elvas s/n, 06071, Badajoz, Spain
| | - Jorge A Sansón
- Departamento de Ingeniería Química y Química Física, Universidad de Extremadura, Avda. Elvas s/n, 06071, Badajoz, Spain
| |
Collapse
|
24
|
Jana K, Ganguly B. In silico studies with substituted adenines to achieve a remarkable stability of mispairs with thymine nucleobase. NEW J CHEM 2016. [DOI: 10.1039/c5nj02311d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The modified adenine and thymine mispair achieves a remarkable stability, which can presumably help the DNA lesions to be less cytotoxic.
Collapse
Affiliation(s)
- Kalyanashis Jana
- Computation and Simulation Unit (Analytical Discipline and Centralized Instrument Facility)
- CSIR – Central Salt and Marine Chemicals Research Institute
- Bhavnagar – 364002
- India
- Academy of Scientific and Innovative Research
| | - Bishwajit Ganguly
- Computation and Simulation Unit (Analytical Discipline and Centralized Instrument Facility)
- CSIR – Central Salt and Marine Chemicals Research Institute
- Bhavnagar – 364002
- India
- Academy of Scientific and Innovative Research
| |
Collapse
|
25
|
Brovarets' OO, Pérez-Sánchez H. Whether the amino–imino tautomerism of 2-aminopurine is involved into its mutagenicity? Results of a thorough QM investigation. RSC Adv 2016. [DOI: 10.1039/c6ra24277d] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
2AP* mutagenic tautomer is able to induce only one incorporation error – transversion – by pairing through the H-bonds into the G·2AP* mispair.
Collapse
Affiliation(s)
- Ol'ha O. Brovarets'
- Department of Molecular and Quantum Biophysics
- Institute of Molecular Biology and Genetics
- National Academy of Sciences of Ukraine
- 03680 Kyiv
- Ukraine
| | - Horacio Pérez-Sánchez
- Computer Science Department
- Bioinformatics and High Performance Computing (BIO-HPC) Research Group
- Universidad Católica San Antonio de Murcia (UCAM)
- Murcia
- Spain
| |
Collapse
|
26
|
Brovarets' OO, Pérez-Sánchez H, Hovorun DM. Structural grounds for the 2-aminopurine mutagenicity: a novel insight into the old problem of the replication errors. RSC Adv 2016. [DOI: 10.1039/c6ra17787e] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mutagenic pressure of the 2AP molecule on DNA during its replication is realized via the more intensive generation of the T* mutagenic tautomers through the reaction 2AP·T(WC) → 2AP·T*(w).
Collapse
Affiliation(s)
- Ol'ha O. Brovarets'
- Department of Molecular and Quantum Biophysics
- Institute of Molecular Biology and Genetics
- National Academy of Sciences of Ukraine
- 03680 Kyiv
- Ukraine
| | - Horacio Pérez-Sánchez
- Computer Science Department
- Bioinformatics and High Performance Computing (BIO-HPC) Research Group
- Universidad Católica San Antonio de Murcia (UCAM)
- Murcia
- Spain
| | - Dmytro M. Hovorun
- Department of Molecular and Quantum Biophysics
- Institute of Molecular Biology and Genetics
- National Academy of Sciences of Ukraine
- 03680 Kyiv
- Ukraine
| |
Collapse
|
27
|
By how many tautomerisation routes the Watson–Crick-like A·C* DNA base mispair is linked with the wobble mismatches? A QM/QTAIM vision from a biological point of view. Struct Chem 2015. [DOI: 10.1007/s11224-015-0687-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Das D, Dutta A, Mondal P. Interaction of aquated form of ruthenium(III) anticancer complexes with normal and mismatch base pairs: A density functional theoretical study. COMPUT THEOR CHEM 2015. [DOI: 10.1016/j.comptc.2015.08.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Brovarets' OO, Hovorun DM. Proton tunneling in the A∙T Watson-Crick DNA base pair: myth or reality? J Biomol Struct Dyn 2015; 33:2716-20. [PMID: 26362836 DOI: 10.1080/07391102.2015.1092886] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The results and conclusions reached by Godbeer et al. in their recent work, that proton tunneling in the A∙T(WC) Watson-Crick (WC) DNA base pair occurs according to the Löwdin's (L) model, but with a small (~10(-9)) probability were critically analyzed. Here, it was shown that this finding overestimates the possibility of the proton tunneling at the A∙T(WC)↔A*∙T*(L) tautomerization, because this process cannot be implemented as a chemical reaction. Furthermore, it was outlined those biologically important nucleobase mispairs (A∙A*↔A*∙A, G∙G*↔G*∙G, T∙T*↔T*∙T, C∙C*↔C*∙C, H∙H*↔H*∙H (H - hypoxanthine)) - the players in the field of the spontaneous point mutagenesis - where the tunneling of protons is expected and for which the application of the model proposed by Godbeer et al. can be productive.
