1
|
Rubli PT, Dopfer O. Infrared spectrum of the 1-cyanoadamantane cation: evidence of hydrogen transfer and cage-opening upon ionization. Phys Chem Chem Phys 2023; 25:22734-22743. [PMID: 37584199 DOI: 10.1039/d3cp03417h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
The radical cations of diamondoids are important intermediates in their functionalization reactions and are also candidates as carriers for astronomical absorption and emission features. Although neutral diamondoids have been studied extensively, information regarding their radical cations is largely lacking, particularly for functionalized diamondoid derivatives. Herein, we characterize the structure of the 1-cyanoadamantane radical cation (C10H15CN+, AdCN+) using infrared photodissociation (IRPD) spectroscopy of mass selected AdCN+N2 clusters in the XH stretch range (2400-3500 cm-1) and dispersion-corrected density functional theory calculations (B3LYP-D3BJ/cc-pVTZ). A group of three distinct CH stretch bands are observed in the 2800-3000 cm-1 range, in addition to a highly redshifted absorption at 2580 cm-1 attributed to the acidic CH proton predicted by calculations. An unexpected broad absorption peaking at 3320 cm-1 is also detected and assigned to an NH stretch mode based on its width and frequency. Calculations indicate that hydrogen atom transfer (HAT) from the adamantyl cage (C10H15, Ady) to the N atom of the CN group yields lower energy structures, with an open-cage isomer exhibiting such hydrogen transfer being the global minimum on the potential energy surface. The energy barriers involved in the formation of this open-cage isomer are also lower than those calculated for generation of the analogous open-cage 1-amantadine cation isomer which has previously been identified by IRPD. The combined consideration of IRPD spectra and calculations indicates a major population of the nascent canonical closed-cage isomer and a smaller population of the global minimum isomer featuring both cage-opening and hydrogen transfer.
Collapse
Affiliation(s)
- Peter Theodore Rubli
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany.
| | - Otto Dopfer
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany.
| |
Collapse
|
2
|
Chatterjee K, Dopfer O. Unraveling the protonation site of oxazole and solvation with hydrophobic ligands by infrared photodissociation spectroscopy. Phys Chem Chem Phys 2019; 21:15157-15166. [DOI: 10.1039/c9cp02787d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Infrared spectroscopy reveals exclusive N-protonation of the oxazole ring and bifurcated or linear hydrogen bonding with hydrophobic N2and Ar ligands.
Collapse
Affiliation(s)
| | - Otto Dopfer
- Institut für Optik und Atomare Physik
- TU Berlin
- 10623 Berlin
- Germany
| |
Collapse
|
3
|
Klyne J, Dopfer O. Protonation and Sequential Microsolvation of 5-Hydroxyindole: Infrared Photodissociation Spectra of 5HIH+–Ln with L = Ar and N2 (n ≤ 3). J Phys Chem B 2018; 122:10700-10713. [DOI: 10.1021/acs.jpcb.8b09023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Johanna Klyne
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany
| | - Otto Dopfer
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany
| |
Collapse
|
4
|
Klyne J, Schmies M, Miyazaki M, Fujii M, Dopfer O. Stepwise microhydration of aromatic amide cations: water solvation networks revealed by the infrared spectra of acetanilide +-(H 2O) n clusters (n ≤ 3). Phys Chem Chem Phys 2018; 20:3148-3164. [PMID: 28913535 DOI: 10.1039/c7cp04659f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The structure and activity of peptides and proteins strongly rely on their charge state and the interaction with their hydration environment. Here, infrared photodissociation (IRPD) spectra of size-selected microhydrated clusters of cationic acetanilide (AA+, N-phenylacetamide), AA+-(H2O)n with n ≤ 3, are analysed by dispersion-corrected density functional theory calculations at the ωB97X-D/aug-cc-pVTZ level to determine the stepwise microhydration process of this aromatic peptide model. The IRPD spectra are recorded in the informative X-H stretch (νOH, νNH, νCH, amide A, 2800-3800 cm-1) and fingerprint (amide I-II, 1000-1900 cm-1) ranges to probe the preferred hydration motifs and the cluster growth. In the most stable AA+-(H2O)n structures, the H2O ligands solvate the acidic NH proton of the amide by forming a hydrogen-bonded solvent network, which strongly benefits from cooperative effects arising from the excess positive charge. Comparison with neutral AA-H2O reveals the strong impact of ionization on the acidity of the NH proton and the topology of the interaction potential. Comparison with related hydrated formanilide clusters demonstrates the influence of methylation of the amide group (H → CH3) on the shape of the intermolecular potential and the structure of the hydration shell.
