1
|
Valencia FJ, Aurora V, Ramírez M, Ruestes CJ, Prada A, Varas A, Rogan J. Probing the Mechanical Properties of Porous Nanoshells by Nanoindentation. NANOMATERIALS 2022; 12:nano12122000. [PMID: 35745339 PMCID: PMC9231280 DOI: 10.3390/nano12122000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 11/16/2022]
Abstract
In this contribution, we present a study of the mechanical properties of porous nanoshells measured with a nanoindentation technique. Porous nanoshells with hollow designs can present attractive mechanical properties, as observed in hollow nanoshells, but coupled with the unique mechanical behavior of porous materials. Porous nanoshells display mechanical properties that are dependent on shell porosity. Our results show that, under smaller porosity values, deformation is closely related to the one observed for polycrystalline and single-crystalline nanoshells involving dislocation activity. When porosity in the nanoparticle is increased, plastic deformation was mediated by grain boundary sliding instead of dislocation activity. Additionally, porosity suppresses dislocation activity and decreases nanoparticle strength, but allows for significant strain hardening under strains as high as 0.4. On the other hand, Young’s modulus decreases with the increase in nanoshell porosity, in agreement with the established theories of porous materials. However, we found no quantitative agreement between conventional models applied to obtain the Young’s modulus of porous materials.
Collapse
Affiliation(s)
- Felipe J. Valencia
- Departamento de Computación e Industrias, Facultad de Ciencias de la Ingeniería, Universidad Católica del Maule, Talca 3480112, Chile;
- Centro para el Desarrollo de la Nanociencia y la Nanotecnología, CEDENNA, Avda. Ecuador 3493, Santiago 9170124, Chile; (M.R.); (A.V.); (J.R.)
- Correspondence:
| | - Viviana Aurora
- Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago 7800024, Chile;
| | - Max Ramírez
- Centro para el Desarrollo de la Nanociencia y la Nanotecnología, CEDENNA, Avda. Ecuador 3493, Santiago 9170124, Chile; (M.R.); (A.V.); (J.R.)
- Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago 7800024, Chile;
| | - Carlos J. Ruestes
- Instituto Interdisciplinario de Ciencias Básicas, CONICET-UNCuyo, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza 5500, Argentina;
| | - Alejandro Prada
- Departamento de Computación e Industrias, Facultad de Ciencias de la Ingeniería, Universidad Católica del Maule, Talca 3480112, Chile;
| | - Alejandro Varas
- Centro para el Desarrollo de la Nanociencia y la Nanotecnología, CEDENNA, Avda. Ecuador 3493, Santiago 9170124, Chile; (M.R.); (A.V.); (J.R.)
- Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago 7800024, Chile;
| | - José Rogan
- Centro para el Desarrollo de la Nanociencia y la Nanotecnología, CEDENNA, Avda. Ecuador 3493, Santiago 9170124, Chile; (M.R.); (A.V.); (J.R.)
- Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago 7800024, Chile;
| |
Collapse
|
2
|
Valencia FJ, Ramírez M, Varas A, Rogan J. Thermal Sensitivity on Eccentric Gold Hollow Nanoparticles: A Perspective from Atomistic Simulations. J Chem Inf Model 2021; 61:5499-5507. [PMID: 34726404 DOI: 10.1021/acs.jcim.1c00849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Eccentricity is a common feature consequence of several synthesis protocols of hollow nanoshells. Despite the crescent interest in these nanoparticles, it is still unclear how an irregular layer on the nanoparticle impacts the macroscopic properties. Here, we study the thermal stability of eccentric hollow nanoparticles (hNPs) for different sizes and eccentricity values by means of classical molecular dynamics simulations. Our results reveal that eccentricity displays a significant role in the thermal stability of hNPs. We attribute this behavior to the irregular shell contour, which collapses due to the thermal-activated diffusive process from the nanoparticle shell's most thin region. The mechanism is driven at low temperature by the nucleation of stacking faults until the amorphization for larger temperature values. Besides, for some particular eccentric hNPs, the shell suffers a surface reconstruction process, transforming the eccentric hNP into a concentric hNP. We believe that our study on thermal effects in eccentric hNPs has relevance because of their outstanding applications for plasmonic and sensing.
