1
|
Giráldez-Pérez RM, Grueso E, Montero-Hidalgo AJ, Luque RM, Carnerero JM, Kuliszewska E, Prado-Gotor R. Gold Nanosystems Covered with Doxorubicin/DNA Complexes: A Therapeutic Target for Prostate and Liver Cancer. Int J Mol Sci 2022; 23:ijms232415575. [PMID: 36555216 PMCID: PMC9779246 DOI: 10.3390/ijms232415575] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Different gold nanosystems covered with DNA and doxorubicin (Doxo) were designed and synthesized for cancer therapy, starting from Au@16-Ph-16 cationic nanoparticles and DNA-Doxo complexes prepared under saturation conditions. For the preparation of stable, biocompatible, and small-sized compacted Au@16-Ph-16/DNA-Doxo nanotransporters, the conditions for the DNA-Doxo compaction process induced by gold nanoparticles were first explored using fluorescence spectroscopy, circular dichroism and atomic force microscopy techniques. The reverse process, which is fundamental for Doxo liberation at the site of action, was found to occur at higher CAu@16-Ph-16 concentrations using these techniques. Zeta potential, dynamic light scattering and UV-visible spectroscopy reveal that the prepared compacted nanosystems are stable, highly charged and of adequate size for the effective delivery of Doxo to the cell. This fact is verified by in vitro biocompatibility and internalization studies using two prostate cancer-derived cell lines (LNCaP and DU145) and one hepatocellular carcinoma-derived cell line (SNU-387), as well as a non-tumor prostate (PNT2) cell line and a non-hepatocarcinoma hepatoblastoma cell line (Hep-G2) model used as a control in liver cells. However, the most outstanding results of this work are derived from the use of the CI+NI combined treatments which present strong action in cancer-derived cell lines, while a protective effect is observed in non-tumor cell lines. Hence, novel therapeutic targets based on gold nanoparticles denote high selectivity compared to conventional treatment based on free Doxo at the same concentration. The results obtained show the viability of both the proposed methodology for internalization of compacted nanocomplexes inside the cell and the effectiveness of the possible treatment and minimization of side effects in prostate and liver cancer.
Collapse
Affiliation(s)
- Rosa M. Giráldez-Pérez
- Department of Cell Biology, Physiology and Immunology, Faculty of Sciences, University of Cordoba, 14014 Cordoba, Spain
- Correspondence: (R.M.G.-P.); (E.G.)
| | - Elia Grueso
- Department of Physical Chemistry, Faculty of Chemistry, University of Seville, 41012 Seville, Spain
- Correspondence: (R.M.G.-P.); (E.G.)
| | - Antonio J. Montero-Hidalgo
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital (HURS), Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain
| | - Raúl M. Luque
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital (HURS), Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain
| | - José M. Carnerero
- Department of Physical Chemistry, Faculty of Chemistry, University of Seville, 41012 Seville, Spain
| | | | - Rafael Prado-Gotor
- Department of Physical Chemistry, Faculty of Chemistry, University of Seville, 41012 Seville, Spain
| |
Collapse
|
2
|
Singh SB, Kumbhar AS, Walke G, Kulkarni PP. An insight into the morphology of DNA compaction induced by homobinuclear Ru(II) polypyridyl complexes. J Inorg Biochem 2022; 234:111870. [DOI: 10.1016/j.jinorgbio.2022.111870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 10/18/2022]
|
3
|
Grueso E, Giráldez-Pérez RM, Kuliszewska E, Guerrero JA, Prado-Gotor R. Reversible cationic gemini surfactant-induced aggregation of anionic gold nanoparticles for sensing biomolecules. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125893] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
4
|
Ethanol effect on gold nanoparticle aggregation state and its implication in the interaction mechanism with DNA. J Colloid Interface Sci 2018; 529:65-76. [DOI: 10.1016/j.jcis.2018.05.108] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/29/2018] [Accepted: 05/29/2018] [Indexed: 01/08/2023]
|
5
|
Grueso E, Roldan E, Perez-Tejeda P, Kuliszewska E, Molero B, Brecker L, Giráldez-Pérez RM. Reversible DNA compaction induced by partial intercalation of 16-Ph-16 gemini surfactants: evidence of triple helix formation. Phys Chem Chem Phys 2018; 20:24902-24914. [PMID: 30234871 DOI: 10.1039/c8cp02791a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The interaction between calf thymus DNA and the gemini surfactants N,N'-[α,ω-phenylenebis(methylene)bis [N,N'-dimethyl-N-(1-hexadecyl)]-ammonium dibromide], p-16-Ph-16 (α = 1, ω = 3) and m-16-Ph-16 (α = 1, ω = 2), has been investigated via circular dichroism, fluorescence and UV-vis spectroscopy, zeta potential, dynamic light scattering, and AFM microscopy. Measurements were carried out in aqueous media at different molar ratios, R = (C16-Ph-16)/CDNA and C16-Ph-16 always below the critical micellar concentration (CMC) of the surfactant. Under these conditions, DNA undergoes two reversible conformational changes, compaction and decompaction, due to interaction with the surfactant molecules at low and high molar ratios, respectively. The extent of such conformational changes is correlated with both the degree of surfactant partial intercalation, and the size and charge of the surfactant aggregates formed, in each case. Comparison of the results shows that the para-form of the surfactant intercalates into the DNA to a major extent; therefore, the compaction/decompaction processes are more effective. Among these, the structure of the resulting 16-Ph-16/DNA decompacted complex is worthy of note. For the first time it can be demonstrated that the partial intercalation of the 16-Ph-16 gemini surfactants induces the formation of triplex DNA-like structures at a high R ratio.