Collapse
Affiliation(s)
- Johanna Klyne
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany.
| | | | | | | | | |
Collapse
|
5
|
Jin S, Hu Y, Wang P, Zhan H, Lu Q, Liu F, Sheng L. Hydrogen bonding and dominant conformations of hydrated sugar analogue complexes using tetrahydrofurfuryl alcohol as the model sugar molecule. Phys Chem Chem Phys 2018; 20:7351-7360. [DOI: 10.1039/c7cp07935d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Water molecules, which serve as both hydrogen bond donors and acceptors, have been found to influence the conformational landscape of gas-phase phenyl-β-d-glucopyranoside.
Collapse
Affiliation(s)
- Shan Jin
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science
- College of Biophotonics
- South China Normal University
- Guangzhou 510631
- P. R. China
| | - Yongjun Hu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science
- College of Biophotonics
- South China Normal University
- Guangzhou 510631
- P. R. China
| | - Pengchao Wang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science
- College of Biophotonics
- South China Normal University
- Guangzhou 510631
- P. R. China
| | - Huaqi Zhan
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science
- College of Biophotonics
- South China Normal University
- Guangzhou 510631
- P. R. China
| | - Qiao Lu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science
- College of Biophotonics
- South China Normal University
- Guangzhou 510631
- P. R. China
| | - Fuyi Liu
- National Synchrotron Radiation Laboratory
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Liusi Sheng
- National Synchrotron Radiation Laboratory
- University of Science and Technology of China
- Hefei
- P. R. China
| |
Collapse
|
6
|
Wang P, Hu Y, Zhan H, Chen J, Jin S, Song W, Li Y. Vibrational spectroscopy of the mass-selected tetrahydrofurfuryl alcohol monomers and its dimers in gas phase using IR depletion and VUV single photon ionization. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 185:63-68. [PMID: 28544895 DOI: 10.1016/j.saa.2017.04.089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/22/2017] [Accepted: 04/30/2017] [Indexed: 06/07/2023]
Abstract
Tetrahydrofurfuryl alcohol (THFA, C5H10O2) is a close chemical analog of the sugar rings present in the phosphate-deoxyribose backbone structure of the nucleic acids. In present report, the infrared (IR) spectra of the size-selected THFA monomer and its dimer have been investigated in a pulsed supersonic jet using infrared-vacuum ultraviolet (VUV) ionization. Herein, the laser light at 118nm wavelength served as the source of "soft" ionization in a time-of-flight mass spectrometer. The IR features for the monomers located at 3622cm-1 can be assigned to the intramolecular hydrogen bonding stretch vibrations mainly referring to A and C conformers. Compared with the monomer, however, characteristic peaks for the dimer centered at 3415 and 3453cm-1, red shifted 207 and 169cm-1, respectively, were associated with the intermolecular hydrogen bonding stretch vibrations. Combined with the quantum-chemical calculations, the dimer in the gas phase preferred cyclic AC conformer stabled by forming two strong intermolecular hydrogen bonds, which shown the high hydrogen bond selectivity in the cluster. The conclusions drawn from the role played in the conformational flexibility by the hydroxyl and ether groups may be extended to other biomolecules.