Collapse
Affiliation(s)
- Ol'ha O Brovarets'
- a Department of Molecular and Quantum Biophysics , Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine , 150 Akademika Zabolotnoho Str., 03680 Kyiv , Ukraine.,b Department of Molecular Biotechnology and Bioinformatics , Institute of High Technologies, Taras Shevchenko National University of Kyiv , 2-h Akademika Hlushkova Ave., 03022 Kyiv , Ukraine
| | - Dmytro M Hovorun
- a Department of Molecular and Quantum Biophysics , Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine , 150 Akademika Zabolotnoho Str., 03680 Kyiv , Ukraine.,b Department of Molecular Biotechnology and Bioinformatics , Institute of High Technologies, Taras Shevchenko National University of Kyiv , 2-h Akademika Hlushkova Ave., 03022 Kyiv , Ukraine
| |
Collapse
|
30
|
Masoodi HR, Bagheri S, Abareghi M. The effects of tautomerization and protonation on the adenine-cytosine mismatches: a density functional theory study. J Biomol Struct Dyn 2015. [PMID: 26198186 DOI: 10.1080/07391102.2015.1072734] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In the present work, we demonstrate the results of a theoretical study concerned with the question how tautomerization and protonation of adenine affect the various properties of adenine-cytosine mismatches. The calculations, in gas phase and in water, are performed at B3LYP/6-311++G(d,p) level. In gas phase, it is observed that any tautomeric form of investigated mismatches is more stabilized when adenine is protonated. As for the neutral mismatches, the mismatches containing amino form of cytosine and imino form of protonated adenine are more stable. The role of aromaticity on the stability of tautomeric forms of mismatches is investigated by NICS(1)ZZ index. The stability of mispairs decreases by going from gas phase to water. It can be explained using dipole moment parameter. The influence of hydrogen bonds on the stability of mismatches is examined by atoms in molecules and natural bond orbital analyses. In addition to geometrical parameters and binding energies, the study of the topological properties of electron charge density aids in better understanding of these mispairs.