Collapse
Affiliation(s)
- Elia Grueso
- Department of Physical Chemistry, Faculty of Chemistry, University of Seville, C/ Profesor García González, s/n, 41012, Sevilla, Spain.
| | | | | | | | | | | | | |
Collapse
|
6
|
Satnami ML, Dewangan HK, Kandpal N, Nagwanshi R, Ghosh KK. Influence of octanohydroxamic acid on the association behavior of cationic surfactants: Hydrolytic cleavage of phosphate ester. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.06.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Ahmed T, Kamel AO, Wettig SD. Interactions between DNA and gemini surfactant: impact on gene therapy: part II. Nanomedicine (Lond) 2016; 11:403-20. [PMID: 26784450 DOI: 10.2217/nnm.15.204] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Nonviral gene delivery, provides distinct treatment modalities for the inherited and acquired diseases, relies upon the encapsulation of a gene of interest, which is then ideally delivered to the target cells. Variations in the chemical structure of gemini surfactants and subsequent physicochemical characteristics of the gemini-based lipoplexes and their impact on efficient gene transfection were assessed in part I, which was published in first March 2016 issue of Nanomedicine (1103). In order to design an efficient vector using gemini surfactants, the interaction of the surfactant with DNA and other components of the delivery system must be characterized, and more critically, well understood. Such studies will help to understand how nonviral transfection complexes, in general, overcome various cellular barriers. The Langmuir-Blodgett monolayer studies, atomic force microscopy, differential scanning calorimetry, isothermal titration calorimetry, small-angle x-ray scattering, are extensively used to evaluate the interaction behavior of gemini surfactants with DNA and other vector components. Part II of this review focuses on the use of these unique techniques to understand their interaction with DNA.
Collapse
Affiliation(s)
- Taksim Ahmed
- School of Pharmacy, University of Waterloo, 200 University Ave. W., Waterloo, ON, N2L 3G1, Canada.,Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON, M5S 3M2, Canada
| | - Amany O Kamel
- School of Pharmacy, University of Waterloo, 200 University Ave. W., Waterloo, ON, N2L 3G1, Canada.,Department of Pharmaceutics & Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Khalifa El-Maamon Street, Abbasiya Square, Cairo 11566, Egypt
| | - Shawn D Wettig
- School of Pharmacy, University of Waterloo, 200 University Ave. W., Waterloo, ON, N2L 3G1, Canada.,Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave. W., Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
8
|
Bhadani A, Tani M, Endo T, Sakai K, Abe M, Sakai H. New ester based gemini surfactants: the effect of different cationic headgroups on micellization properties and viscosity of aqueous micellar solution. Phys Chem Chem Phys 2015; 17:19474-83. [PMID: 26145125 DOI: 10.1039/c5cp02115d] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new series of ester functionalized cationic gemini surfactants having different cationic headgroups (i.e. piperidinium, pyrrolidinium, morpholinium and quaternary ammonium) have been synthesized and characterized using NMR and Mass spectroscopy. These new gemini surfactants were investigated for their micellization and viscosity properties using surface tension, conductivity, fluorescence and rheology thechniques. The physicochemical properties of the aqueous surfactant system were influenced by polarity, size and the nature of cationic headgroups as the surface, thermodynamic and viscosity properties of these gemini surfactants were found to be dependent on the type of cationic headgroup. The current research finding establishes the structure-property relationship of the surfactant molecule specifically taking into account the dominant role displayed by the nature of the cationic headgroup.
