1
|
Wang L, Du C, Yang Y, Zhang P, Yuan S. Valsartan/2-Aminopyridine Co-Amorphous System: Preparation, Characterization, and Supramolecular Structure Simulation by Density Functional Theory Calculation. Molecules 2024; 29:5467. [PMID: 39598856 PMCID: PMC11597427 DOI: 10.3390/molecules29225467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/02/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024] Open
Abstract
The objective of this work was to improve the solubility and discover a stable co-amorphous form of valsartan (VAL), a BCS class-II drug, by utilizing small molecule 2-Aminopyridine (2-AP) in varying molar ratios (2:1, 1:1, and 1:2), employing a solvent evaporation technique. Additionally, by way of a density functional theory (DFT)-based computational method with commercially available software, a new approach for determining the intermolecular connectivity of multi-molecular hydrogen bonding systems was proposed. The binary systems' features were characterized by PXRD, DSC, FTIR, and Raman spectroscopy, while the equilibrium solubility and dissolution was determined in 0.1 N HCL and water conditions to investigate the dissolution advantage of the prepared co-amorphous systems. The results demonstrated that the co-amorphous system was successfully prepared in VAL/2-AP with a 1:2 molar ratio following solvent evaporation, whereby the hydrogen bonding sites of VAL were fully occupied. Physical stability studies were carried out under dry conditions at room temperature for 6 months. Furthermore, four possible ternary systems were constructed, and their vibrational modes were simulated by DFT calculations. The calculated infrared spectra of the four configurations varied widely, with trimer 1 showing the most resemblance to the experimental spectrum of the co-amorphous 1:2 system. Additionally, co-amorphous VAL/2-AP displayed significant improvement in the solubility and dissolution study. Notably, in the 1:2 ratio, there was almost a 4.5-fold and 15.6-fold increase in VAL's solubility in 0.1 N HCL and water environments, respectively. In conclusion, our findings highlight the potential of co-amorphous systems as a feasible approach to improving the properties and bioavailabilities of insoluble drugs. The proposed simulation method provides valuable insights into determining the supramolecular structure of multi-molecular hydrogen bonding systems, offering a novel perspective for investigating such systems.
Collapse
Affiliation(s)
- Linjie Wang
- School of Chemical Engineering, Shandong Institute of Petroleum and Chemical Technology, Dongying 257061, China; (L.W.); (C.D.); (Y.Y.); (P.Z.)
| | - Chunan Du
- School of Chemical Engineering, Shandong Institute of Petroleum and Chemical Technology, Dongying 257061, China; (L.W.); (C.D.); (Y.Y.); (P.Z.)
| | - Yang Yang
- School of Chemical Engineering, Shandong Institute of Petroleum and Chemical Technology, Dongying 257061, China; (L.W.); (C.D.); (Y.Y.); (P.Z.)
| | - Pengtu Zhang
- School of Chemical Engineering, Shandong Institute of Petroleum and Chemical Technology, Dongying 257061, China; (L.W.); (C.D.); (Y.Y.); (P.Z.)
| | - Shiling Yuan
- School of Chemical Engineering, Shandong Institute of Petroleum and Chemical Technology, Dongying 257061, China; (L.W.); (C.D.); (Y.Y.); (P.Z.)
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250199, China
| |
Collapse
|
2
|
Zhao T, Ma H, Liu Y, Chen Z, Shi Q, Ning L. Interfacial interactions between spider silk protein and cellulose studied by molecular dynamics simulation. J Mol Model 2024; 30:156. [PMID: 38693294 DOI: 10.1007/s00894-024-05945-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 04/16/2024] [Indexed: 05/03/2024]
Abstract
CONTEXT Due to their excellent biocompatibility and degradability, cellulose/spider silk protein composites hold a significant value in biomedical applications such as tissue engineering, drug delivery, and medical dressings. The interfacial interactions between cellulose and spider silk protein affect the properties of the composite. Therefore, it is important to understand the interfacial interactions between spider silk protein and cellulose to guide the design and optimization of composites. The study of the adsorption of protein on specific surfaces of cellulose crystal can be very complex using experimental methods. Molecular dynamics simulations allow the exploration of various physical and chemical changes at the atomic level of the material and enable an atomic description of the interactions between cellulose crystal planes and spider silk protein. In this study, molecular dynamics simulations were employed to investigate the interfacial interactions between spider silk protein (NTD) and cellulose surfaces. Findings of RMSD, RMSF, and secondary structure showed that the structure of NTD proteins remained unchanged during the adsorption process. Cellulose contact numbers and hydrogen bonding trends on different crystalline surfaces suggest that van der Waals forces and hydrogen bonding interactions drive the binding of proteins to cellulose. These findings reveal the interaction between cellulose and protein at the molecular level and provide theoretical guidance for the design and synthesis of cellulose/spider silk protein composites. METHODS MD simulations were all performed using the GROMACS-5.1 software package and run with CHARMM36 carbohydrate force field. Molecular dynamics simulations were performed for 500 ns for the simulated system.