Collapse
Affiliation(s)
- Hamid Reza Masoodi
- a Faculty of Science, Department of Chemistry , Vali-e-Asr University of Rafsanjan , P.O. Box 77176, Rafsanjan , Iran
| | - Sotoodeh Bagheri
- a Faculty of Science, Department of Chemistry , Vali-e-Asr University of Rafsanjan , P.O. Box 77176, Rafsanjan , Iran
| | - Mahsa Abareghi
- a Faculty of Science, Department of Chemistry , Vali-e-Asr University of Rafsanjan , P.O. Box 77176, Rafsanjan , Iran
| |
Collapse
|
31
|
Li H, Zhang L, Zhou H, Wang Y, Fan X. Theoretical studies on the single proton transfer process in adenine base. J PHYS ORG CHEM 2015. [DOI: 10.1002/poc.3479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Huifang Li
- Key Laboratory of Organo-Pharmaceutical Chemistry; Gannan Normal University; Ganzhou 341000 PR China
| | - Lisheng Zhang
- Key Laboratory of Organo-Pharmaceutical Chemistry; Gannan Normal University; Ganzhou 341000 PR China
| | - Hui Zhou
- Key Laboratory of Organo-Pharmaceutical Chemistry; Gannan Normal University; Ganzhou 341000 PR China
| | - Yanfei Wang
- Key Laboratory of Organo-Pharmaceutical Chemistry; Gannan Normal University; Ganzhou 341000 PR China
| | - Xiaolin Fan
- Key Laboratory of Organo-Pharmaceutical Chemistry; Gannan Normal University; Ganzhou 341000 PR China
- Material and Chemical Engineering Department; Pingxiang University; Pingxiang 337055 PR China
| |
Collapse
|
32
|
|
33
|
|
34
|
Brovarets' OO, Hovorun DM. How many tautomerization pathways connect Watson-Crick-like G*·T DNA base mispair and wobble mismatches? J Biomol Struct Dyn 2015; 33:2297-315. [PMID: 25932960 DOI: 10.1080/07391102.2015.1046936] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In this study, we have theoretically demonstrated the intrinsic ability of the wobble G·T(w)/G*·T*(w)/G·T(w1)/G·T(w2) and Watson-Crick-like G*·T(WC) DNA base mispairs to interconvert into each other via the DPT tautomerization. We have established that among all these transitions, only one single G·T(w) ↔ G*·T(WC) pathway is eligible from a biological perspective. It involves short-lived intermediate - the G·T*(WC) base mispair - and is governed by the planar, highly stable, and zwitterionic [Formula: see text] transition state stabilized by the participation of the unique pattern of the five intermolecular O6(+)H⋯O4(-), O6(+)H⋯N3(-), N1(+)H⋯N3(-), N1(+)H⋯O2(-), and N2(+)H⋯O2(-) H-bonds. This non-dissociative G·T(w) ↔ G*·T(WC) tautomerization occurs without opening of the pair: Bases within mispair remain connected by 14 different patterns of the specific intermolecular interactions that successively change each other along the IRC. Novel kinetically controlled mechanism of the thermodynamically non-equilibrium spontaneous point GT/TG incorporation errors has been suggested. The mutagenic effect of the analogues of the nucleotide bases, in particular 5-bromouracil, can be attributed to the decreasing of the barrier of the acquisition by the wobble pair containing these compounds of the enzymatically competent Watson-Crick's geometry via the intrapair mutagenic tautomerization directly in the essentially hydrophobic recognition pocket of the replication DNA-polymerase machinery. Proposed approaches are able to explain experimental data, namely growth of the rate of the spontaneous point incorporation errors during DNA biosynthesis with increasing temperature.
Collapse
Affiliation(s)
- Ol'ha O Brovarets'
- a Department of Molecular and Quantum Biophysics , Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine , 150 Akademika Zabolotnoho Str., Kyiv 03680 , Ukraine.,b Department of Molecular Biotechnology and Bioinformatics , Institute of High Technologies, Taras Shevchenko National University of Kyiv , 2-h Akademika Hlushkova Ave., Kyiv 03022 , Ukraine
| | - Dmytro M Hovorun
- a Department of Molecular and Quantum Biophysics , Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine , 150 Akademika Zabolotnoho Str., Kyiv 03680 , Ukraine.,b Department of Molecular Biotechnology and Bioinformatics , Institute of High Technologies, Taras Shevchenko National University of Kyiv , 2-h Akademika Hlushkova Ave., Kyiv 03022 , Ukraine