Collapse
Affiliation(s)
- Pengchao Wang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P. R. China
| | - Yongjun Hu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P. R. China.
| | - Huaqi Zhan
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P. R. China
| | - Jiaxin Chen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P. R. China
| | - Shan Jin
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P. R. China
| | - Wentao Song
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P. R. China
| | - Yujian Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P. R. China
| |
Collapse
|
7
|
Zhan H, Hu Y, Wang P, Chen J. Dominant conformer of tetrahydropyran-2-methanol and its clusters in the gas phase explored by the use of VUV photoionization and vibrational spectroscopy. J Chem Phys 2017; 146:134303. [DOI: 10.1063/1.4979298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Huaqi Zhan
- MOE Key laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, People’s Republic of China
| | - Yongjun Hu
- MOE Key laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, People’s Republic of China
| | - Pengchao Wang
- MOE Key laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, People’s Republic of China
| | - Jiaxin Chen
- MOE Key laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, People’s Republic of China
| |
Collapse
|
8
|
Schütz M, Matsumoto Y, Bouchet A, Öztürk M, Dopfer O. Microsolvation of the pyrrole cation (Py+) with nonpolar and polar ligands: infrared spectra of Py+–Ln with L = Ar, N2, and H2O (n ≤ 3). Phys Chem Chem Phys 2017; 19:3970-3986. [DOI: 10.1039/c6cp07251h] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
IR spectra and dispersion-corrected density functional calculations of pyrrole cluster ions with Ar, N2, and H2O reveal the competition between H-bonding and π-stacking motifs of this prototypical heterocyclic aromatic cation in a hydrophobic and hydrophilic solvent.
Collapse
Affiliation(s)
- Markus Schütz
- Institut für Optik und Atomare Physik
- Technische Universität Berlin
- 10623 Berlin
- Germany
| | | | - Aude Bouchet
- Institut für Optik und Atomare Physik
- Technische Universität Berlin
- 10623 Berlin
- Germany
| | - Murat Öztürk
- Institut für Optik und Atomare Physik
- Technische Universität Berlin
- 10623 Berlin
- Germany
| | - Otto Dopfer
- Institut für Optik und Atomare Physik
- Technische Universität Berlin
- 10623 Berlin
- Germany
| |
Collapse
|
9
|
Wang P, Hu Y, Zhan H, Chen J. Gas-phase conformational preference of the smallest saccharide (glycolaldehyde) and its hydrated complexes with bridged hydrogen bonding. RSC Adv 2017. [DOI: 10.1039/c6ra26965f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Glycoaldehyde (GA, HOCH2CHO) is the simplest sugar unit of the carbohydrates and the only sugar to have been detected in interstellar space to date.
Collapse
Affiliation(s)
- Pengchao Wang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science
- College of Biophotonics
- South China Normal University
- Guangzhou 510631
- P. R. China
| | - Yongjun Hu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science
- College of Biophotonics
- South China Normal University
- Guangzhou 510631
- P. R. China
| | - Huaqi Zhan
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science
- College of Biophotonics
- South China Normal University
- Guangzhou 510631
- P. R. China
| | - Jiaxin Chen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science
- College of Biophotonics
- South China Normal University
- Guangzhou 510631
- P. R. China
| |
Collapse
|
10
|
Bouchet A, Schütz M, Chiavarino B, Crestoni ME, Fornarini S, Dopfer O. IR spectrum of the protonated neurotransmitter 2-phenylethylamine: dispersion and anharmonicity of the NH3(+)-π interaction. Phys Chem Chem Phys 2016; 17:25742-54. [PMID: 25757357 DOI: 10.1039/c5cp00221d] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The structure and dynamics of the highly flexible side chain of (protonated) phenylethylamino neurotransmitters are essential for their function. The geometric, vibrational, and energetic properties of the protonated neutrotransmitter 2-phenylethylamine (H(+)PEA) are characterized in the N-H stretch range by infrared photodissociation (IRPD) spectroscopy of cold ions using rare gas tagging (Rg = Ne and Ar) and anharmonic calculations at the B3LYP-D3/(aug-)cc-pVTZ level including dispersion corrections. A single folded gauche conformer (G) protonated at the basic amino group and stabilized by an intramolecular NH(+)-π interaction is observed. The dispersion-corrected density functional theory calculations reveal the important effects of dispersion on the cation-π interaction and the large vibrational anharmonicity of the NH3(+) group involved in the NH(+)-π hydrogen bond. They allow for assigning overtone and combination bands and explain anomalous intensities observed in previous IR multiple-photon dissociation spectra. Comparison with neutral PEA reveals the large effects of protonation on the geometric and electronic structure.