Collapse
Affiliation(s)
- Tengfei Zhao
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, College of Bioresource Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China
| | - Huaiqin Ma
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, College of Bioresource Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China
| | - Yuxi Liu
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, College of Bioresource Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China
| | - Zhenjuan Chen
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, College of Bioresource Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China
| | - Qingwen Shi
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, College of Bioresource Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China
| | - Lulu Ning
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, College of Bioresource Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China.
| |
Collapse
|
3
|
Agarwal M, Zika A, Schweins R, Gröhn F. Controlling the Morphology in Electrostatic Self-Assembly via Light. Polymers (Basel) 2023; 16:50. [PMID: 38201714 PMCID: PMC10780651 DOI: 10.3390/polym16010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Electrostatic self-assembly of macroions is an emerging area with great potential in the development of nanoscale functional objects, where photo-irradiation responsiveness can either elevate or suppress the self-assembly. The ability to control the size and shape of macroion assemblies would greatly facilitate the fabrication of desired nano-objects that can be harnessed in various applications such as catalysis, drug delivery, bio-sensors, and actuators. Here, we demonstrate that a polyelectrolyte with a size of 5 nm and multivalent counterions with a size of 1 nm can produce well-defined nanostructures ranging in size from 10-1000 nm in an aqueous environment by utilizing the concept of electrostatic self-assembly and other intermolecular non-covalent interactions including dipole-dipole interactions. The pH- and photoresponsiveness of polyelectrolytes and azo dyes provide diverse parameters to tune the nanostructures. Our findings demonstrate a facile approach to fabricating and manipulating self-assembled nanoparticles using light and neutron scattering techniques.
Collapse
Affiliation(s)
- Mohit Agarwal
- Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials, Friedrich-Alexander Universität Erlangen-Nürnberg, Egerlandstr. 3, D-91058 Erlangen, Germany
- Institut Laue-Langevin, DS/LSS, 71 Avenue des Martyrs, F-38000 Grenoble, France;
| | - Alexander Zika
- Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials, Friedrich-Alexander Universität Erlangen-Nürnberg, Egerlandstr. 3, D-91058 Erlangen, Germany
| | - Ralf Schweins
- Institut Laue-Langevin, DS/LSS, 71 Avenue des Martyrs, F-38000 Grenoble, France;
| | - Franziska Gröhn
- Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials, Friedrich-Alexander Universität Erlangen-Nürnberg, Egerlandstr. 3, D-91058 Erlangen, Germany
| |
Collapse
|
4
|
Zhang S, Zhang Q, Xu R, Ma J, Fang L. Realizing zero-order controlled transdermal drug permeation through competing doubly ionic H-bond in patch. Int J Pharm 2023; 645:123410. [PMID: 37703958 DOI: 10.1016/j.ijpharm.2023.123410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/08/2023] [Accepted: 09/10/2023] [Indexed: 09/15/2023]
Abstract
Transdermal drug delivery system (TDDS) was an effective way to realize controlled drug delivery. However, realizing zero-order controlled drug skin delivery was still challenging in the drug-in-adhesive patch. This study provided a strategy to accomplish this delivery form by stabilizing the drug concentration in adhesive through concentration-dependent competitive interaction. Clonidine (CLO) and Granisetron (GRA) were chosen as the model drugs which were of high skin permeability, and polydimethylaminoethyl acrylate (EA) as an excipient to interact with hydroxyphenyl adhesive (HP). Drug release, permeation and pharmacokinetic study were conducted to evaluate the controlled effect of HP-EA. The molecular interaction was characterized by FT-IR, 1H NMR and XPS. Dynamic simulation and molecular docking further clarified the competitive interaction involved in the release process. Both the drug skin permeation study of CLO and GRA patch based on the HP-EA adhesive showed good zero-order fitting with r of 0.994 and 0.998, compared with non-functional adhesive (0-PSA). Furthermore, the pharmacokinetic study of the CLO patch showed a plateau phase for around 52 h without influencing the area under concentration-time curve (AUC), indicating that the HP-EA could realize zero-order drug skin delivery. The mechanism study revealed that EA serving as a 'buffer component' promoted the conversion of the ionic CLO to the neutrals the as the neutrals released, which stabilized '1% neutrals CLO concentration'. In conclusion, the drug delivery system based on the concentration-dependent competitive interaction broadened our understanding of the molecular mechanisms involved in zero-order controlled release in transdermal patches which would promote the development of zero-order drug delivery in TDDS.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Quanzhi Zhang
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Runmei Xu
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Junyao Ma
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Liang Fang
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China.