| |
Collapse
|
35
|
Brovarets' OO, Hovorun DM. How does the long G·G* Watson-Crick DNA base mispair comprising keto and enol tautomers of the guanine tautomerise? The results of a QM/QTAIM investigation. Phys Chem Chem Phys 2015; 16:15886-99. [PMID: 24964351 DOI: 10.1039/c4cp01241k] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The double proton transfer (DPT) in the long G·G* Watson-Crick base mispair (|C6N1(G*)N1C6(G)| = 36.4°; C1 symmetry), involving keto and enol tautomers of the guanine (G) nucleobase, along two intermolecular neighboring O6H···O6 (8.39) and N1···HN1 (6.14 kcal mol(-1)) H-bonds that were established to be slightly anti-cooperative, leads to its transformation into the G*·G base mispair through a single transition state (|C6N1N1C6| = 37.1°; C1), namely to the interconversion into itself. It was shown that the G·G* ↔ G*·G tautomerisation via the DPT is assisted by the third specific contact, that sequentially switches along the intrinsic reaction coordinate (IRC) in an original way: (G)N2H···N2(G*) H-bond (-25.13 to -10.37) → N2···N2 van der Waals contact (-10.37 to -9.23) → (G)N2···HN2(G*) H-bond (-9.23 to 0.79) → (G*)N2···HN2(G) H-bond (0.79 to 7.35 Bohr). The DPT tautomerisation was found to proceed through the asynchronous concerted mechanism by employing the QM/QTAIM approach and the methodology of the scans of the geometric, electron-topological, energetic, polar and NBO properties along the IRC. Nine key points, that can be considered as part of the tautomerisation repertoire, have been established and analyzed in detail. Furthermore, it was shown that the G·G* or G*·G base mispair is a thermodynamically and dynamically stable structure with a lifetime of 8.22 × 10(-10) s and all 6 low-frequency intermolecular vibrations are able to develop during this time span. Lastly, our results highlight the importance of the G·G* ↔ G*·G DPT tautomerisation, which can have implications for biological and chemical sensing applications.
Collapse
Affiliation(s)
- Ol'ha O Brovarets'
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Akademika Zabolotnoho Str., 03680 Kyiv, Ukraine.
| | | |
Collapse
|
36
|
Arba M, Kartasasmita RE, Tjahjono DH. Molecular docking and dynamics simulations on the interaction of cationic porphyrin-anthraquinone hybrids with DNA G-quadruplexes. J Biomol Struct Dyn 2015; 34:427-38. [PMID: 25808513 DOI: 10.1080/07391102.2015.1033015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A series of cationic porphyrin-anthraquinone hybrids bearing either pyridine, imidazole, or pyrazole rings at the meso-positions have been investigated for their interaction with DNA G-quadruplexes by employing molecular docking and molecular dynamics simulations. Three types of DNA G-quadruplexes were utilized, which comprise parallel, antiparallel, and mixed hybrid topologies. The porphyrin hybrids have a preference to bind with parallel and mixed hybrid structures compared to the antiparallel structure. This preference arises from the end stacking of porphyrin moiety following G-stem and loop binding of anthraquinone tail, which is not found in the antiparallel due to the presence of diagonal and lateral loops that crowd the G-quartet. The binding to the antiparallel, instead, occurred with poorer affinity through both the loop and wide groove. All sites of porphyrin binding were confirmed by 6 ns molecular dynamics simulation, as well as by the negative value of the total binding free energies that were calculated using the MMPBSA method. Free energy analysis shows that the favorable contribution came from the electrostatic term, which supposedly originated from the interaction of either cationic pyridinium, pyrazole, or imidazole groups and the anionic phosphate backbone, and also from the van der Waals energy, which primarily contributed through end stacking interaction.