Collapse
Affiliation(s)
- Felipe J Valencia
- Centro de Investigación DAiTA Lab, Facultad de Estudios Interdisciplinarios, Universidad Mayor, Santiago 7510041, Chile.,Centro para el Desarrollo de la Nanociencia y la Nanotecnología, CEDENNA, Avda. Ecuador 3493, Santiago 9170124, Chile
| | - Max Ramírez
- Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago 7800024, Chile.,Centro para el Desarrollo de la Nanociencia y la Nanotecnologí a, CEDENNA, Avda. Ecuador 3493, Santiago 9170124, Chile
| | - Alejandro Varas
- Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago 7800024, Chile.,Centro para el Desarrollo de la Nanociencia y la Nanotecnologí a, CEDENNA, Avda. Ecuador 3493, Santiago 9170124, Chile
| | - José Rogan
- Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago 7800024, Chile.,Centro para el Desarrollo de la Nanociencia y la Nanotecnologí a, CEDENNA, Avda. Ecuador 3493, Santiago 9170124, Chile
| |
Collapse
|
3
|
Valencia FJ, Ramírez M, Varas A, Rogan J, Kiwi M. Thermal Stability of Hollow Porous Gold Nanoparticles: A Molecular Dynamics Study. J Chem Inf Model 2020; 60:6204-6210. [PMID: 33118806 DOI: 10.1021/acs.jcim.0c00785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hollow nanoparticle structures play a major role in nanotechnology and nanoscience since their surface to volume ratio is significantly larger than that of filled ones. While porous hollow nanoparticles offer a significant improvement of the available surface area, there is a lack of theoretical understanding, and scarce experimental information, on how the porosity controls or dominates the stability. Here we use classical molecular dynamics simulations to shed light on the particular characteristics and properties of gold porous hollow nanoparticles and how they differ from the nonporous ones. Adopting gold as a prototype, we show how, as the temperature increases, the porosity introduces surface stress and minor transitions that lead to various scenarios, from partial shrinkage for small filling factors to abrupt compression and the loss of spherical shape for large filling. Our work provides new insights into the stability limits of porous hollow nanoparticles, with important implications for the design and practical use of these enhanced geometries.
Collapse
Affiliation(s)
- Felipe J Valencia
- Centro de Investigación DAiTA Lab, Facultad de Estudios Interdisciplinarios, Universidad Mayor, Santiago, Chile.,Centro para el Desarrollo de la Nanociencia y la Nanotecnologı́a, CEDENNA, Avenida Ecuador 3493, Santiago, Chile 9170124
| | - Max Ramírez
- Centro para el Desarrollo de la Nanociencia y la Nanotecnologı́a, CEDENNA, Avenida Ecuador 3493, Santiago, Chile 9170124.,Departamento de Fı́sica, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile 7800024
| | - Alejandro Varas
- Centro para el Desarrollo de la Nanociencia y la Nanotecnologı́a, CEDENNA, Avenida Ecuador 3493, Santiago, Chile 9170124.,Departamento de Fı́sica, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile 7800024
| | - José Rogan
- Centro para el Desarrollo de la Nanociencia y la Nanotecnologı́a, CEDENNA, Avenida Ecuador 3493, Santiago, Chile 9170124.,Departamento de Fı́sica, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile 7800024
| | - Miguel Kiwi
- Centro para el Desarrollo de la Nanociencia y la Nanotecnologı́a, CEDENNA, Avenida Ecuador 3493, Santiago, Chile 9170124.,Departamento de Fı́sica, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile 7800024
| |
Collapse
|
4
|
Reyes PN, Valencia FJ, Vega H, Ruestes C, Rogan J, Valdivia JA, Kiwi M. The stability of hollow nanoparticles and the simulation temperature ramp. Inorg Chem Front 2018. [DOI: 10.1039/c7qi00822h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Hollow nanoparticles (hNPs) are of interest because their large cavities and small thickness give rise to a large surface to volume ratio.
Collapse
Affiliation(s)
- Paula N. Reyes
- Departamento de Física
- Facultad de Ciencias
- Universidad de Chile
- Santiago
- Chile 7800024
| | - Felipe J. Valencia
- Departamento de Física
- Facultad de Ciencias
- Universidad de Chile
- Santiago
- Chile 7800024
| | - Hector Vega
- Programa de Fisiología y Biofísica
- Instituto de Ciencias Biomédicas
- Santiago
- Chile
| | - Carlos Ruestes
- CONICET - Facultad de Ciencias Exactas y Naturales
- Universidad Nacional de Cuyo
- Mendoza
- Argentina
| | - José Rogan
- Departamento de Física
- Facultad de Ciencias
- Universidad de Chile
- Santiago
- Chile 7800024
| | - J. A. Valdivia
- Departamento de Física
- Facultad de Ciencias
- Universidad de Chile
- Santiago
- Chile 7800024
| | - Miguel Kiwi
- Departamento de Física
- Facultad de Ciencias
- Universidad de Chile
- Santiago
- Chile 7800024
| |
Collapse
|