| |
Collapse
|
5
|
Cheng X, Miao T, Ma H, Zhang J, Zhang Z, Zhang W, Zhu X. Polymerization-Induced Helicity Inversion Driven by Stacking Modes and Self-Assembly Pathway Differentiation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103177. [PMID: 34643037 DOI: 10.1002/smll.202103177] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/21/2021] [Indexed: 06/13/2023]
Abstract
Regulating the mutual stacking arrangements is of great interest for understanding the origin of chirality at different hierarchical levels in nature. Different from molecular level chirality, the control and manipulation of hierarchical chirality in polymer systems is limited to the use of external factors as the energetically demanding switching stimulus. Herein, the first self-assembly strategy of polymerization-induced helicity inversion (PIHI), in which the controlled packing and dynamic stereomutation of azobenzene (Azo) building blocks are realized by in situ polymerization without any external stimulus, is reported. A multiple helicity inversion and intriguing helix-helix transition of polymeric supramolecular nanofibers occurs during polymerization, which is collectively confirmed to be mediated by the transition between functionality-oriented π-π stacking, H-, and J-aggregation. The studies further reveal that helicity inversion proceeds through a delicate interplay of the thermodynamically and kinetically controlled, pathway-dependent interconversion process, which should provide new insight into the origin and handedness control of helical nanostructures with desired chirality.
Collapse
Affiliation(s)
- Xiaoxiao Cheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Tengfei Miao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Haotian Ma
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jiandong Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhengbiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Wei Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiulin Zhu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
6
|
Li J, Luo L, Yang L, Zhao C, Liu Y, Wu Z, Luo X, Lin J. Ionic framework constructed with protic ionic liquid units for improving ammonia uptake. Chem Commun (Camb) 2021; 57:4384-4387. [PMID: 33949496 DOI: 10.1039/d1cc00441g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In this work, an ionic framework [Ph3ImH][Tf2N]2 constructed from protic imidazolium ionic liquid units through ionic and hydrogen bonding interactions was synthesized for selective ammonia uptake. Investigation of the NH3 uptake mechanism indicates that the acid sites in [Ph3ImH][Tf2N]2 would be frustrated when contacted with NH3, and the frustration of [Ph3ImH][Tf2N]2 precipitates NH3 capture by hydrogen bonding and physical interactions, and the NH3 could be released under mild conditions. There was no obvious decrease in capacity over 10 consecutive cycles of ammonia uptake and release.
Collapse
Affiliation(s)
- Jiaran Li
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, P. R. China.
| | - Li Luo
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, P. R. China.
| | - Le Yang
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, P. R. China.
| | - Chaoyang Zhao
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, P. R. China.
| | - Yibang Liu
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, P. R. China.
| | - Zhixin Wu
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, P. R. China.
| | - Xiaoyan Luo
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, P. R. China.
| | - Jinqing Lin
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, P. R. China.
| |
Collapse
|
7
|
Chahkandi M, Bhatti MH, Yunus U, Shaheen S, Nadeem M, Tahir MN. Synthesis and comprehensive structural studies of a novel amide based carboxylic acid derivative: Non–covalent interactions. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2016.12.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Niederhausen J, Kersell HR, Christodoulou C, Heimel G, Wonneberger H, Müllen K, Rabe JP, Hla SW, Koch N. Monolayer Phases of a Dipolar Perylene Derivative on Au(111) and Surface Potential Build-Up in Multilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:3587-3600. [PMID: 26991048 DOI: 10.1021/acs.langmuir.6b00053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
9-(Bis-p-tert-octylphenyl)-amino-perylene-3,4-dicarboxy anhydride (BOPA-PDCA) is a strongly dipolar molecule representing a group of asymmetrically substituted perylenes that are employed in dye-sensitized solar cells and hold great promise for discotic liquid crystal applications. Thin BOPA-PDCA films with orientated dipole moments can potentially be used to tune the energy-level alignment in electronic devices and store information. To help assessing these prospects, we here elucidate the molecular self-assembly and electronic structure of BOPA-PCDA employing room temperature scanning tunneling microscopy and spectroscopy in combination with ultraviolet and X-ray photoelectron spectroscopies. BOPA-PCDA monolayers on Au(111) exclusively form in-plane antiferroelectric phases. The molecular arrangements, the increase of the average number of molecules per unit cell via ripening, and the rearrangement upon manipulation with the STM tip indicate an influence of the dipole moment on the molecular assembly and the rearrangement. A slightly preferred out-of-plane orientation of the molecules in the multilayer induces a surface potential of 1.2 eV. This resembles the giant surface potential effect that was reported for vacuum-deposited tris(8-hydroxyquinoline)aluminum and deemed applicable for data storage. Notably, the surface potential in the case of BOPA-PDCA can in part be reversibly removed by visible light irradiation.