Collapse
Affiliation(s)
- Muhammad Arba
- a School of Pharmacy , Bandung Institute of Technology , Jalan Ganesha 10, Bandung 40132 , Indonesia.,b Department of Chemistry , Halu Oleo University , Jl. HEA Mokodompit, Kendari 93232 , Indonesia
| | - Rahmana E Kartasasmita
- a School of Pharmacy , Bandung Institute of Technology , Jalan Ganesha 10, Bandung 40132 , Indonesia
| | - Daryono H Tjahjono
- a School of Pharmacy , Bandung Institute of Technology , Jalan Ganesha 10, Bandung 40132 , Indonesia
| |
Collapse
|
37
|
Brovarets' OO, Hovorun DM. DPT tautomerisation of the G·A(syn) and A*·G*(syn) DNA mismatches: a QM/QTAIM combined atomistic investigation. Phys Chem Chem Phys 2015; 16:9074-85. [PMID: 24695821 DOI: 10.1039/c4cp00488d] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
By applying a combined QM and QTAIM atomistic computational approach we have established for the first time that the G·A(syn) and A*·G*(syn) DNA mismatches (rare tautomers are marked with an asterisk), causing spontaneous transversions with substantially various probabilities, radically differ from each other in their ability to tautomerise through the double proton transfer (DPT). The A*·G*(syn) mismatch tautomerises quite easily (ΔΔG(TS) ≈ 4·kT at room temperature) into the A·G*(syn) mismatch through the asynchronous concerted mechanism, whereas the G·A(syn) base mispair does not tautomerise via the DPT at all, since there is no local minimum corresponding to the tautomerised G*·A*(syn) mismatch on the potential energy surface. It was established that the A·G*(syn) base mispair is a dynamically unstable H-bonded complex with an extremely short lifetime of 2.17 × 10(-13) s. Consequently, the obtained results allow us to believe that spontaneous or forced dissociation of both the G·A(syn) and A*·G*(syn) DNA mismatches by the DNA-polymerase occurs with the preservation of the tautomeric status of the bases.
Collapse
Affiliation(s)
- Ol'ha O Brovarets'
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Akademika Zabolotnoho Str., 03680 Kyiv, Ukraine.
| | | |
Collapse
|
38
|
Chi S, Xie W, Zhang J, Xu S. Theoretical insight into the structural mechanism for the binding of vinblastine with tubulin. J Biomol Struct Dyn 2015; 33:2234-54. [PMID: 25588192 DOI: 10.1080/07391102.2014.999256] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Vinblastine (VLB) is one of vinca alkaloids with high cytotoxicity toward cancer cells approved for clinical use. However, because of drug resistance, toxicity, and other side effects caused from the use of VLB, new vinca alkaloids with higher cytotoxicity toward cancer cells and other good qualities need to develop. One strategy is to further study and better understand the essence why VLB possesses the high cytotoxicity toward cancer cells. In present work, by using molecular simulation, molecular docking, density functional calculation, and the crystal structure of α,β-tubulin complex, we find two modes labeled in catharanthine moiety (CM) and vindoline moiety (VM) modes of VLB bound with the interface of α,β-tubulin to probe the essence why VLB has the high cytotoxicity toward cancer cells. In the CM mode, nine key residues B-Ser178, B-Asp179, B-Glu183, B-Tyr210, B-Asp226, C-Lys326, C-Asp327, C-Lys336, and C-Lys352 from the α,β-tubulin complex are determined as the active sites for the interaction of VLB with α,β-tubulin. Some of them such as B-Ser178, B-Glu183, B-Tyr210, B-Asp226, C-Lys326, C-Asp327, and C-Lys336 are newly identified as the active sites in present work. The affinity between VLB and the active pocket within the interface of α,β-tubulin is -60.8 kJ mol(-1) in the CM mode. In the VM mode, that is a new mode established in present paper, nine similar key residues B-Lys176, B-Ser178, B-Asp179, B-Glu183, B-Tyr210, B-Asp226, C-Lys326, C-Asp327, and C-Lys336 from the α,β-tubulin complex are found as the active sites for the interaction with VLB. The difference is from one key residue C-Lys352 in the CM mode changed to the key residue B-Lys176 in the VM mode. The affinity between VLB and the active pocket within the interface of α,β-tubulin is -96.3 kJ mol(-1) in the VM mode. Based on the results obtained in present work, and because VLB looks like two faces, composed of CM and VM both to have similar polar active groups, to interact with the active sites, we suggest double-faces sticking mechanism for the binding of VLB to the interface of α,β-tubulin. The double-faces sticking mechanism can be used to qualitatively explain high cytotoxicity toward cancer cells of vinca alkaloids including vinblastine, vincristine, vindestine, and vinorelbine approved for clinical use and vinflunine still in a phase III clinical trial. Furthermore, this mechanism will be applied to develop novel vinca alkaloids with much higher cytotoxicity toward cancer cells.
