Culberson LM, Blackstone CC, Wallace AA, Sanov A. Aromatic Stabilization and Hybridization Trends in Photoelectron Imaging of Heterocyclic Radicals and Anions.
J Phys Chem A 2015. [PMID:
26224106 DOI:
10.1021/acs.jpca.5b04672]
[Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We examine the photoelectron spectra and laboratory-frame angular distributions in the photodetachment of furanide (C4H3O(-)), thiophenide (C4H3S(-)), and thiazolide (C3H2NS(-)) and compare the results to the previously reported studies of pyridinide (C5H4N(-)) and oxazolide (C3H2NO(-)). Using the mixed s-p model for the angular distributions, the results are interpreted in terms of the effective fractional p character of the highest-occupied molecular orbitals of these heterocyclic anions, revealing trends related to the aromaticity. We conclude that aromatic stabilization across a series of systems may be tracked using the photoelectron angular distributions. In addition, we report an improved (higher-precision) electron affinity (EA) for the thiophenyl radical, EA((•)C4H3S) = 2.089(8) eV. The EA of thiazolyl falls within the 2.5(1) eV range, but it is not clear if this determination corresponds to the 2- or 5-cyclic species or the 2-ring-open isomer. These results are analyzed in conjunction with the properties of other heterocyclic radicals (pyridinyl, furanyl, and oxazolyl) and interpreted in terms of the C-H bond dissociation energies (BDEs) of the corresponding closed-shell molecules. The BDEs of all five-membered-ring heterocyclics studied fall within the 116-120 kcal/mol range, contrasting the lower BDE = 110.4(2.0) kcal/mol of the more aromatic six-membered-ring pyridine. The observed aromaticity trends are consistent with the findings derived from the anion photoelectron angular distributions.
Collapse