Collapse
Affiliation(s)
- Jens Niederhausen
- Institut für Physik & IRIS Adlershof, Humboldt-Universität zu Berlin , 12489 Berlin, Germany
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH , 12489 Berlin, Germany
| | - Heath R Kersell
- Physics & Astronomy Department, Ohio University , Athens, Ohio 45701, United States
| | - Christos Christodoulou
- Institut für Physik & IRIS Adlershof, Humboldt-Universität zu Berlin , 12489 Berlin, Germany
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH , 12489 Berlin, Germany
| | - Georg Heimel
- Institut für Physik & IRIS Adlershof, Humboldt-Universität zu Berlin , 12489 Berlin, Germany
| | | | - Klaus Müllen
- Max Planck Institut für Polymerforschung , 55128 Mainz, Germany
- Institut für Physikalische Chemie, Johannes Gutenberg-Universität Mainz , 55128 Mainz, Germany
| | - Jürgen P Rabe
- Institut für Physik & IRIS Adlershof, Humboldt-Universität zu Berlin , 12489 Berlin, Germany
| | - Saw-Wai Hla
- Physics & Astronomy Department, Ohio University , Athens, Ohio 45701, United States
| | - Norbert Koch
- Institut für Physik & IRIS Adlershof, Humboldt-Universität zu Berlin , 12489 Berlin, Germany
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH , 12489 Berlin, Germany
| |
Collapse
|
9
|
Yakimova LS, Shurpik DN, Gilmanova LH, Makhmutova AR, Rakhimbekova A, Stoikov II. Highly selective binding of methyl orange dye by cationic water-soluble pillar[5]arenes. Org Biomol Chem 2016; 14:4233-8. [DOI: 10.1039/c6ob00539j] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The bulky/negatively charged substituents of guest anions hinder the substrate entering the π-electron rich pillar[5]arene cavity.
Collapse
Affiliation(s)
- L. S. Yakimova
- Kazan Federal University
- A.M. Butlerov Chemical Institute
- Kazan
- Russian Federation
| | - D. N. Shurpik
- Kazan Federal University
- A.M. Butlerov Chemical Institute
- Kazan
- Russian Federation
| | - L. H. Gilmanova
- Kazan Federal University
- A.M. Butlerov Chemical Institute
- Kazan
- Russian Federation
| | - A. R. Makhmutova
- Kazan Federal University
- A.M. Butlerov Chemical Institute
- Kazan
- Russian Federation
| | - A. Rakhimbekova
- Kazan Federal University
- A.M. Butlerov Chemical Institute
- Kazan
- Russian Federation
| | - I. I. Stoikov
- Kazan Federal University
- A.M. Butlerov Chemical Institute
- Kazan
- Russian Federation
| |
Collapse
|
10
|
Yuan K, Guo YJ, Zhao X. A novel photo-responsive azobenzene-containing nanoring host for fullerene-guest facile encapsulation and release. Phys Chem Chem Phys 2015; 16:27053-64. [PMID: 25382786 DOI: 10.1039/c4cp03687e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Azobenzenes in particular have been proved to have a robust photo-response, in which their configuration can transform between the trans- and cis-form upon UV-visible irradiation. Accordingly, azobenzene-containing molecules are frequently applied in the design of the guests, involving so-called host-guest chemistry. In this paper, a novel photo-responsive nanoring host molecule ([4]AB) has been designed by introducing four azobenzene groups onto the ring, and interactions between the designed nanoring host and fullerenes C60 and C70 guests were investigated at both the M06-L/MIDI! as well as M06-2X/6-31G(d) level of theory. By analyzing the geometric characteristics and host-guest binding energies, it is revealed that the designed [4]AB with diameter ca. 13.4 Å is an ideal host molecule for the encapsulation of guests C60 and C70 fullerene. Meanwhile, inferred from UV-vis-NIR spectroscopy, the guest C60 and C70 could be facilely released from the cavity of the [4]AB via configuration transformation between trans- and cis-form of the host under 474 and 506 nm photo-irradiation, respectively. Frontier orbital features, weak interaction regions, infrared spectroscopy and (1)H NMR spectra have also been theoretically simulated. The present work would provide a new strategy for facile reversible encapsulation and release of fullerene guest by a novel nanoring host.
Collapse
Affiliation(s)
- Kun Yuan
- Institute for Chemical Physics & Department of Chemistry, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China.
| | | | | |
Collapse
|
11
|
Synthesis of novel helical poly(N-propargylamides) containing azobenzene pendant groups and effects of substitution groups on azobenzene on the stability of helix. Eur Polym J 2015. [DOI: 10.1016/j.eurpolymj.2015.01.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|