Collapse
Affiliation(s)
- Shaoming Chi
- a Key Laboratory of Education Ministry for Medicinal Chemistry of Natural Resource , College of Chemical Science and Technology, Yunnan University , Kunming 650091 , China
| | | | | | | |
Collapse
|
39
|
Kato RB, Silva FT, Pappa GL, Belchior JC. Genetic algorithms coupled with quantum mechanics for refinement of force fields for RNA simulation: a case study of glycosidic torsions in the canonical ribonucleosides. Phys Chem Chem Phys 2015; 17:2703-14. [DOI: 10.1039/c4cp03779k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We report the use of genetic algorithms (GA) as a method to refine force field parameters in order to determine RNA energy.
Collapse
Affiliation(s)
- Rodrigo B. Kato
- Department of Computer Science
- Universidade Federal de Minas Gerais
- Belo Horizonte
- Brazil
| | - Frederico T. Silva
- Department of Chemistry
- Universidade Federal de Minas Gerais
- Belo Horizonte
- Brazil
| | - Gisele L. Pappa
- Department of Computer Science
- Universidade Federal de Minas Gerais
- Belo Horizonte
- Brazil
| | - Jadson C. Belchior
- Department of Chemistry
- Universidade Federal de Minas Gerais
- Belo Horizonte
- Brazil
| |
Collapse
|
40
|
Brovarets’ OO, Hovorun DM. Novel physico-chemical mechanism of the mutagenic tautomerisation of the Watson–Crick-like A·G and C·T DNA base mispairs: a quantum-chemical picture. RSC Adv 2015. [DOI: 10.1039/c5ra11773a] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Novel routes for the mutagenic tautomerisation of the long A·G and short C·T Watson–Crick DNA base mispairs via sequential DPT are reported, pursuing the goal of an estimation of their contribution into spontaneous point replication errors in DNA.
Collapse
Affiliation(s)
- Ol’ha O. Brovarets’
- Department of Molecular and Quantum Biophysics
- Institute of Molecular Biology and Genetics
- National Academy of Sciences of Ukraine
- 03680 Kyiv
- Ukraine
| | - Dmytro M. Hovorun
- Department of Molecular and Quantum Biophysics
- Institute of Molecular Biology and Genetics
- National Academy of Sciences of Ukraine
- 03680 Kyiv
- Ukraine
| |
Collapse
|
41
|
Brovarets’ OO, Yurenko YP, Hovorun DM. The significant role of the intermolecular CH⋯O/N hydrogen bonds in governing the biologically important pairs of the DNA and RNA modified bases: a comprehensive theoretical investigation. J Biomol Struct Dyn 2014; 33:1624-52. [DOI: 10.1080/07391102.2014.968623] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
42
|
Grunenberg J, Barone G, Spinello A. The Right Answer for the Right Electrostatics: Force Field Methods Are Able to Describe Relative Energies of DNA Guanine Quadruplexes. J Chem Theory Comput 2014; 10:2901-5. [DOI: 10.1021/ct500329f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Jörg Grunenberg
- Institute
of Organic Chemistry, TU Braunschweig, Braunschweig, Germany
| | - Giampaolo Barone
- Dipartimento
di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, Palermo, Italy
| | - Angelo Spinello
- Dipartimento
di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, Palermo, Italy
| |
Collapse
|
43
|
Brovarets’ OO, Hovorun DM. Does the G·G*synDNA mismatch containing canonical and rare tautomers of the guanine tautomerise through the DPT? A QM/QTAIM microstructural study. Mol Phys 2014. [DOI: 10.1080/00268976.2014.927079] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
44
|
Brovarets' OO, Hovorun DM. The nature of the transition mismatches with Watson-Crick architecture: the G*·T or G·T* DNA base mispair or both? A QM/QTAIM perspective for the biological problem. J Biomol Struct Dyn 2014; 33:925-45. [PMID: 24842163 DOI: 10.1080/07391102.2014.924879] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