Collapse
Affiliation(s)
- Aude Bouchet
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstrasse 36, D-10623 Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
11
|
Dopfer O, Fujii M. Probing Solvation Dynamics around Aromatic and Biological Molecules at the Single-Molecular Level. Chem Rev 2016; 116:5432-63. [DOI: 10.1021/acs.chemrev.5b00610] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Otto Dopfer
- Institut
für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany
| | - Masaaki Fujii
- Laboratory
for Chemistry and Life Science, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| |
Collapse
|
12
|
Ke H, Lisy JM. Influence of hydration on ion-biomolecule interactions: M(+)(indole)(H2O)(n) (M = Na, K; n = 3-6). Phys Chem Chem Phys 2015; 17:25354-64. [PMID: 26397000 DOI: 10.1039/c5cp01565k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The indole functional group can be found in many biologically relevant molecules, such as neurotransmitters, pineal hormones and medicines. Indole has been used as a tractable model to study the hydration structures of biomolecules as well as the interplay of non-covalent interactions within ion-biomolecule-water complexes, which largely determine their structure and dynamics. With three potential binding sites: above the six- or five-member ring, and the N-H group, the competition between π and hydrogen bond interactions involves multiple locations. Electrostatic interactions from monovalent cations are in direct competition with hydrogen bonding interactions, as structural configurations involving both direct cation-indole interactions and cation-water-indole bridging interactions were observed. The different charge densities of Na(+) and K(+) give rise to different structural conformers at the same level of hydration. Infrared spectra with parallel hybrid functional-based calculations and Gibbs free energy calculations revealed rich structural insights into the Na(+)/K(+)(indole)(H2O)3-6 cluster ion complexes. Isotopic (H/D) analyses were applied to decouple the spectral features originating from the OH and NH stretches. Results showed no evidence of direct interaction between water and the NH group of indole (via a σ-hydrogen bond) at current levels of hydration with the incorporation of cations. Hydrogen bonding to a π-system, however, was ubiquitous at hydration levels between two and five.
Collapse
Affiliation(s)
- Haochen Ke
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | | |
Collapse
|
13
|
Schütz M, Sakota K, Moritz R, Schmies M, Ikeda T, Sekiya H, Dopfer O. Simultaneous Interaction of Hydrophilic and Hydrophobic Solvents with Ethylamino Neurotransmitter Radical Cations: Infrared Spectra of Tryptamine+-(H2O)m-(N2)n Clusters (m,n ≤ 3). J Phys Chem A 2015; 119:10035-51. [DOI: 10.1021/acs.jpca.5b07408] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Markus Schütz
- Institut
für Optik und Atomare Physik, Technische Universität Berlin, D-10623 Berlin, Germany
| | - Kenji Sakota
- Department
of Chemistry, Faculty of Sciences, and Department of Molecular Chemistry,
Graduate School of Science, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Raphael Moritz
- Institut
für Optik und Atomare Physik, Technische Universität Berlin, D-10623 Berlin, Germany
| | - Matthias Schmies
- Institut
für Optik und Atomare Physik, Technische Universität Berlin, D-10623 Berlin, Germany
| | - Takamasa Ikeda
- Department
of Chemistry, Faculty of Sciences, and Department of Molecular Chemistry,
Graduate School of Science, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Hiroshi Sekiya
- Department
of Chemistry, Faculty of Sciences, and Department of Molecular Chemistry,
Graduate School of Science, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Otto Dopfer
- Institut
für Optik und Atomare Physik, Technische Universität Berlin, D-10623 Berlin, Germany
| |
Collapse
|
14
|
Bouchet A, Klyne J, Piani G, Dopfer O, Zehnacker A. Diastereo-specific conformational properties of neutral, protonated and radical cation forms of (1R,2S)-cis- and (1R,2R)-trans-amino-indanol by gas phase spectroscopy. Phys Chem Chem Phys 2015; 17:25809-21. [DOI: 10.1039/c5cp00576k] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effects of ionisation and protonation on the geometric and electronic structure of a prototypical aromatic amino-alcohol with two chiral centres are revealed by IR and UV spectroscopy.