Collapse
Affiliation(s)
- Avinash Bhadani
- Department of Pure and Applied Chemistry in Faculty of Science and Technology and Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| | | | | | | | | | | |
Collapse
|
9
|
Zakharova LY, Vasilieva EA, Gabdrakhmanov DR, Konovalov AI, Zuev YF. Complexation of mono- and dicationic surfactants with decanucleotide. Influence of the head group nature. Russ Chem Bull 2015. [DOI: 10.1007/s11172-014-0643-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Grueso E, Kuliszewska E, Roldan E, Perez-Tejeda P, Prado-Gotor R, Brecker L. DNA conformational changes induced by cationic gemini surfactants: the key to switching DNA compact structures into elongated forms. RSC Adv 2015. [DOI: 10.1039/c5ra03944d] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The extent of DNA decompaction induced by m-s-m gemini surfactants depend on the surfactant's tail length and on spacer's length.
Collapse
Affiliation(s)
- Elia Grueso
- Department of Physical Chemistry
- Faculty of Chemistry
- University of Seville
- Sevilla
- Spain
| | - Edyta Kuliszewska
- Institute of Heavy Organic Synthesis-Ul
- Kedzierzyn-Kozle 47-225
- Poland
| | - Emilio Roldan
- Department of Physical Chemistry
- Faculty of Chemistry
- University of Seville
- Sevilla
- Spain
| | - Pilar Perez-Tejeda
- Department of Physical Chemistry
- Faculty of Chemistry
- University of Seville
- Sevilla
- Spain
| | - Rafael Prado-Gotor
- Department of Physical Chemistry
- Faculty of Chemistry
- University of Seville
- Sevilla
- Spain
| | - Lothar Brecker
- Institute of Organic Chemistry
- University of Vienna
- A-1090 Wien
- Austria
| |
Collapse
|
11
|
García JP, Marrón E, Martín VI, Moyá ML, Lopez-Cornejo P. Conformational changes of DNA in the presence of 12-s-12 gemini surfactants (s=2 and 10). Role of the spacer's length in the interaction surfactant-polynucleotide. Colloids Surf B Biointerfaces 2014; 118:90-100. [PMID: 24736044 DOI: 10.1016/j.colsurfb.2014.03.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 02/22/2014] [Accepted: 03/16/2014] [Indexed: 12/27/2022]
Abstract
A multifaceted study on the interaction of calf-thymus DNA with two different cationic gemini surfactants alkanediyl-α-ω-bis(dodecyldimethyl-amonium)bromide, 12-s-12,2Br(-) (with s=2, G2, and 10, G10) was carried out. The measurements were done at different molar ratios X=[surfactant]/[DNA]. Results show two different conformational changes in DNA: a first compaction of the polynucleotide corresponding to a partial conformational (not total) change of DNA from an extended coil state to a globular state that happens at the lower molar ratio X. A second change corresponds to a breaking of the partial condensation, that is, the transition from the compacted state to a new more extended conformation (for the higher X values) different to the initial extension. According to circular dichroism spectra and dynamic light scattering measurements, this new state of DNA seems to be similar to a ψ-phase. Measurements confirm that interactions involved in the compaction are different to those previously obtained for the analog surfactant CTAB. X values at which the conformational changes happen depend on the length of the spacer in the surfactant along with the charge of the polar heads.
Collapse
Affiliation(s)
- J P García
- Department of Physical Chemistry, Faculty of Chemistry, University of Seville, c/Prof. García González n° 1, Sevilla 41012, Spain
| | - E Marrón
- Department of Physical Chemistry, Faculty of Chemistry, University of Seville, c/Prof. García González n° 1, Sevilla 41012, Spain
| | - V I Martín
- Department of Physical Chemistry, Faculty of Chemistry, University of Seville, c/Prof. García González n° 1, Sevilla 41012, Spain
| | - M L Moyá
- Department of Physical Chemistry, Faculty of Chemistry, University of Seville, c/Prof. García González n° 1, Sevilla 41012, Spain
| | - P Lopez-Cornejo
- Department of Physical Chemistry, Faculty of Chemistry, University of Seville, c/Prof. García González n° 1, Sevilla 41012, Spain.
| |
Collapse
|