This study provides the first accurate investigation of the tautomerization of the biologically important guanine*·thymine (G*·T) DNA base mispair with Watson-Crick geometry, involving the enol mutagenic tautomer of the G and the keto tautomer of the T, into the G·T* mispair (∆G = .99 kcal mol(-1), population = 15.8% obtained at the MP2 level of quantum-mechanical theory in the continuum with ε = 4), formed by the keto tautomer of the G and the enol mutagenic tautomer of the T base, using DFT and MP2 methods in vacuum and in the weakly polar medium (ε = 4), characteristic for the hydrophobic interfaces of specific protein-nucleic acid interactions. We were first able to show that the G*·T↔G·T* tautomerization occurs through the asynchronous concerted double proton transfer along two antiparallel O6H···O4 and N1···HN3 H-bonds and is assisted by the third N2H···O2 H-bond, that exists along the entire reaction pathway. The obtained results indicate that the G·T* base mispair is stable from the thermodynamic point of view complex, while it is dynamically unstable structure in vacuum and dynamically stable structure in the continuum with ε = 4 with lifetime of 6.4·10(-12) s, that, on the one side, makes it possible to develop all six low-frequency intermolecular vibrations, but, on the other side, it is by three orders less than the time (several ns) required for the replication machinery to forcibly dissociate a base pair into the monomers during DNA replication. One of the more significant findings to emerge from this study is that the short-lived G·T* base mispair, which electronic interaction energy between the bases (-23.76 kcal mol(-1)) exceeds the analogical value for the G·C Watson-Crick nucleobase pair (-20.38 kcal mol(-1)), "escapes from the hands" of the DNA replication machinery by fast transforming into the G*·T mismatch playing an indirect role of its supplier during the DNA replication. So, exactly the G*·T mismatch was established to play the crucial role in the spontaneous point mutagenesis.
Collapse
Affiliation(s)
- Ol'ha O Brovarets'
- a Department of Molecular and Quantum Biophysics , Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine , 150 Akademika Zabolotnoho Str., Kyiv 03680 , Ukraine
| | | |
Collapse
|
45
|
Qiu ZM, Wang GL, Wang HL, Xi HP, Hou D. MP2 study on the hydrogen-bonding interaction between 5-fluorouracil and DNA bases: A,C,G,T. Struct Chem 2014. [DOI: 10.1007/s11224-014-0427-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
Brovarets' OO, Zhurakivsky RO, Hovorun DM. DPT tautomerisation of the wobble guanine·thymine DNA base mispair is not mutagenic: QM and QTAIM arguments. J Biomol Struct Dyn 2014; 33:674-89. [PMID: 24650179 DOI: 10.1080/07391102.2014.897259] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We have shown for the first time, connecting QM methods with QTAIM analysis and using the methodology of the sweeps of the energetical, electron-topological and geometrical parameters, that the tautomerisation of the wobble guanine·thymine (wG·T) DNA base mispair into the wG(*)·T(*) base mispair induced by the double proton transfer (DPT), which undergoes a concerted asynchronous pathway, is not mutagenic. The wG·T → wG(*)·T(*) DPT tautomerisation does not result in the transition of the G base into its mutagenic tautomeric form G(*) able to mispair with the T base within the Watson-Crick base pairing scheme. This observation is explained by the so-called quantum protection of the wG·T DNA base mispair from its mutagenic tautomerisation - the dynamical non-stability of the tautomerised wG(*)·T(*) base mispair and significantly negative value of the Gibbs free energy of activation for the reverse reaction of the wG·T → wG(*)·T(*) DPT tautomerisation.