Collapse
Affiliation(s)
- Aude Bouchet
- Institut für Optik und Atomare Physik
- Technische Universität Berlin
- D-10623 Berlin
- Germany
| | - Johanna Klyne
- Institut für Optik und Atomare Physik
- Technische Universität Berlin
- D-10623 Berlin
- Germany
| | - Giovanni Piani
- CNRS
- Institut des Sciences Moléculaires d’Orsay (ISMO/UMR8214) and Univ. Paris Sud
- Orsay
- France
- CLUPS (Centre Laser de l’Université Paris Sud/LUMAT FR 2764)
| | - Otto Dopfer
- Institut für Optik und Atomare Physik
- Technische Universität Berlin
- D-10623 Berlin
- Germany
| | - Anne Zehnacker
- CNRS
- Institut des Sciences Moléculaires d’Orsay (ISMO/UMR8214) and Univ. Paris Sud
- Orsay
- France
- CLUPS (Centre Laser de l’Université Paris Sud/LUMAT FR 2764)
| |
Collapse
|
15
|
Schmies M, Miyazaki M, Fujii M, Dopfer O. Microhydrated aromatic cluster cations: Binding motifs of 4-aminobenzonitrile-(H2O)n cluster cations with n ≤ 4. J Chem Phys 2014; 141:214301. [DOI: 10.1063/1.4901893] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Matthias Schmies
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany
| | - Mitsuhiko Miyazaki
- Chemical Resources Laboratory, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Masaaki Fujii
- Chemical Resources Laboratory, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Otto Dopfer
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany
| |
Collapse
|
16
|
Klyne J, Schmies M, Dopfer O. Microsolvation of the Formanilide Cation (FA+) in a Nonpolar Solvent: Infrared Spectra of FA+–Ln Clusters (L = Ar, N2; n ≤ 8). J Phys Chem B 2014; 118:3005-17. [DOI: 10.1021/jp5011988] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Johanna Klyne
- Institut für Optik
und Atomare Physik, Technische Universität Berlin, Hardenbergstrasse
36, 10623 Berlin, Germany
| | - Matthias Schmies
- Institut für Optik
und Atomare Physik, Technische Universität Berlin, Hardenbergstrasse
36, 10623 Berlin, Germany
| | - Otto Dopfer
- Institut für Optik
und Atomare Physik, Technische Universität Berlin, Hardenbergstrasse
36, 10623 Berlin, Germany
| |
Collapse
|
17
|
Schmies M, Patzer A, Schütz M, Miyazaki M, Fujii M, Dopfer O. Microsolvation of the acetanilide cation (AA+) in a nonpolar solvent: IR spectra of AA+–Lnclusters (L = He, Ar, N2; n ≤ 10). Phys Chem Chem Phys 2014; 16:7980-95. [DOI: 10.1039/c4cp00401a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|