Collapse
Affiliation(s)
- Ol'ha O Brovarets'
- a Department of Molecular and Quantum Biophysics , Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine , 150 Akademika Zabolotnoho Str., 03680 Kyiv , Ukraine
| | | | | |
Collapse
|
47
|
|
48
|
Brovarets’ OO, Zhurakivsky RO, Hovorun DM. A QM/QTAIM microstructural analysis of the tautomerisationviathe DPT of the hypoxanthine·adenine nucleobase pair. Mol Phys 2014. [DOI: 10.1080/00268976.2013.877170] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
49
|
Brovarets' OO, Zhurakivsky RO, Hovorun DM. Does the tautomeric status of the adenine bases change upon the dissociation of the A*·Asyn Topal–Fresco DNA mismatch? A combined QM and QTAIM atomistic insight. Phys Chem Chem Phys 2014; 16:3715-25. [DOI: 10.1039/c3cp54708f] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Brovarets' OO, Zhurakivsky RO, Hovorun DM. Is the DPT tautomerization of the long A·G Watson-Crick DNA base mispair a source of the adenine and guanine mutagenic tautomers? A QM and QTAIM response to the biologically important question. J Comput Chem 2013; 35:451-66. [PMID: 24382756 DOI: 10.1002/jcc.23515] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Revised: 11/12/2013] [Accepted: 11/30/2013] [Indexed: 02/04/2023]
Abstract
Herein, we first address the question posed in the title by establishing the tautomerization trajectory via the double proton transfer of the adenine·guanine (A·G) DNA base mispair formed by the canonical tautomers of the A and G bases into the A*·G* DNA base mispair, involving mutagenic tautomers, with the use of the quantum-mechanical calculations and quantum theory of atoms in molecules (QTAIM). It was detected that the A·G ↔ A*·G* tautomerization proceeds through the asynchronous concerted mechanism. It was revealed that the A·G base mispair is stabilized by the N6H···O6 (5.68) and N1H···N1 (6.51) hydrogen bonds (H-bonds) and the N2H···HC2 dihydrogen bond (DH-bond) (0.68 kcal·mol(-1) ), whereas the A*·G* base mispair-by the O6H···N6 (10.88), N1H···N1 (7.01) and C2H···N2 H-bonds (0.42 kcal·mol(-1) ). The N2H···HC2 DH-bond smoothly and without bifurcation transforms into the C2H···N2 H-bond at the IRC = -10.07 Bohr in the course of the A·G ↔ A*·G* tautomerization. Using the sweeps of the energies of the intermolecular H-bonds, it was observed that the N6H···O6 H-bond is anticooperative to the two others-N1H···N1 and N2H···HC2 in the A·G base mispair, while the latters are significantly cooperative, mutually strengthening each other. In opposite, all three O6H···N6, N1H···N1, and C2H···N2 H-bonds are cooperative in the A*·G* base mispair. All in all, we established the dynamical instability of the А*·G* base mispair with a short lifetime (4.83·10(-14) s), enabling it not to be deemed feasible source of the A* and G* mutagenic tautomers of the DNA bases. The small lifetime of the А*·G* base mispair is predetermined by the negative value of the Gibbs free energy for the A*·G* → A·G transition. Moreover, all of the six low-frequency intermolecular vibrations cannot develop during this lifetime that additionally confirms the aforementioned results. Thus, the A*·G* base mispair cannot be considered as a source of the mutagenic tautomers of the DNA bases, as the A·G base mispair dissociates during DNA replication exceptionally into the A and G monomers in the canonical tautomeric form.
Collapse
Affiliation(s)
- Ol'ha O Brovarets'
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Akademika Zabolotnoho Str., 03680, Kyiv, Ukraine ; Research and Educational Center "State Key Laboratory of Molecular and Cell Biology", 150 Akademika Zabolotnoho Str., 03680, Kyiv, Ukraine; Department of Molecular Biology, Biotechnology and Biophysics, Institute of High Technologies, Taras Shevchenko National University of Kyiv, 2-h Akademika Hlushkova Ave., 03022, Kyiv, Ukraine
| | | | | |
Collapse
|